功能型离子液体的制备、性质及其在催化裂化汽油深度脱硫中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体作为一种环境友好的新型反应介质和功能材料,引起了学术界的高度重视。本文以离子液体在催化裂化(FCC)汽油深度脱硫领域的应用为主要研究内容,旨在加快离子液体在该领域的工业化速度。介绍了我国生产的车用燃料油的特点,强调了高标准清洁燃油的生产势在必行;分析了燃料油加氢和非加氢脱硫技术的应用现状和发展趋势,对比了几种非加氢脱硫技术的优缺点;通过对离子液体应用现状和课题组研究基础的介绍,突出了离子液体在燃料油脱硫特别是FCC汽油深度脱硫领域的应用技术优势。在雾霾天气频现污染严重的今天,可“设计”的功能型离子液体在绿色化工领域的应用优势明显。
     我们设计并合成了大量不同体系的离子液体,针对其在FCC汽油深度脱硫领域进行了实验研究,筛选出了三大类离子液体体系,即硫酸氢咪唑盐体系、四氟硼酸咪唑盐体系和三氟乙酸咪唑盐体系的离子液体;运用核磁共振氢谱、核磁共振氟谱、红外光谱、质谱等手段对合成的离子液体进行了表征;通过大量实验,得出了三类离子液体萃取氧化脱硫的剂油比、氧化剂用量、萃取氧化时间、萃取氧化温度、离子液体阳离子烷基碳链长度等最佳实验条件;将其应用于中国石油天然气股份有限公司抚顺石化公司生产的FCC汽油深度脱硫工艺时,表现出了良好的脱硫性能,在保证汽油收率的前提下,基本不影响汽油的各项性能指标。实验结论为:
     (1)以[CnMIM]HSO4(n=2,3,4,5,6)离子液体为脱硫剂,以30%的H202为氧化剂,通过对模拟油品的脱硫效果研究,得出最适宜的脱硫实验条件为:剂油体积比V[C3MIM]HSO4:Voil=1:20,氧硫摩尔比(O/S)为6,温度为60℃,时间为90min,[C3MIM]HSO4脱硫效果好于其他碳链长度的离子液体,模型油(硫含量为200μg/g,下同)的一次脱硫率最高可达95%以上;对FCC汽油(硫含量为63.2μg,下同)的一次脱硫率最高可达94.7%。脱硫效果较好,但萃取时间过长,离子液体用量相对较大。
     (2)以[CnMIM]BF4(n=2,3,4,5,6)离子液体为脱硫剂,以30%的H2O2为氧化剂,通过对模拟油品的脱硫效果研究,得出最适宜的脱硫实验条件为:剂油体积比V[C5MM]BF4:VOIL=1:5,氧硫摩尔比(O/S)为8,温度为60℃,时间为60min,使用20mo1%(相对于硫含量)的甲基三氧化铼(MTO)催化剂,[C5MIM]BF4脱硫效果好于其他碳链长度的离子液体,模型油的一次脱硫率最高可达95.03%;对FCC汽油的一次脱硫率最高可达93.58%以上。但该过程只有额外使用催化剂时才能达到满意的一次脱硫率,因此,如何合成廉价可回收的硫化物氧化催化剂是这类脱硫剂应用的关键所在。
     (3)以三氟乙酸类离子液体[CnMIM]TFA(n=2,3,4,5,6)为脱硫剂,以30%的H202为氧化剂,通过对模拟油品的脱硫效果研究,得出最佳脱硫实验条件为:剂油体积比V[C4MIM]TFA:Voil=1:40,氧硫摩尔比(O/S)为8,温度60℃,时间40min,[C5MIM]BF4脱硫效果好于其他碳链长度的离子液体,模型油的一次脱硫率可达95.02%;对FCC汽油的一次脱硫率可达93.80%。该类离子液体具有可连续循环使用,萃取饱和容量大,用量小,萃取时间短,基本不影响油品的各项性能指标等特点,显示了较高的脱硫应用前景。
     (4)三氟乙酸类离子液体[CnMIM]TFA(n=2,3,4,5,6)对不同硫化物脱除率高低顺序为:4,6-DMDBT> DBT>BT,说明对重组分硫化物的选择性较好,这标示了其应用于柴油脱硫的潜力,但时间短、温度低的反应条件使之更适于从汽油脱硫方面进行攻关。
     (5)通过对三类离子液体脱硫效果的对比,当不使用催化剂和氧化剂时,脱硫能力由高到低是TFA>HSO4>BF4;使用氧化剂后的脱硫顺序为HSO4>TFA>BF4,前两者相差不大,说明极性和酸性对脱硫效果起主要作用;在BF4中额外加入催化剂后的脱硫顺序为HSO4>BF4>TFA,三者脱硫率相差不大,但是TFA的用量等操作条件要远远优于其他两种离子液体。另外,也要考虑到离子液体的酸性对设备的腐蚀性。
     (6)从脱硫效果、时间、温度、剂油比、成本等方面综合考虑,三氟乙酸体系的离子液体显示出了较好的脱硫应用前景,而且,不影响脱硫前后油品性能指标,保证了清洁汽油的生产。
     目前,从更深层次上了解离子液体的结构性质,物理化学性质及两者之间的关系已成为离子液体研究的重要方向,也是未来离子液体真正实现工业化的必要环节。本文继续针对三氟乙酸咪唑盐离子液体体系,进行了理化性质测定和热力学性质研究,并结合动力学假设,探究离子液体的氧化萃取脱硫机理。通过对三氟乙酸体系离子液体的理化性质、热力学及动力学研究得出:
     (1)在293.15-343.15K温度范围内,用最大气泡法测定了五种三氟乙酸咪唑盐离子液体的表面张力,用Westphal天平法测定了离子液体的密度,密度和表面张力的数值线性拟合都较好,标准偏差也在试验范围内。
     (2)通过对离子液体的体积性质和表面性质的研究,计算得到了五种离子液体的分子体积、标准熵、表面熵、表面能和晶格能等参数,该类离子液体具有较小的晶格能。
     (3)利用空隙模型理论,计算得到离子液体的平均空隙体积、热膨胀系数等参数,与实验值符合较好,验证了离子液体空隙模型理论的正确性。
     (4)利用Kabo和Rebelo提出的方法对离子液体的正常沸点,汽化焓等参数进行了估算。
     (5)为了测定离子液体的溶解热,组装了一台具有恒温环境的溶解反应量热计,用于溶解热研究。化学标定是检测量热计可靠性和准确度的基本方法,用标准物质KC1对量热计进行了标定,在误差范围内与文献值很好的一致,说明我们自行组装的在线恒温环境反应量热计精度满足实验要求。
     (6)用标定后的量热计,结合Pitzer电解质溶液理论,测定并计算了五种三氟乙酸咪唑盐离子液体在各自不同浓度下于水中的摩尔溶解热、无限稀释摩尔溶解热、Pitzer焓参数、表观相对摩尔焓、阴阳离子的水化热等参数值。
     (7)五种离子液体的无限稀释摩尔溶解热△sHm0均为负值,溶解过程均为放热反应,可以看出无限稀释溶解热随着咪唑支链上碳数的增加而增大。并且,离子液体的溶解热拟合曲线随着咪唑环上烷基碳链的增加,线性增强,后两种离子液体已基本复合线性拟合规律,说明后面几种离子液体中正离子的体积大,正负离子不对称,离子间相互作用降低,Pitzer参数的三次作用项已基本不起作用,二次作用项的影响也已降低。
     (8)通过动力学方法,计算得到离子液体萃取氧化脱硫反应的表观活化能Ea为15.98kJ/mol。活化能较小,很少的能量即可使该反应向正向进行,解释了为何该类反应如此快速即可完成,进一步指明了该类反应的成因。
     开展对离子液体的物理化学性质的研究,有重大的理论意义和应用价值,离子液体热力学和动力学数据是离子液体工业化的重要参数,是工艺设计的依据,这些基础数据的缺乏已成为离子液体工业化的一个很大障碍。通过本论文的研究,希望能部分解决离子液体在燃料油脱硫领域的障碍,推进离子液体工业化的进程。
Ionic liquid, a species of green solvent, has been highly paid more and more attention by both industrial and scientific community, especially being a novel reaction medium and functional material since twenty-first century. In this paper, in order to realize the industrialization of deep desulfurization on fuel oil with ionic liquid fleetly, we focus the primary coverage of research on this field. First of all, a review about the characteristics of the domestic fuel oil product has been done, and it is highlighted that the product of clean fuel oil with stringent specification is going to be imperative under the situation. Then the hydrogenation as well as non-hydrogenation technology of sulfur-removal in fuel oil, involving application condition and trend of development, have been also analyzed. It was majorly studied about the application of ionic liquids in desulfurization of transportation fuels through comparing some kind of non-hydrodesulfurization technology, which was on the basis of our team's research foundations. And also the desulfurization of ionic liquid, which could be designed, on transportation fuels can be expected to produce clean fuel oil in order to relieve the increasingly severe environmental pollution such as haze weather.
     We have designed and synthesized many different kind of ionic liquids (ILs) applied in the field of desulfurization of catalytic cracking gasoline, also called FCC gasoline. From these ionic liquids,1-alkyl-3-methyl-imidazolium hydrogen sulfur acid ([CnMIM]HSO4(n=2,3,4,5,6))?1-alkyl-3-methyl-imidazolium tetrafluoboric acid ([CnMIM]BF4(n=2,3,4,5,6)) and1-alkyl-3-methyl-imidazolium trifluoroacetic acid ([CnMIM]TFA(n=2,3,4,5,6)) were screened based on the desulfurization efficiency, experimental conditions and other properties of physics or chemistry. Then, characterization of these three ionic liquids including of1H NMR,19F NMR, IR and ESI-MS spectroscopy were conducted. The experiments showed the optimized conditions which included the volume ratio of ILs/oil, the molar ratio of O/S, reaction time, reaction temperature and structure of ILs. When these three ILs were applied in the desulfurization of modle oil and real oil sample, FCC gasoline produced in Fushun Petrochemical Branch Company No.2Petroleum Factory of PetroChina Company Limited, as extractants with H2O2as oxidant, the promising effects of sulfur-removal were observed. Meanwhile, the performance indexes of gasoline were not almost varied under the guarantee of oil yield. The experiment conclusions are:
     (1) With [CnMIM]HSO4(n=2,3,4,5,6) as catalytic extractant and H2O2as oxidant, over95%of the desulfurization efficiency in n-octane as model oil(200μg/g) was obtained under the optimal conditions of volume ratio of ILs/oil of1:20, molar ratio of H2O2to sulfur of6, reaction time of90minutes, reaction temperature of60℃, and the desulfurization efficiency of [C3MIM]HSO4was the best in this series ionic liquids. The desulfurization efficiency of FCC gasoline (63.2μg/g) was up to94.7%under the optimal conditions. We can accept the promising sulfur removal performance, but not the quite long reaction time and the a little high ratio ILs to oil.
     (2) When using [CnMIM]BF4(n=2,3,4,5,6) as extractant, H2O2as oxidant and methyl rhenium trioxide(MTO)as catalyst,95.03%of the desulfurization efficiency in model oil(200p,g/g) was received under the optimal conditions of volume ratio of ILs/oil of1:5, molar ratio of H2O2to sulfur of8, the dosage of MTO catalyst of20mol%to sulfur, reaction time of60minutes, reaction temperature of60℃, and [C5MIM]HSO4of this series ionic liquids gave the best desulfurization efficiency. The desulfurization efficiency of FCC gasoline (63.2μg/g) was also over93.58%under the optimal conditions. This type of ILs can be recycled easier than others,. Nevertheless, the high desulfurization efficiency can be obtained only by additional using MTO, a kind of expensive material, as catalyst. So, it is the key to synthesize a cheap oxidative catalyst using with ILs together.
     (3) The optimal conditions of [CnMIM]TFA (n=2,3,4,5,6) in desulfurization of model oil(200μg/g) were volume ratio of ILs/oil of1:20, molar ratio of H2O2to sulfur of6, reaction time of90minutes, reaction temperature of60℃, and that the desulfurization efficiency of [C4MIM]HSO4was the best in this series ionic liquids,95.02%for the model oil and93.80%for the FCC gasoline, which displayed superior desulfurization application prospects because of its ability of continuous use, large extraction saturation capacity, low ratio of ILs to oil, short reaction time and without obvious influence to the gasoline.
     (4) More investigations were employed on [CnMIM]TFA (n=2,3,4,5,6) ILs. The ability of removing different sulfides such as thiophene, benzothiophene and dibenzothiophene contained in FCC gasoline and diesel largely decreased in the following order:4,6-DMDBT> DBT>BT, which showed its good sulfur removal selectivity to the heavy sulfides. Even though4,6-DMDBT was highly contained in diesel, the access point to the ILs industrialized is still gasoline in view of operational conditions.
     (5) Through the comparison of three kinds of ILs' desulfurization, we can conclude that the desulfurization efficiency decreased in the order:TFA>HSO>4>BF4without any catalysts or oxidants; When oxidant H2O2was added, the order became HSO4>TFA>BF4, the desulfurization efficiency of both HSO4and TFA is much higher than BF4', which showed us that desulfurization effect is dependent on the polarity and acid of ILs. As the catalyst MTO was used with BF4ILs, the desulfurization effect was improved obviously, almost being the highest. But involving of the dosage, reaction time, reaction temperature and other operational conditions, TFA ILs is better than the other two. Also, the ILs' corrosion brought from strong acid to equipment should be taken into account.
     (6) Considering desulfurization efficiency, cost, operation conditions such as reaction time, reaction temperature and ratio of IL/oil, trifluoroacetic acid showed better application prospect, but it does not affect the performance indexes of oil, and ensures the production of clean gasoline.
     At present, understanding the structural properties of ILs from a deeper level, the physical and chemical properties, and their relationship have become an important direction of ILs research, but also are the necessary step in the course of industrialization. This paper focused on the1-alkyl-3-methyl-imidazolium trifluoroacetic acid ([CnMIM]TFA(n=2,3,4,5,6)) ILs, and kept studying their physical and chemical properties, thermodynamics as well as dynamics for explaining desulfuration mechanism. The conclusions are as follows:
     (1) At the range of temperature from293.15k to343.15k, the surface tension of five kinds of trifluoroacetic acid imidazolium ILs was determined using the maximum bubble method, and the density was measured by Westphal balance method. The numerical linear of density and surface tension, as well as the standard deviation are acceptable.
     (2) According to the research about the volume and surface properties, the molecular volume, standard entropy, surface entropy, surface energy and crystal lattice energy of five ILs are received by calculation, and the crystal lattice energy is low.
     (3) Utilizing the gap model theory, the average void volume, thermal expansion coefficient of five ILs are gained, which are in good agreement with the experimental data, so that which could prove the correctness of space model theory about ILs.
     (4) Based on the method of Kabo and Rebelo about ILs, normal boiling point and enthalpy of vaporization are estimated.
     (5) In order to test the heat of dissolution of ILs, a dissolution reaction calorimeter of constant temperature environment is assembled. Because the calibration is the basic method to detect the reliability and accuracy of calorimeter, we calibrated the calorimeter by standard KC1. Very good agreement with the literature values were observed in the range of error, which shows that the precision of our assembling online isoperibol reaction calorimeter can meet the testing requirements.
     (6) On the basis of the Pitzer electrolyte solution theory and using the calorimeter which has been calibrated, We can determined the molar dissolved heat, the infinite dilution molar heat of solution, Pitzer enthalpy parameters, apparent relative molar enthalpy, hydration heat of cation and anion of different concentrations in water.
     (7) The infinite dilution molar heat of solution,△sHm0, of five ILs are all negative, which shows the dissolution process was an exothermic reaction, and we can also get the conclusion that the infinite dilution heat of solution increases with the number of carbon chain on the imidazolium. In addition, the linears of the heat of solution curve fitting of five ILs are increasing with the number of carbon chain on the imidazolium. The [C5MIM]TFA and [C3MIM]TFA have been basically composite linear fitting rules, which tells us that the volume of the cation of the last two Ils are large, and the cation and anion are asymmetry with weak interaction each other resulting to no effect of the three item and low influence of two item in the Pitzer parameters.
     (8) We acquired the apparent activation energy Ea for15.98kJ/mol of the reaction of extraction-oxidation desulfurization using ionic liquid by dynamics. The small activation energy Ea tells us that a few relative energy can accelerate the reaction to positive direction, which also interpreted why this type of reaction complete so fast.
     It is worth of studying the physical and chemical property of ionic liquids either theory or application. The data of thermodynamics and dynamics is an important parameter for the industrialization, which is the basis of process design, and the lack of them can become a big obstacle of ionic liquid industrialization. Through the research of this paper, I hope to solve the barriers of ionic liquid in the fields of desulfurization of fuel oil partly, and to promote the process of industrialization of ionic liquids.
引文
[1]朱庆云,李雪静,乔明,任静.世界汽柴油标准及供需发展趋势浅析[J].中外能源,2011,16(10):87-91
    [2]冯保杰.硫含量小于10μg/gFCC汽油生产技术概述[J].广州化工,2012,40(20):123-124
    [3]王洁青,管华,陈少红.国内车用汽油产品标准与检测方法[J].石油商技,2005,1:42-45
    [4]秦如意,张晓静,刘金龙.FCC汽油脱硫技术研究进展[J].河南石油,2002,16(5):60-62
    [5]Clarkliu.国产石油的价格与品质-中美汽油标准对比[J].安全与健康:下半月,2012,5:31
    [6]Hatanaka S, Yamada M, Sadakane O. Hydrodelfuiization of catalysis cracked gasoline: Inhibiting effects of olefins on HDS of alkyl(benzo)thiophenes contained in catalytic cracked gasoline [J]. Industrial and Engineering Chemistry Research,1997,36(5): 1519-1523
    [7]范志明.催化裂化汽油中硫醇性硫和碱性氮化物分布规律的考察[J].石油大学学报,1998,22(5):86-89
    [8]Max L, Velu S, Kim J H. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications [J]. Applied Catalysis B:Environmental,2005,56(112):137-147
    [9]李宝忠,张忠清,王凤秀.汽油与柴油吸附脱硫技术研究与开发[J].石油化工高等学校学报,2002,15(3):31-35
    [10]Gyanesh P. Process for the production of a sulfur sorbent[P]. US:6184176,2001
    [11]Khare G P. Desulfurization and novel sorbent for same[P]. US:0043484,2002
    [12]Lesieur. System and method for desulfurizing gasoline or diesel to produce a low-content for use in an internal combustion engine [P]. US:6129835,2000
    [13]李贵贤,贾晓朵,强光明,张广源,王德秋.FCC柴油吸附脱硫吸附剂研究新进展[J].甘肃科技,2011,27(13):33
    [14]Selvavahi V, Chidambaram V, Meenakshisundaram A. Adsorptive desulfurization of diesel on activated carbon and nickel supported system [J]. Catalysis Today,2009, 141(1-2):99-102
    [15]Collins F M, Lucy A R, Sharp C. Oxidative desulphurization of oils via hydro peroxide and heteropolyanion catalysis[J]. Mol. Catal. A,1997,117:397-403
    [16]Gyanesh P. Process for the production of a sulfur sorbent[P]. US:6184176,2001
    [17]Gyanesh P. Desulfurization with zinc titanate sorbents[P]. US:6338794,2002
    [18]Gyanesh P. Desulfurization and novel sorbents for same[P]. US:6346190,2002
    [19]潘光成,李涛,陶志平.催化裂化汽油液相吸附脱硫的研究[J].炼油技术与工程,2011,41(12):10
    [20]Shiraishi Y, Taki Y, Hirai T. Visible light-induced desulfurization technique for light oil[J]. Chem. Eng.,2002,35(5):489-492
    [21]张传彩,王东,代斌.高硫柴油吸附脱硫剂的研究[J].矿产综合利用,2008(2): 16-18
    [22]安高军,周同娜,柴永明,张景成,柳云骐,刘晨光.轻质油品非加氢脱硫技术[J].化学进展,2007,19(9):1331-1342
    [23]杜长海,马智,贺岩峰,秦永宁.生物催化石油脱硫技术进展[J],化工进展,2002,21(8):569-573
    [24]时雨荃,张淑芬,赵竹喧,戎谊梅,杨宏秀.石油的生物催化法脱硫[J].化学工业与工程,1998,4(15):55-60
    [25]Christopher O, Olga P, Julie S, et al. Elucidation of the metabolic pathway for dibenothiophene desulphurization by Rhodococcus sp. strain IGTS8(ATCC 53968) [J]. Microbiology,1997,143:2961-2973
    [26]缑仲轩,刘会洲,刑建民,罗明芳,李珊,陈家镛.红平红球菌及其在脱除含硫化合物中硫元素的应用[P].中国专利:01134805.4,2002
    [27]Manabu N, Takuo K, kazuhito F, et al. Long-term repeated biodesulfurization by immobilized Rhodococcus erthropolis KA2-5-1 cells [J]. Applied Microbiology and Biotechnology,2001,55:374-378
    [28]Kertesz M A, Wietek C. Desulfurization and desulfonatin:application of sulfur-controlled gene expression in bacteria [J]. Applied Microbiology and Biotechnology,2001,57: 460-466
    [29]Ohshim T, Lzumi Y. Microbial desulfurization of organic sulfur compounds in petroleum [J]. Bioscience Biotechnology and Biochemistry,1999,63(1):1-9
    [30]Setti L, Farinelli P, Martino S D, Franssinetti S, Lanzarini G, Pifferi P G. Developments in destructive and non-structive pathways for selective desulfurization in oil biorefining process[J]. Applied Microbiology and Biotechnology,1999,52(1):111-117
    [31]Monticello D J. Biodesulfurization and the upgrading of petroleum distillates[J]. Current Opinion in Biotechnology,2000,11 (6):540-546
    [32]Maghsoudi S, Vossoughi M, Kheirolomoom A, Tanaka E, Katoh S. Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp strain P32C1 [J]. Biochemical Engineering Journal,2001,8(2):151-156
    [33]Castorena G, Suarez C, Valdez I. Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. Strain. [J], Fems Microbiology Letters,2002,215(1):157-161
    [34]Monticello D J. Biodesulfurization and the upgrading of petroleum distillates[J]. Current Opinion in Biotechnology,2000,11:540-544
    [35]王豪,唐晓东,周建军,刘亮.柴油氧化脱硫技术研究进展[J].石油与天然气化工,2003,32(1):3841
    [36]Brown K N, Espenson J H. Stepwise Oxidation of Thiophene and Its Derivatives by Hydrogen Peroxide Catalyzed by Methyltrioxorhenium(VII)[J]. Inorganic Chemistry,1996,35:7211-7216
    [37]Wenshuai Zhu, Huaming Li, Xue Jiang, Yongsheng Yan, Jidong Lu, Jiexiang Xia. Oxidative Desulfurization of Fuels Catalyzed by Peroxotungsten and Peroxomolybdenum Complexes in Ionic Liquids. Energy Fuels,2007,21(5): 2514-2516
    [38]Bonde S E, Chapados D, Gore W L. Desulfurization by selective oxidation and extraction of sulfur-containing compounds to economically achieve ultra-low proposed diesel fuel sulfur requirements[C]. NPRA Annual Meeting,2000, AM-00-25
    [39]Kong L Y, Li G, Wang X S. Mild oxidation of thiophene over TS-1/H2O2[J]. Catalysis Today,2004,93:341-345
    [40]Campos-Martin J M, Capel-Sanchez M C, Fierro J L G. Highly efficient deep desulfurization of fuels by chemical oxidation[J]. Green Chemistry,2004,6(11): 557-562
    [41]Kocal J A, Brandvold T A. Removal of sulfur-containing compounds from liquid hydrocarbonstreams [P]. US:6368495.2002-04-09
    [42]战风涛,吕志风,董晓芳.用氧化-萃取法脱除催化裂化柴油加氢后的剩余硫化物[J].石油炼制与化工.2003,34(11):22-26
    [43]Robert C S, Woodlands T X, William C B, Baton R. Electrochemical oxidation of sulfur compounds in naphtha using ion1c liquids [P]. US:6274026,2001
    [44]Robert C S. Electrochemical oxidation of sulfur compounds in naphtha[P]. US: 6338778,2002
    [45]Hirai T, Shiraishi Y, Ogawa K. Effect of Photosensitizer and Hydrogen Peroxide on Desulfurization of Light Oil by Photochemical Reaction and Liquid-Liquid Extraction[J]. Industrial& Engineering Chemistry Research,1997, (36):530-533
    [46]Avidan A, Cullen M. Sulphco-Desulfurization via Seleetive Oxidation-Pilot Plant Results and Commercialization Plants [C]. NPRA Annual Meeting,2001, AM-01-55
    [47]Hirai T, Ogawa K, Komasawa I. Desulfurization process for dibenzothiophenes from light oil by photochemical reaction and liquid-liquid extraction[J], Industrial & Engineering Chemistry Research,1996,35:586-598
    [48]Yasuhiro S, Takayuki H, Isao K. A deep desulfurization process for light oil by Photochemical reaction in an organic two-phase liquid-liquid extraction system[J]. Industrial & Engineering Chemistry Research,1998,37:203-211
    [49]李成岳,张金昌.汽油与汽油脱硫技术进展[J].石化技术与应用,2002,20(5):293-296
    [50]Liotta F J, Han Y. Production of Ultra-Low Sulfur Fuel by Selective Hyddroperoxide Oxidation[C]. NPRA Annual Meeting Texas,2003, AM-03-23
    [51]相田哲夫.过酸化水素-石油/酸化脱硫[J].Petro-Tech,2000,23(6):483-486
    [52]Levy R E, Pappas A S, Nero V P, et al. Unipure's ASR-2 Diesel Desulfurization Process:A Novel, Cost-Effective Process for Ultra-low Sulfur Diesel Fuel[C]. NPRA Annual Meeting,2001, AM-01-10
    [53]Yen T F, Mei H, Lu S H. Oxidative Desulfurization of Fossil Fuels with Ultrasound[P]. US:6402939,2002
    [54]Mei H, Mei B W, Yen T F. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization[J]. Fuel,2003,82(4):405- 414
    [55]Suarez PAZ, Einloft S, Desouza R F, Dupont J, Dullius JEL. Two-phase catalytic hydrogenation of olefins by Ru(Ⅱ) and Co(Ⅱ) complexes dissolved in 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid[J]. Inorganica Chimica Acta.,1997,255(1):207-209
    [56]Babieh I V, Moulijn J A. Science and technology of novel proeesses for deep desulfurization of oil refinery streams:Areview[J]. Fuel,2003,82(6):607-631
    [57]Horii Y, Onuki H, Doi S. Desulfurization of light oil by extraction[P]. US: 5494572,1996
    [58]Sotsuki T, Takashimaetal N. Oxidation desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction [J]. Energy Fuels,2000,14:1232-1239
    [59]夏道宏,苏贻勋.汽油中硫醇的分离及结构、组成分析-(1)高效富集汽油中硫醇的分离方法[J].炼油设计,1995,25(1):46-49
    [60]徐荣,杨林,尹代益,周文勇.增溶碱液萃取法对凝析汽油脱硫的效果[J].西南石油学院学报,1994,16(3):97-100
    [61]Izumi Funakoshi, Tetsuo Aida. Process for recovering organic sulfur compounds from fuel oil[P]. US:5753102,1998
    [62]杨丽娜,由宏君,王强.萃取法脱除催化裂化柴油中的酸性硫化物[J].辽宁化工,2003,32(11):489-491
    [63]王军民,房少华,廖启玲,史权.催化裂化汽油溶剂萃取脱硫工艺的研究[J].炼油设计,2000,30(10):32-34
    [64]王霞,相湛昌.油品脱硫技术进展[J].福建分析测试,2012,21(3):25
    [65]Stegemann H, Rhode A, Reiche A, Schnittke A, Fiillbier H. Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors[J]. ElectrochimicaActa,1992,37:379-383
    [66]Seddon K R. Ionic Liquids for Clean Technology [J]. Journal of Chemical Technology and Biotechnology,1997,68:351-356
    [67]Fang Dawei, Fu Zhu, Li Meng, Liu Yu, Zang Shuliang. Rhenium ionic liquids: synthesis and physico-chemical properties [J]. Journal of Rare Earths,2011,29: 198-200
    [68]杨昕,戴立益,单永奎,何鸣元.离子液体体系中1-丁烯二聚反应的研究[J].催化学报,2003,24(12):895-899
    [69]Xing Xue Qi, Zhao Guo Ying, Cui Jian Zhong. Chorogallate(III) ionic liquids: Synthesis, acidity determination and catalytic performances for isobutene alkylation [J].中国科学:化学英文版,2012,55(8):1542-1547
    [70]Ming-Dong Zhou, Jin Zhao, Jun Li, Shuang Yue, Chang-Nian Bao, Janos Mink, Shu-Liang Zang, and Fritz E. Kuhn. MTO Schiff-Base Complexes:Synthesis, Structures and Catalytic Applications in Olefin Epoxidation[J]. Chemistry-a European Journal,2007,13:158-166
    [71]Ming-Dong Zhou, Yang Yu, Alejandro Capap, Kavita R. Jain, Eberhardt Herdtweck, Xiao-Rong Li, Jun Li, Shu-Liang Zang, and Fritz E. Kuhn. (N-Salicylidene)aniline Derived Schiff Base Complexes of Methyltrioxorhenium (VII):Ligand Influence and Catalytic Performance [J]. Chemistry-An Asian Journal,2009,4:411-418
    [72]Gu Xuejun, Fang Dawei, Yue Shuang, Liu Yu, Zang Shuliang. Structure influenced physicochemical properties of pyridine perrhenate ionic liquids[J]. Advanced Materials Research,2011,239:1911-1914
    [73]Da-Wei Fang, Han Wang, Shuang Yue, Ying Xiong, Jia-Zhen Yang, Shu-Liang Zang. Physicochemical Properties of Air and Water Stable Rhenium Ionic Liquids. The Journal of Physical Chemistry B,2012,116:2513-2519
    [74]Fang DaWei, Li Meng, Ge RiLe, Zang ShuLiang, Yang JiaZhen, Gao YanAn. Density estimated physicochemical properties of alanine-based ionic liquid [C7mim][Ala] and its application in selective transesterification of soybean oil[J]. Science China:Chemistry,2012,55(8):1677-1682
    [75]Da-Wei Fang, Xing-Zhi Liu, Jia-Zhen Yang, Ying Xiong, Shu-Liang Zang. Thermodynamics of solvent extraction of thallium with diethylhexyl phosphoric acid[J]. Physics and Chemistry of Liquids,2009,46:280-287
    [76]黄廷昌,苑建.离子液体应用于燃油脱硫技术的研究进展[J].河北化工,2011,34(5):46
    [77]Zhang S G, Zhang Z C. Novel Properties of Ionic Liquids in Selective Sulfur removal from Fuel at Room Temperature[J]. Green Chemistry,2002,4(4): 376-379
    [78]Cun Zhang, Xiaoyu Pan, Feng Wang, Xiaoqin Liu. Extraction desulfurization by pyridinium-based task-specific ionic liquids[J]. Fuel,2012,102:580
    [79]Jianzhou Gui, Dan Liu, Zhaolin Sun, Daosheng Liu, Dayoung Min, Busub Song, Xilai Peng. Deep oxidative desulfurization with task-specific ionic liquids:An experimental and computational study[J]. Journal of Molecular Catalysis A:Chemical,331(1-2):64
    [80]Weidong Liang, Shuo Zhang, Haifeng Li, Guodong Zhang. Oxidative desulfurization of simulated gasoline catalyzed by acetic acid-based ionic liquids at room temperature[J]. Fuel Processing Technology,2012,09:34
    [81]Dishun Zhao, Zhimin Sun, Fatang Li, Haidan Shan. Optimization of oxidative desulfurization of dibenzothiophene using acidic ionic liquid as catalytic solvent[J]. Journal of Fuel Chemistry and Technology,2009,37(2):194
    [82]Xiaochun Chen, Dandan Song, Charles Asumana, Guangren Yu. Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride [J]. Journal of Molecular Catalysis A:Chemical, 2012,359(7):8
    [83]Wenshuai Zhu, Guopeng Zhu, Huaming Li, Yanhong Chao, Yonghui Chang, Guangying Chen, Changri Han. Oxidative desulfurization of fuel catalyzed by metal-based surfactant-type ionic liquids[J]. Journal of Molecular Catalysis A: Chemical,2011,347(1-2):8
    [84]Wenshuai Zhu, Wangli Huang, Huaming Li, Ming Zhang, Wei Jiang, Guangying Chen, Changri Han. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels[J]. Fuel Processing Technology,2011,92(10):1842
    [85]Jian Zhang, Anjie Wang, Xiang Li, Xuehu Ma. Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMo12O4o[J]. Journal of Catalysis, 2011,279(2):269
    [86]WenShuai Zhu, Huaming Li, QingQing Gu, Peiwen Wu, Guopeng Zhu, Yongsheng Yan, Guangying Chen. Kinetics and mechanism for oxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ionic liquids[J]. Journal of Molecular Catalysis A:Chemical, 2011,336(1-2):16
    [87]Wei G T, Lo W H, Yang H Y. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids [J]. Green Chemistry,2003,5:639-642
    [88]Andreia Mota, Nataliya Butenko, Jason P. Hallett, Isabel Correia. Application of VIVO(acac)2 type complexes in the desulfurization of fuels with ionic liquids [J]. Catalysis Tody,2012,196:119
    [89]Tao G H, He L, Liu W S, Xu L, Xiong W, Wang T and Kou Y. Preparation, characterization and application of amino acid-based green ionic liquids[J].Green Chemistry,2006,8:639-646
    [90]Lide D R. Handbook of Chemistry and Physics 82nd ed.. [M]. Boca Raton:CRC Press,2001-2002
    [91]Jenkins H D B,Glasser L. Standard absolute entropy, S298θ, values from volume or density. Part 1. Inorganic materials[J]. Inorganic Chemistry,2003,42: 8702~8708
    [92]Glasser L, Jenkins H D B. Standard absolute entropies, S298θ, values from volume or density. Part II. Organic liquids and solids[J]. Thermochimica Acta,2004,414: 125~130
    [93]Glasser L. Lattice and phase transition thermodynamics of ionic liquids[J]. Thermochimica Acta,2004,421:87~93
    [94]Adamson A W. Physical chemistry of surfaces,3rd Edn[M]. New York:John-Wiley, 1976:57
    [95]Fang D W, Guan W, Tong J, Wang Z W, Yang J Z. Study on Physicochemical Properties of Ionic Liquids Based on Alanine [Cnmim][Ala][J]. The Journal of Physical Chemistry B,2008,112:7499~7505
    [96]Fang D W, Tong J, Guan W, Wang H, Yang J Z. Predicting Properties of Amino Acid Ionic Liquid Homologue of 1-Alkyl-3-methylimidazolium Glycine[J]. The Journal of Physical Chemistry B,2010,114:13808~13814
    [97]Zaitsau D H, Kabo G J, Strechan A A, et al. Experimental Vapor Pressures of 1-Alkey-3-methylimidazolium Bis (trifluoromethylsulfonyl) imides and a Correlation Scheme for Estimation of Vaporization Enthalpies of Ionic Liquids [J]. Journal of Physical Chemistry A,2006,110:7303~7306
    [98]Anna S L, John D H, Fook S T, Christopher. R. Designing Ionic Liquids, imidazolium melts with innert carborane anions[J]. Journal of The American Chemical Society, 2000,122(14):7264-7272
    [99]李以圭.金属溶剂萃取热力学[M].北京:清华大学出版社,1988:第三章
    [100]杨家振.缔合式电解质溶液热力学研究[C].辽宁大学,2003-07-01
    [101]杨家振,张汝波,薛红等.稀散金属化合物溶液热力学研究[J].化学学报,2001,59:520~527
    [102]汪存信,宋昭华,熊文高等.具有恒定温度环境的反应热量计的研制[J].物理化学学报,1991,7(5):586~588
    [103]Rychly V P. The use of potassium chloride and tris(hydroxymethyl) aminomethane as standard substances for solution calorimetry[J]. Journal of Chemical Thermodynamics,1977,9:391-396
    [104]Mnotgomery R L, et.al.. Energy equivalent of a water solution calorimeter [J]. Journal of Chemical Thermodynamics,1977,9:915
    [105]Lide D R. Handbook of Chemistry and Physics 82nd, ed. [M]. Boca Raton: CRC Press,2001-2002
    [106]Pitzer K S. Activity coefficients in Electrolyte Solutions [M]. Revised edn. Boca Raton:CRC,1991:Chap.3
    [107]Robertc, Weast. Ph.D. CRC Handbook of Chemistry and Physics[M]. 1977-1978,58:D120
    [108]Cun Zhang, Xiaoyu Pan, Feng "Wang, Xiaoqin Liu. Extraction-oxidation desulfurization by pyridinium-based task-specific ionic liquids[J]. Fuel,2012, 102:583
    [109]韦广梅,曾尚红.微反应器的发展现状[J].世界科技研究与发展,2005,27(5): 49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700