GSBR和HBR处理城市污水的效能与微生物群落结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着污水处理厂出水水质不能达标现象的普遍存在,如何在不对现有处理工艺作较大改动的条件下,对其进行技术改造,提高工艺处理性能,是当前亟待解决的问题。颗粒污泥序批式反应器(GSBR)和活性污泥-生物膜复合工艺(HBR)具有生物量浓度较高、对现有工艺改动较少等特点,在城市污水处理厂升级改造方面具有很大优势。本文分析了GSBR和HBR处理城市污水的效果,优化了工艺参数,研究了污染物质的去除机理,并利用分子生物技术对HBR中悬浮态和固着态污泥中的微生物群落进行了分析。
     首先,在厌氧-好氧交替式的中试规模圆柱形GSBR反应器和生产性试验规模的平流式SBR反应器中对好氧颗粒污泥进行了研究。结果表明,GSBR经过72d的培养,反应器内出现小粒径颗粒污泥,在最佳工况运行条件下,COD、NH4+-N、TN和TP的平均去除率分别为91.63%,74.02%,68.42%和96.41%;平流式SBR反应器实现了同步脱氮除磷,COD、NH4+-N、TN和TP的平均去除率分别为90.1%,87.3%,60.2%和89.3%。以上两项试验表明,限制城市污水SBR中污泥颗粒化的最重要因素是进水负荷和反应器构型。
     然后,利用课题组自行开发的新型生物膜填料,研究了HBR反应器处理城市污水的效能。HBR中以活性污泥生物量为主体,生物膜量仅占全部生物量约25%,对COD、NH4+-N和TN的去除率分别达到85%、90%和60%,而且能够耐受较高的冲击负荷。利用中试HBR,对某工业园区废水进行了6个月的现场试验研究,结果表明,HBR中的生物膜量占全部生物量40%以上,明显大于城市污水HBR中的生物膜量比例;出水COD,NH4+-N和TN可分别降至65.3mg/L,0.86mg/L和5.48mg/L;出水中残余的COD基本为在难生物降解COD;高效脱氮的实现方式主要是前置反硝化脱氮和好氧反硝化脱氮
     最后,利用分子生物学技术揭示了工业废水HBR中悬浮污泥和生物膜污泥中微生物群落的特点。结果表明,HBR系统中菌群具有较高的微生物多样性,污泥内种群结构变化随着工艺运行呈现出一定的演替,对废水具有降解作用的微生物在两相污泥中逐渐得到富集。生物膜上Nitrosospira属和Nitrosomonas属是氨氧化菌的优势菌属;悬浮污泥和生物膜共有的亚硝酸盐氧化菌菌属较多,主要来自Nitrobacter属、Pseudomonas属和Nitrospira属;反硝化菌属以β-proteobacteria纲为优势菌属;随着实验的进行,AOB、NOB和反硝化细菌所占比例逐渐提高。
With most of the wastewater treatment plants (WWTP) are facing the differentyof being uable to meet the water discharge criteria, how to improve its treatmentperformance without making much changes is currently a serious problem to besolved in China. With the advantages of maintaining high biomass concentration andfewer changes to existing processes, granular SBR (GSBR) and hybrid biologicalprocess (HBR) are much more suitable for WWTP upgrade. So, the municipalwastewater treatment efficiency, process parameters optimization and pollutantremoval mechanisms of GSBR and HBR was studied in this paper. Microbialcommunity of HBR treating industrial wastewater was also analyzed by usingmolecular biology techniques.
     Firstly, experiment of aerobic granular sludge was carried out in ananaerobic/aerobic pilot-scale GSBR reactor with a cylindrical shape. In the GSBR,small size granular appeared after72d’s cultivation. And upon the best operatingconditions, the average removal rates of COD, NH4+-N, TN and TP were91.63%,74.02%,68.42%and96.41%, respectively. In horizontal-flow SBR, simultaneousnitrogen and phosphorus removal process was realized, with the average removalrates of COD, NH4+-N, TN and TP were90.1%,87.3%,60.2%and89.3%. Operatingdata of GSBR and horizontal-flow SBR showed that organic loading rate and reactorconfiguration were the most important factors of the formation of aerobic granules.
     Secondly, treatment performances of municipal wastewater and industrial waterin HBR were studied in this research, by using a newly designed bio-carrier. In theHBR, biofilm biomass accounted for25%of total biomass. COD, NH4+-N and TNremoval rates reached85%,90%and60%. Experiment on industrial wastewatertreatment by HBR system was carried out for6months. Experiment results showedthat biofilm biomass accounted for more than40%of total biomass. The averageeffluent COD, NH4+-N and TN concentrations were65.3mg/L,0.86mg/L and5.48mg/L. Residual COD was almost contributed by non-biodegradable organicmatters. N-removal was realized mainly by pre-denitrification and aerobicdenitrification processes.
     Finally, using PCR-DGGE and FISH techniques, the paper revealed thecharacteristics of microbial community in HBR. The results showed that the HBRsystem has high microbial community diversity. The microorganisms which were ableto degration of organics had gradually been enriched in suspended-growth andattached–growth sludge. AOB group was basically belonged to Nitrosospira spp. andNitrosomonas spp. The Nitrobacter spp., Pseudomonas spp. and Nitrospira spp. werecommon NOB species both in suspended sludge and biofilm. β-proteobacteria wasthe dominant denitrifying species. In the process of experiment, the proportion ofAOB, NOB and denitrifying bacteria gradually increased in HBR.
引文
[1] Lettinga G, van Velsen A F M, Hobma S W, et al. Use of the upflow sludgeblanket (USB) reactor concept for biological waste water treatment especially foranaerobic treatment[J]. Biotechnology Bioengineering,1980,22(4):699-634.
    [2] Morgenroth E, Sherden T, van Loosdrecht M C M, et al. Aerobic granular sludgein a sequencing batch reactor[J]. Water Research,1997,31(12):3191-3194.
    [3] Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in asequencing batch reactor[J]. Water Research,1999,33(10):2283-2290.
    [4] Adav S S, Lee D J, Show K Y, et al. Aerobic granular sludge: recent advances[J].Biotechnology Advances[J].2008,26(5):411-423.
    [5]贾亚梅,许明,徐哲民.好氧颗粒污泥在废水处理中的研究进展[J].污染防治技术,2009,22(3):74-78.
    [6]卢珊.颗粒污泥SBR中污泥稳定性及处理生活污水的试验研究[D].[硕士学位论文],天津:天津大学环境科学与工程学院,2007.
    [7]卢然超,张晓健,张悦,等. SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响[J].环境科学,2001,22(2):87-90.
    [8]王强,陈坚,堵国成.选择压法培育好氧颗粒污泥的试验[J].环境科学,2003,24(4):99-104.
    [9]陈坚,李春生,伦世仪.厌氧颗粒污泥的形成机制[J].中国环境科学,1993,13(5):334-338.
    [10] van de Hoek. Granular anaerobic sludge: granulation of denitrifying sludge[M].The Netherland: Pudoc,1988.
    [11] Heijnen J J, van Loosdrecht M C M, Mulder R, et al. Development and scale-upof an aerobic biofilm air-lift suspension reactor[J]. Water Science andTechnology,1993,27(5-6):253-261.
    [12] Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on theformation and stability of biogranules[J]. Applied Microbiology andBiotechnology,2004,65(2):143-148.
    [13] Liu Y, Tay J H. The essential role of hydrodynamic shear force in the formationof biofilm and granular sludge[J]. Water Research,2002,36(7):1653-1665.
    [14] Chen M Y, Lee D J, Tay J H. Distribution of extracellular polymeric substancesin aerobic granules[J]. Applied Microbiology and Biotechnology,2007,73(6):1463-1469.
    [15] Chen M Y, Lee D J, Tay J H, et al. Staining of extracellular polymeric substancesand cells in bioaggregates[J]. Applied Microbiology and Biotechnology,2007,75(2):467-474.
    [16] Chen M Y, Lee D J, Yang Z, et al. Fluorescent staining for study of extracellularpolymeric substances in membrane biofouling layers[J]. Environmental Scienceand Technology,2006,40(21):6642-6646.
    [17] Beun J J, van Loosdrecht M C M, Heijnen J J. Aerobic granulation in asequencing batch airlift reactor[J]. Water Research,2002,36(3):702-712.
    [18] de Kreuk M K, Pronk M, van Loosdrecht M C M. Formation of aerobic granulesand conversion processes in an aerobic granular sludge reactor at moderate andlow temperatures[J]. Water Research,2005,39(18):4476-4484.
    [19]竺建荣,刘纯新.好氧颗粒污泥的培养及理化特性研究[J].环境科学,1999,20(2):38-41.
    [20] Jiang H L, Maszenan A M, Tay J H. Bioaugmentation and coexistence of twofunctionally similar bacterial strains in aerobic granules[J]. AppliedMicrobiology and Biotechnology,2007,75(5):1191-1200.
    [21] Lemaire R, Yuan Z, Blackall L L, et al. Microbial distribution of Accumulibacterspp. and Competibacter spp. in aerobic granules from a lab-scale biologicalnutrient removal system[J]. Environmental Microbiology,2008,10(2):354-363.
    [22]胡林林,王建龙,文湘华,等. SBR中厌氧颗粒污泥向好氧颗粒污泥的转化[J].环境科学,2004,25(4):74-77.
    [23]卢然超,张晓健,张悦,等. SBR工艺污泥颗粒化对生物脱氮除磷特性的研究[J].环境科学学报,2001,21(5):577-581.
    [24] Tay S, Moy B, Maszenan A M, et al. Comparing activated sludge and aerobicgranules as microbial inoculant for phenol biodegradation[J]. AppliedMicrobiology and Biotechnology,2005,67(5):708-713.
    [25] Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation insequential aerobic sludge blanket reactor[J]. Journal of Applied Microbiology,2001,91(1):168-175.
    [26] Zheng Y M, Yu H Q, Liu S H, et al. Formation and instability of aerobic granulesunder high organic loading conditions[J]. Chemosphere,2006,63(10):1791-1800.
    [27] Sun F Y, Yang C Y, Li J Y, et al. Influence of different substrates on the formationand characteristics of aerobic granules in sequencing batch reactors[J]. Journalof Environmental Science,2006,18(5):864-871.
    [28] Adav S S, Lee D J, Ren N Q. Biodegradation of pyridine using aerobic granulesin the presence of phenol[J]. Water Research,2007,41(13):2903-2910.
    [29] Su K Z, Yu H Q. Formation and characterization of aerobic granules in asequencing batch reactor treating soybean-processing wastewater[J].Environmental Science and Technology,2005,39(8):2818-2828.
    [30] Arrojo B, Mosquera-Corral A, Garrido J M, et al. Aerobic granulation withindustrial wastewater in sequencing batch reactors[J]. Water Research,2004,38(14-15):3389-3399.
    [31] Schwarzenbeck N, Borges J M, Wilderer P A. Treatment of dairy effluents in anaerobic granular sludge sequencing batch reactor[J]. Applied Microbiology andBiotechnology,2005,66(6):711-718.
    [32] Peng D C, Bernet N, Delgenes J P, et al. Aerobic granular sludge-a case report[J].Water Research,1999,33(3):890-893.
    [33] Jang A, Yoon Y H, Kim I S, et al. Characterization and evaluation of aerobicgranules in SBR[J]. Journal of Biotechnology,2003,105(1-2):71-82.
    [34]史晓慧,刘芳,刘虹,等.进料负荷调控培养好氧颗粒污泥的试验研究[J].环境科学,2007,28(5):1026-1032.
    [35] Hu Z Q, Ferraina R A, Ericson J F, et al. Biomass characteristics in threesequencing batch reactors treating a wastewater containing synthetic organicchemicals[J]. Water Research,2005,39(4):710-720.
    [36] Mosquera-Corral A, de Kreuk M K, Heijnen J J, et al. Effect of oxygenconcentration on N-removal in an aerobic granular sludge reactor[J]. WaterResearch,2005,39(12):2676-2686.
    [37] Yang S F, Li X Y, Yu H Q. Formation and characterisation of fungal and bacterialgranules under different feeding alkalinity and pH conditions[J]. ProcessBiochemistry,2008,43(1):8-14.
    [38] Jiang H L, Tay J H, Liu Y, et al. Ca2+augmentation for enhancement ofaerobically grown microbial granules in sludge blanket reactors[J].Biotechnology Letters,2003,25(2):95-99.
    [39] Tay J H, Jiang H L, Tay S T L. High-rate biodegradation of phenol by aerobicallygrown microbial granules[J]. Journal of Environmental Engineering,2004,130(12):1415-1423.
    [40] Yi S, Zhuang W Q, Wu B, et al. Biodegradation of p-Nitrophenol by aerobicgranules in a sequencing batch reactor[J]. Environmental Science andTechnology,2006,40(7):2396-2401.
    [41] Wang S G, Liu X W, Zhang H Y, et al. Aerobic granulation for2,4-dichlorophenol biodegradation in a sequencing batch reactor[J]. Chemosphere,2007,69(5):769-775.
    [42] Zhang L L, Zhu R Y, Chen J M, et al. Biodegradation of methyl tert-butyl etheras a sole carbon source by aerobic granules cultivated in a sequencing batchreactor[J]. Bioprocess Biosystems Engineering,2008,31(6):527-534.
    [43] Cassidy D P, Belia E. Nitrogen and phosphorus removal from an abattoirwastewater in a SBR with aerobic granular sludge[J]. Water Research,2005,39(19):4817-4823.
    [44] Xu H, Tay J H, Foo S K, et al. Removal of dissolved copper (II) and zinc (II) byaerobic granular sludge[J]. Water Science and Technology,2004,50(9):155-160.
    [45] Schwarzenbeck N, Erley R, Mc Swain B S, et al. Treatment of maltingwastewater in a granular sludge sequencing batch reactor (SBR)[J]. ActaHydrochimica et Hydrobiologica,2004,32(1):16-24.
    [46] Nancharaiah Y V, Joshi H M, Mohan T V K, et al. Aerobic granular biomass: anovel biomaterial for efficient uranium removal[J]. Current Science,2006,91(4):503-509.
    [47] Beun J J, Heijnen J J, van Loosdrecht M C M. N-removal in a granular sludgesequencing batch airlift reactor[J]. Biotechnology and Bioengineering,2001,75(1):82-92.
    [48] de Kreuk M K, Heijnen J J, van Loosdrecht M C M. Simultaneous COD,nitrogen, and phosphate removal by aerobic granular sludge[J]. Biotechnologyand Bioengineering,2005,90(6):761-769.
    [49] Lin Y M, Liu Y, Tay J H. Development and characteristics ofphosphorus-accumulating microbial granules in sequencing batch reactors[J].Applied Microbiology and Biotechnology,2003,62(4):430-435.
    [50]卢姗,季民,王景峰,等.颗粒污泥SBR处理生活污水同步除磷脱氮的研究[J].环境科学,2007,28(8):1687-1692.
    [51]赫俊国,李建政,张金松,等.生物膜-活性污泥共生系统处理屠宰废水的研究[J].哈尔滨工业大学学报,2003,35(4):424-427.
    [52]郑育毅,唐静珍,吴延飞,等.生物膜/活性污泥工艺处理淀粉制糖废水[J].中国给水排水,2003,19(10):90-91.
    [53] Wang J L, Shi H C, Qian Y. Wastewater treatment in a hybrid biological reactor(HBR): effect of organic loading rates[J]. Process Biochemistry,2000,36(4):297-303.
    [54]李军,杨秀山,彭永臻.微生物与水处理工程[M].第三版.北京:化学工业出版社,2003.
    [55] Lee H S, Park S J, Yoon T I. Wastewater treatment in a hybrid biological reactorusing powdered minerals: effects of organic loading rates on COD removal andnitrification[J]. Process Biochemistry,2002,38(1):81-88.
    [56] Seetha N, Bhargava R, Kumar P. Effect of organic shock loads on a two-stageactivated sludge-biofilm reactor[J]. Bioresource Technology,2010,101(9):3060-3066.
    [57] Walters E, Hille A, He M, et al. Simultaneous nitrification/denitrification in abiofilm airlift suspension (BAS) reactor with biodegradable carrier material[J].Water Research,2009,43(18):4461-4468.
    [58] Jun B H, Miyanaga K, Tanji Y, et al. Removal of nitrogenous and carbonaceoussubstances by a porous carrier membrane hybrid process for wastewatertreatment[J]. Biochemical Engineering Journal,2003,14(1):37-44.
    [59]方芳,王淑梅,冯翠杰,等.好氧条件下复合生物膜-活性污泥反应器中的反硝化菌群结构[J].生态学杂志,2011,30(3):430-437.
    [60]董滨,梁娅,周增炎,等.活性污泥-生物膜法系统的脱氮除磷效果研究[J].同济大学学报(自然科学版),2006,34(8):1066-1069.
    [61] Lo I W, Lo K V, Mavinic D S, et al. Contributions of biofilm and suspendedsludge to nitrogen transformation and nitrous oxide emission in hybridsequencing batch system[J]. Journal of Environmental Sciences,2010,22(7):953-960.
    [62]李怀正,傅威,白月华,等.生物接触氧化预处理源水的设计参数[J].中国给水排水,2001,17(2):43-45.
    [63]王升,方芳,杨运平,等.曝气强度对活性污泥生物膜共生系统的影响研究[J].西南大学学报(自然科学版),2010,32(9):72-76.
    [64] Wang R C, Wen X H, Qian Y. Influence of carrier concentration on theperformance and microbial characteristics of a suspended carrier biofilmreactor[J]. Process Biochemistry,2005,40(9):2992-3001.
    [65]王峰,刘长青,刘易,等. AmOn工艺中悬浮填料填充率对硝化菌群的影响[J].同济大学学报(自然科学版),2008,8(8):1085-1088.
    [66]管运涛,宁涛,张丽丽. HRT和载体对一体化生物膜反应器脱氮除磷效果的影响[J].清华大学学报(自然科学版),2009,49(3):359-363.
    [67] Tizghadam M, Dagot C, Baudu M. Wastewater treatment in a hybrid activatedsludge baffled reactor[J]. Journal of Hazardous Materials,2008,154(1-3):550-557.
    [68] Chudoba P, Pujol R. Technical solutions for upgrading high rate and mediumloaded activated sludge plants for nutrient removal[J]. Water Science andTechnology,2000,41(9):131-138.
    [69] Clifford W R, Dipankar S. Full-scale evaluation of an integrated fixed-filmactivated sludge (IFAS) process for enhanced nitrogen removal[J]. Water Scienceand Technology,1996,33(12):155-162.
    [70] Müller N. Implementing biofilm carriers into activated sludge process15years ofexperience[J]. Water Science and Technology,1998,37(9):167-174.
    [71]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [72] Smoladers G J F, vander Meij J, van Loosdrecht M C M, et al. A structuredmetabolic model for anaerobic and aerobic stoichiometry and kinetics of thebiological phosphorus removal process[J]. Biotechnology and Bioengineering,1995,47(3):277-287.
    [73] Kuba T, van Loosdrecht M C M, Heiinen J J. A metabolic model for thebiological phosphorus removal by denitrifying organisms[J]. Biotechnology andBioengineering,1996,52(6):685-695.
    [74] Robertson L A, Kuenen J G. Aerobic denitrification: a controversy revived[J].Archives of Microbiology,1984,139(4):351-354.
    [75] Kesseriu P, Kiss I, Bihari Z, et al. Biological denitrification in a continuous-flowpilot bioreactor containing immobilized Pseudomonas butannovora cells[J].Bioresource Technology,2003,87(1):75-80.
    [76] Takaya N, Maria Antonina B C S, Yasushi S, et al. Aerobic denitrificationbacteria that produce low levels of nitrous oxide[J]. Applied EnvironmentalMicrobiology,2003,69(6):3152-3157.
    [77]李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究[J].给水排水,2001,27(1):22-24.
    [78] Patureau D, Bernet N, Delgenes J P, et al. Effect of dissolved oxygen andcarbon-nitrogen loads on denitrification by an aerobic consortium[J]. AppliedMicrobiology and Biotechnology,2000,54(4):535-542.
    [79] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis (TGGE) in microbialecology[J]. Antonie van Leeuwenhoek,1998,73(1):127-141.
    [80] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerasechain reaction amplified genes coding for16S rRNA[J]. Applied Microbiologyand Biotechnology,1993,59(3):695-700.
    [81] Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO,CH4, OCS, N2O and NO)[J]. Microbiology Review,1996,60(4):609-640.
    [82] Xia S Q, Li J Y, Wang R C. Nitrogen removal performance and microbialcommunity structure dynamics response to carbon nitrogen ratio in a compactsuspended carrier biofilm reactor[J]. Ecological Engineering,2008,32(3):256-262.
    [83] Fu B, Liao X Y, Ding L L, et al. Characterization of microbial community in anaerobic moving bed biofilm reactor applied for simultaneous nitrification anddenitrification[J]. World Journal of Microbiology&Biotechnology,2010,26(11):1981-1990.
    [84] Hu J, Li D, Liu Q, et al. Effect of organic carbon on nitriffication efficiency andcommunity composition of nitrifying bioffilms[J]. Journal of EnvironmentalSciences,2009,21(3):387-394.
    [85] Moore R, Quarmby J, Stephenson T. The effects of media size on theperformance of biological aerated filters[J]. Water Research,2001,35(10):2514-2522.
    [86]张勇,宋吟玲.光原位杂交法检测反应器中聚磷菌实验条件优化及应用[J].环境科学与管理,2008,2(33):126-129.
    [87]亢涵,王秀蘅,李楠. FISH技术在强化生物除磷中的应用[J].生物技术,2007,17(4):48-50.
    [88] Pala I, Kolukirik M, Insel G, et al. Fluorescence in situ hybridization for theassessment of nitrifying bacteria in a pilot-scale membrane bioreactor[J].Fresenius Environmental Bulletin,2008,17(12):2255-2261.
    [89] Park J J, Byun I G, Yu J C, et al. Analysis of nitrifying bacterial communities inaerobic biofilm reactors with different DO conditions using moleculartechniques[J]. Water Science and Technology,2008,57(12):1889-1899.
    [90] Hibiya K, Terada A, Tsuneda S, et al. Simultaneous nitrification anddenitrification by controlling vertical and horizontal microenvironment in amembrane-aerated biofilm reactor[J]. Journal of Biotechnology,2003,100(1):23-32.
    [91] Koichi S,Kazuma O,Akihiko T, et al. Effects of acetate and nitrite addition onfraction of denitrifying phosphate-accumulating organisms and nutrient removalefficiency in anaerobic/aerobic/anoxic process[J]. Bioprocess and BiosystemsEngineering,2006,29(5-6):305-313.
    [92] Invitrogen. DAPI nucleic acid stain[EB/OL]. http://en.wikipedia.org/wiki/DAPI,2009-12-08.
    [93]国家环境保护局.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2003.
    [94]刘永淞.污水可生化性评价[J].中国给水排水,1995,11(5):36-38
    [95]夏文香.可生化性试验与评价方法研究[J].上海环境科学,1999,18(1):26-28.
    [96]王建龙,吴立波,齐星,等.用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J].环境科学学报.1999,19(3):225-229.
    [97] Laspidou G S, Rittmann B E. A unified theory for extracellular polymericsubstances, soluble microbial products, and active and inert biomass[J]. WaterResearch,2002,36(11):2711-2720.
    [98]王暄,季民,王景峰,等.好氧颗粒污泥胞外聚合物提取方法研究[J].中国给水排水,2005,21(8):91-93.
    [99]宁正祥.食品成分分析手册[M].北京:中国轻工业出版社,1998.
    [100] Frolund B. Extraction of extracellular polymers from activated sludge using acation exchange resin[J]. Water Research,1996,30(8):1749-1758.
    [101]严杰,罗海波,陆德源.现代微生物学试验技术及其应用[M].北京:人民卫生出版社,1997.
    [102]魏燕杰. SBR处理垃圾渗滤液的污泥颗粒化和稳定性及生物多样性研究[D].
    [博士学位论文],天津:天津大学环境科学与工程学院,2010.
    [103] Cebron A, Coci M, Garnier J, et al. Denaturing gradient gel electrophoreticanalysis of ammonia-oxidizing bacterial community structure in the lowerSeine river: impact of Paris wastewater effluents[J]. Applied andEnvironmental Microbiology,2004,70(11):6726-6737.
    [104] Degrance V, Bardin R. Detection and counting of nitrobacter population in soilby PCR[J]. Applied and Environmental Microbiology,1995,61(6):2093-2098.
    [105] Braker G, Fesefeldt A, Witzel K P. Development of PCR primer systems foramplification of nitrite reductase genes (nirK and nirS) to detect denitrifyingbacteria in environmental samples[J]. Applied and Environmental Microbiology,1998,64(10):3769-3775.
    [106] Kowalchuk G A, Stephen J R, de Boer W, et al. Analysis of ammonia-oxidizingbacteria of the beta subdivision of the class Proteobacteria in coastal sanddunes by denaturing gradient gel electrophoresis and sequencing ofPCR-amplified16S ribosomal DNA fragments[J]. Applied and EnvironmentalMicrobiology,1997,63(4):1489-1497.
    [107]陈谊.利用PCR-DGGE研究膜生物反应器中微生物的群落结构[D].[硕士学位论文],天津:天津大学环境科学与工程学院,2009.
    [108] Teske A, Alm E, Regan J M, et al. Evolutionary relationships among ammoniaand nitrite-oxidizing bacteria[J]. Journal of Bacteriology,1994,176(21):6623-6630.
    [109] Coskuner G, Ballinger S J, Davenport R J, et al. Agreement between theory andmeasurement in quantification of ammonia-oxidizing bacteria[J]. Applied andEnvironmental Microbiology,2005,71(10):6325-6334.
    [110] Egli K, Langer C, Siegrist H R, et al. Community analysis of ammonia andnitrite oxidizers during start-up of nitritation reactors[J]. Applied andEnvironmental Microbiology,2003,69(6):3213-3222.
    [111] Zhou Y, Pijuan M,Raymond J, et al. Could polyphosphate-accumulatingorganisms (PAOs) be glycogen-accumulating organisms(GAOs)?[J]. WaterResearch,2008,42(10-11):2361-2368.
    [112] Beristain-Cardoso R, Gómez J, Méndez-Pampín R. The behavior of nitrifyingsludge in presence of sulfur compounds using a floating biofilm reactor[J].Bioresource Technology,2010,101(22):8593-8598.
    [113]张斌. MBR和GSBR中微生物群落生态学研究[D].[博士学位论文],天津:天津大学环境科学与工程学院,2010.
    [114] Qin L, Liu Y, Tay J H. Effect of settling time on aerobic granulation insequencing batch reactor[J]. Biochemical Engineering Journal,2004,21(1):47-52.
    [115]王景峰,王暄,季民,等.聚糖菌颗粒污泥基于胞内储存物质的同步硝化反硝化[J].环境科学,2006,27(3):473-477.
    [116] Third K A, Burnett N, Cord-Ruwisch R. Simultaneous nitrification anddenitrification using stored substance (PHB) as the electron donor in an SBR[J].Biotechnology and Bioengineering,2003,83(6):706-720.
    [117]迟寒,刘毅慧,杨凤林,等.好氧颗粒污泥处理城市生活污水[J].水处理技术,2006,32(8):73-77.
    [118]刘智晓.分散式生活污水多级生物膜处理工艺及菌群特性研究[D].[博士学位论文],哈尔滨:哈尔滨工业大学市政环境工程学院,2009.
    [119] Tchbanoglous G, Burton F L, Stensel H D. Wastewater engineering: treatmentand reuse,4thed[M]. USA: Metealf and Eddy Inc,2003.
    [120] Wachtmeister A, Kuba T, van Loosdercht M C M, et al. A sludgecharacterization assay for aerobic and denitrifying phosphorus removingsludge[J]. Water Research,1997,31(3):471-478.
    [121] Meinhold J, Filipe C D M, Daigger G T, et al. Characterization of thedenitrifying fraction of phosphate accumulating organisms in biologicalphosphate removal[J]. Water Science and Technology,1999,39(1):31-42.
    [122]王建龙,张子健,吴伟伟.好氧颗粒污泥的研究进展[J].环境科学学报,2009,29(3):449-473.
    [123]王超,郑晓英.剪切应力对好氧颗粒污泥形态结构和微生物活性的影响机制研究[J].环境科学,2008,29(8):2235-2241.
    [124] Dilaconic, Ramadori R, Lopez A, et al. Hydraulic shear stress calculation in asequencing batch biofilm reactor with granular biomass[J]. EnvironmentalScience and Technology,2005,39(3):889-894.
    [125] Mcswain S B S, Irvine R L. Dissolved oxygen as a key parameter to aerobicgranule formation[J]. Water Science and Technology,2008,58(4):781-787.
    [126] Wan J F, Bessiere Y, Sperandio M. Alternating anoxic feast/aerobic faminecondition for improving granular sludge formation in sequencing batch airliftreactor at reduced aeration rate[J]. Water Research,2009,43(20):5097-5108.
    [127] Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structureand metabolism of aerobic granules[J]. Applied Microbiology andBiotechnology,2001,57(1-2):227-233.
    [128]李彦鹏,王焕然.序批式反应器内多尺度三相流动的数值模拟[J].环境科学学报,2007,27(9):1567-1574.
    [129] Wen C Y, Yu Y H. Mechanics of fluidization[J]. Chemical Engineering ProgressSymposium Series,1966,62(62):100-108.
    [130]王建龙,张子健,吴伟伟.好氧颗粒污泥的研究进展[J].环境科学学报,2009,29(3):449-473.
    [131]周云霞,萋丽君,张荣明,等.好氧颗粒污泥形成的影响因素分析[J].中国沼气,2007,25(5):11-15.
    [132] Liu Y, Liu Y Q, Wang Z W, et al. Influence of substrate surface loading on thekinetic behavior of the aerobic granules[J]. Applied Microbiology andBiotechnology,2005,67(4):484-488.
    [133] de Kreuk M K, van Loosdrecht M C M. Formation of aerobic granules withdomestic sewage[J]. Journal of Environmental Engineering,2006,132(6):694-697.
    [134] de Bruin L M M, van der Roest H F, de Kreuk M K, et al. Promising resultspilot research aerobic granular sludge technology at WWTP Ede[A]. In: BatheB, de Kreuk M, McSwain B, et al. Aerobic Granular Sludge[C]. London: IWAPublishing,2005,133-139.
    [135] Ni B J, Xie W M, Liu S G, et al. Granulation of activated sludge in a pilot scalesequencing batch reactor for the treatment of lowstrength municipalwastewater[J]. Water Research,2009,43(3):751-761.
    [136] Mcswain B S, Irvine R L, Hausner M, et al. Composition and distribution ofextracellular polymeric substances in aerobic flocs and granular sludge[J].Applied and Environmental Microbiology,2005,71(2):1051-1057.
    [137] Barbosa R A, Sant'Anna G L. Treatment of raw domestic sewage in an UASBreactor[J]. Water Research,1989,23(12):1483-1490.
    [138]张丽丽,陈效,陈建孟,等.胞外多聚物在好氧颗粒污泥形成中的作用机制[J].环境科学,2007,28(4):795-799.
    [139] Tay J H, Liu Q S, Liu Y. The role of cellular polysaccharides in the formationand stability of aerobic granules[J]. Letters in Applied Microbiology,2001,33(3):222-226.
    [140] Liao B Q, Allen D G, Roppo I G, et al. Surface properties of sludge and theirrole in bioflocculation and settleability[J]. Water Research,2001,35(2):339-350.
    [141] Li Z H, Kuba T, Kusuda T. The influence of starvation phase on the propertiesand the development of aerobic granules[J]. Enzyme and Microbial Technology,2006,38(5):670-674.
    [142] Liu Y, Yang S F, Qin L, et al. A thermodynamic interpretation of cellhydrophobicity in aerobic granulation[J]. Applied Microbiology andBiotechnology,2003,64(3):410-415.
    [143]林云明,林虹,季民,等.植株型鸟巢式生物载体[P].中国专利:201010004311,2010-07-07.
    [144] Zhan X M, Rodgers M, O’Reilly E. Biofilm growth and characteristics in analternating pumped sequencing batch biofilm reactor (APSBBR)[J]. WaterResearch,2006,40(4):817-825.
    [145] Guo J B, Ma F, Chang C C, et al. Start-up of a two-stage bioaugmentedanoxic-oxic (A/O) biofilm process treating petrochemical wastewater underdifferent DO concentrations[J]. Bioresource Technology,2009,100(14):3483-3488.
    [146]刘雨,赵庆良.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    [147] Tan T W, Ng H Y. Influence of mixed liquor recycle ratio and dissolved oxygenon performance of pre-denitrification submerged membrane bioreactors[J].Water Research.2008,42(4-5):1122-1132.
    [148]沈渝.工业废水处理中污泥耗氧速率测定和技术分析[J].上海水务,2008,24(3):17-18.
    [149]刘志恒.现代微生物学[M].北京:科学出版社,2002.
    [150]赵林林,王海燕,杨慧芬,等. PCR-DGGE研究臭氧耦合ASBR/SBR控氮磷污泥减量化工艺中的细菌多样性[J].环境工程技术学报,2011,1(2):123-130.
    [151]胡怡杉,孙宝盛,王盛勇. MBR和CAS工艺污泥在贫营养培养条件下的微生物群落结构研究[J].环境科学学报,2011,31(9):1900-1907.
    [152] Bond, P L, Hugenholtz P, Keller J, et al. Bacterial community structures ofphosphate-removing and no-phosphate-removing activated sludges fromsequencing batch reactors[J]. Applied and Environmental Microbiology,1995,61(5):1910-1916.
    [153] Hugenholtz P, Tyson G W, Webb R I, et al. Investigation of candidate divisionTM7, a recently recognized major lineage of the domain bacteria with noknown pure-culture representatives[J]. Applied and EnvironmentalMicrobiology,2001,67(l):411-419.
    [154] Ginigem P, Keller J, Blackall L L. Investigation of an acetate-fed denitrifyingmicrobial community by stable isotope probing, full-cycle rRNA analysis, andfluorescent in situ hybridization-microautoradiography[J]. Applied andEnvironmental Microbiology,2005,71(12):8683-8691.
    [155]刘兴宇,王宝军,赵克新,等.处理含氮芳烃废水SBR生物反应器细菌多样性研究[J].环境科学,2008,29(9):2564-2570.
    [156] Wang X H, Zhang K, Ren N Q, et al, Monitoring microbial communitystructure and succession of an A/O SBR during startup period usingPCR-DGGE[J]. Journal of Environmental Science,2009,21(2):223-228.
    [157] Purkhold U, Wagner M, Timmermann G, et al.16S rRNA and amoA-basedphylogeny of12novel betaproteobacterial ammonia-oxidizing isolates:extension of the dataset and proposal of a new lineage within thenitrosomonads[J]. International Journal of Systematic EvolutionaryMicrobiology,2003,53(5):1485-1494.
    [158] Mintie A T, Heichen R S, Cromack K Jr, et al. Ammonia-oxidizing bacteriaalong meadow-to-forest transects in the Oregon Cascade Mountains[J]. Appliedand Environmental Microbiology.2003,69(6):3129-3136.
    [159] Ward B B, Martino D P, Diaz M C, et al. Analysis of ammonia-oxidizingbacteria from hypersaline Mono Lake, California, on the basis of16S rRNAsequences[J]. Applied and Environmental Microbiology,2000,66(7):2873-2881.
    [160] Stephen J R, McCaig A E, Smith Z, et al. Molecular diversity of soil and marine16S rRNA gene sequences related to beta-subgroup ammonia-oxidizingbacteria[J]. Applied and Environmental Microbiology,1996,62(11):4147-4154.
    [161] Hu J, Li D, Liu Q, et al. Effect of organic carbon on nitrification efficiency andcommunity composition of nitrifying biofilms[J]. Journal of EnvironmentalSciences,2009,21(3):387-394.
    [162] Juretschko S, Loy A, Lehner A, et al. The microbial community composition ofa nitrifying-denitrifying activated sludge from an industrial sewage treatmentplant analyzed by the full-cycle rRNA approach[J]. Systematic and AppliedMicrobiology,2002,25(1):84-99.
    [163]高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].给水排水,1998,24(12):6-9.
    [164]周少奇,周吉林.生物脱氮新技术进展[J].环境污染治理技术与设备,2000,6(1):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700