液柱喷射烟气脱硫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤锅炉排放SO2控制技术有多种方式,最有效而得到广泛应用的是湿式石灰/石灰石—石膏法烟气脱硫技术。液柱喷射烟气脱硫技术就是其中先进的一种,其特点是气液交融强烈,运行稳定可靠,烟气脱硫效率高。本论文的研究内容是通过工程试验全面地研究液柱喷射烟气脱硫技术的性能及各种相关的影响因素,以期形成具有自主知识产权并能广泛应用到工程中的成套技术。
    通过沈阳化肥总厂烟气脱硫示范工程的性能试验表明,液柱喷射烟气脱硫工艺操作稳定性好,可靠性高,适用于各种规模的入口烟气流量、各种入口烟气SO2浓度的烟气脱硫。影响脱硫装置性能的主要因素有:循环浆液的pH值、入口烟气SO2浓度、入口烟气流量和循环浆液量。而单位体积的循环浆液的脱硫能力可以用 来描述。同时在南宁和杭钢烟气脱硫项目的工程应用中,进一步证实了该式能够很好地描述液柱喷射烟气脱硫的性能,从而为今后的工程优化提供指导性的作用。
    通过计算和工程试验表明,在连续运行的脱硫反应塔中,控制脱硫产物氧化速率的是O2的传质过程。而 F-、Cl-离子的大量存在将使脱硫效率下降10%左右;而通过△L定律对石膏的结晶过程建模可以很好地描述石膏结晶动力学过程;浆液沉降试验表明,浆液沉降较快,因此在浆液管道设计中应注意避免淤积堵塞。
    为了进一步了解液柱喷射烟气脱硫的化学传质过程,本课题还对液柱喷射烟气脱硫反应塔内气液固三相脱硫反应传质过程进行了建模计算以及反应塔内气液两相流场的数值模拟工作。其中模型的计算结果与试验结果吻合较好,表明所建立的模型能很好地反映实际脱硫反应过程。而通过对工程应用中的脱硫反应塔内气液流场的数值模拟表明,在反应塔内气液分布均匀,气液交融很好,使得脱硫反应能够高效率地进行。
There are many control technologies of pollutant SO2 discharged by coal-fired boiler at the present time, including of wet lime/limestone-gypsum flue gas desulfurization(FGD), which is the most effective FGD technology and used in many fields. Slurry jet FGD is one of the advanced FGD technologies, charactered by strong gas-liquid turbulence mass transfer, credible operation and high-degree desulfurization. The target of this research is to study the overall performance of the slurry jet FGD technology and various influencing factors in pilot plant and other two application plants, with the aim to supply the complete FGD set with own knowledge property right.
    Performance engineering tests in Shenyang fertilizer plant indicated that the slurry jet FGD technology operated stably and credibly, and can be applied to various FGD projects with difference flue gas flux and inlet SO2 concentration. The main influencing factors include: pH of recycled slurry, inlet SO2 concentration, inlet flue gas flux and recycled slurry flux. The desulfurization capability of per unit recycled slurry can be described by , which is confirmed by the application of slurry jet FGD technology to Nanning and Hangzhou FGD projects. So it can direct the optimization for the future projects.
    Calculation and engineering tests in Shenyang, Nanning and Hangzhou FGD projects indicates that it is the O2 mass transport process which controls the oxidation rate of desulfurization product in consecutive operation of desulfurization tower. Other tests include: the presence of F- and Cl- ions in Hangzhou projects can reduce the desulfurization efficiency by about 10%. The gypsum crystallization kinetics process can be described by the gypsum crystallization model based on △L law. The slurry sedimentation tests indicates that the sedimentaton velocity of slurry is fast, so the attention must be applied to avoid silt and blockade in design of slurry ducts.
    
    
    With the aim of more information of the chemical reactions and mass transport processes, the further investigations of a detailed model for slurry jet FGD pilot plant are developed. The calculate results accord with test results in pilot plant, which indicates that the model can well describe the desulfurizaiton processes in FGD tower. And the numerical simulation of gas-liquid two-phase flow field in FGD tower in pilot plant indicates that the two phases in tower are uniform distributing and well intermixed, which assures the high desulfurization efficiency in the FGD tower.
引文
[1] Toshikaisu M, Shimper M, Fumito N, et al. Effect of Al3+ and F- on desulfurization reaction in the limestone slurry scrubbing process. Ind. Eng. Chem. Process Des. Dev, 1981,20(1): 144~147
    [2] Huckaby J L, Ray A K. Absorption of sulfur dioxide by growing and evaporating water droplets. Chemcal Engineering Science, 1989, 44(12): 2797~2808
    [3] Lancia A, Musmarra D, Pepe F, et al. SO2 absorption in a bubbling reactor using limestone suspensions. Chemcal Engineering Science, 1994, 49(24): 4523~4532
    [4] Lancia A, Musmarra D, Pepe F. Uncatalyzed heterogeneous oxidation of calcium bisulfite. Chemical Engineering Science, 1996, 51(16): 3889~3896
    [5] Lancia A, Musmarra D, Pepe F, et al. Model of oxygen absorption into calcium sulfite solutions. Chemcal Engineering Science, 1997, 66(1): 123~129
    [6] Lancia A, Musmarra D and Pepe F. Modeling of SO2 absoption into limestone suspensions. Ind. Eng. Chem. Res. 1997, 36(1): 197~203
    [7] Lancia A, Musmarra D, Prisciandaro M, et al. Catalytic oxidation of calcium bisulfite in the wet lilmestone-gypsum flue gas desulfurization process. Chemcal Engineering Science, 1999, 54(10): 3019~3026
    [8] Lancia A Musmarra D. Calcium bisufite oxidation rate in the wet limestone-gypsum flue gas desulfurization process. Environmental Science & Technology, 1999, 33(11):1931~1935
    [9] Sada E, Kumazawa H, Butt M A. Single and simultaneous absorptions of lean SO2 and NO2 into aqueous slurries of Ca(OH)2 or Mg(OH)2 particles. Journal of Chemical Engineering of Japan, 1979, 12(2): 111~117
    [10] Ukawa N, Oking S, Iwaki T, et al. The effect of fluoride complexes in wet limestone flue gas desulfurization. Journal of Chemical Engineering of Japan, 1992, 25(2): 146~152
    
    
    [11] Farmer R W, Jarvis J B, Moser R. Effects of aluminum/fluoride chemistry in wet limestone flue gas desulfurization. Chem. Eng. Comm., 1989,77(2): 135~154
    [12] Sada E, Kumazawa H, Sawada Y, et al Kinetics of absorptions of lean sulfur dioxide into aqueous slurries of calcium carbonate and magnesium hydroxide. Chemcal Engineering Science, 1981, 36(1): 149~155
    [13] Kill S, Michelsen M L, Johansen K D. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant. Ind. Eng. Chem. Res., 1998, 37(12): 2792~2806
    [14] He S, Oddo J E, Tomson M B. The nucleation kinetics of calcium sulfate dihydrate in NaCl solutions up to 6m and 90℃. Journal of colloid and interface science, 1994, 162(3): 297~303
    [15] Witkamp G J, Eerden J P, Rosmalen G M. Growth of gypsum I. Kinetics. Journal of crystal growth, 1990, 102(4): 281~289
    [16] Li J, Wang J, Zhang Y. Effects of the impurities on the habit of gypsum in wet-process phosphoric acid. Ind. Eng. Chem. Res. 1997,36(12): 2657~ 2661
    [17] Hasson D, Jonas A M. Filterability of gypsum crystallized in phosphoric acid solution in the presence of ionic impurities. Ind. Eng. Chem. Res. 1990, 29(5): 867~875
    [18] Chu K J, Yoo K S, Kim K T. Characteristics of gypsum crystal growth over calcium-based slurry in desulfurization reactions. Materials Research Bulletin, 1997, 32(2):197~204
    [19] Linek V, Vacek V. Chemcal engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas- liquid contactors. Chemcal Engineering Science, 1981, 36(11): 1747~1768
    [20] Alper E, Abu-Sharkh B. Kinetics of absorption of oxygen int aqueous sodium sulfite: order in oxygen. AIChE Journal, 1988,34(8):1384~1386
    
    
    
    
    [21] Ahmad N, Eroglu I, Gurkan T. Factors affecting the kinetics of the heterogeneous oxidation of ammonium sulfite. The Canadian Journal of Chemical Engineering, 1987,65(2):50~55
    [22] Wanda P B, Jozef Z. Kinetics of aqueous SO2 oxidation at different rate controlling steps. Chemcal Engineering Science, 1989, 44(4): 915~920
    [23] Wilkson P M, Doldersum B, Carmers P. The kinetics of uncatalyzed sodium sulfite oxidation. Chemcal Engineering Science, 1993, 48(5): 933~941
    [24] Delplancq E, Casti P, Vanderschuren J. Kinetics of oxidation of calcium sulphite slurries in aerated stirred tank reactors. Trans IChemE, 1992, 70(5): 291~295
    [25] Weisnicht W L, Overman J, Wang C C, et al. Calcium sulfite oxidation in a slurry reactor. Chemcal Engineering Science, 1980, 35(3): 463~468
    [26] Connick R E, Zhang Y, Lee S, et al. Kinetics and mechanism of the oxidation of HSO3- by O2. 1. the uncatalyzed reaction. Inorg. Chem., 1995, 34(24): 4543~4553
    [27] Higbie R. Tr. Am. Inst. Chem. Engrs, 1935,31:365
    [28] Thibault J, Leduy A, Denis A. Chemical enhancement in the determination of kLa by the sulfite oxidation method. The Canacian Journal of Chemical Engneering, 1990, 68(4): 324~326
    [29] Bennington C, Owusu G, Francis D W. Gas-liquid mass transfer in pulp suspension mixing operations. The Canadian Journal of Chemical Engneering, 1997, 75(2): 53~61
    [30] Schumpe A, Saxena A K, Fang L K. Gas/liquid mass transfer in a slurry bubble column. Chemical Engineering Science, 1987, 42(7): 1787~1796
    [31] Ogawa S, Yamaguchi H, Tone S, et al. Gas-liquid mass transfer in the jet reactor with liquid jet ejector. Journal of Chemical Engineering of Japan, 1983, 16(5): 419~425
    
    
    
    
    [32] Miyahara T, Kurihara M, Asoda M, et al. Gas-liquid interfacial area and liquid-phase mass transfer coefficient in sieve plate columns without downcomer operating at high gas velocities. Journal of Chemical Engineering of Japan. 1990, 23(3): 280~285
    [33] Philip C T, Gary T R. Dissolution rate of calcium sulfite hemihydrate in flue gas desulfurization process. Environmental Progress, 1986, 5(1): 34~ 40
    [34] Ukawa N, Okino S. effects of salts on limestone dissolution rate in wet limestone flue gas desulfurization. Journal of Chemical Engineering of Japan, 1993, 26(1): 112~113
    [35] Fu C C, McCoy B J, Smith J M. Slurry reactor studies of homogeneous and heterogeneous reactions. AIChE Journal, 1989, 35(2):259~266
    [36] Richard K U, Gary T R, Roberto E P. Enhanced Oxygen absorption into bisulphate solutions containing transition metal ion catalysts. Chemical Engineering Science, 1986, 41(8): 2183~2191
    [37] 郝吉明,王书肖,陆永琪. 燃煤二氧化硫污染控制技术手册. 北京:化学工业出版社,2001
    [38] 何苏浩. 下落碱性液滴对酸性气体吸收的试验与建模:[硕士学位论文]. 北京:清华大学热能工程系,2002
    [39] Xu X. Development of coal combustion pollution control for SO2 and NOx in China. Fuel Processing Technology, 2000, 62(2-3): 153~160
    [40] 姚强,项光明,何苏浩,等. 中国二氧化硫控制的国际合作. 2000年中芬环境与森林研讨会论文集,中国北京,2000.10
    [41] 何苏浩,项光明,姚强,等. 石灰石/石灰-石膏湿法脱硫几种反应塔的比较. 电力环境保护,2001,17(3):5~8
    [42] 何苏浩,项光明,姚强,等. 石灰石/石灰-石膏湿法脱硫反应塔模型比较. 煤炭转化,2001,24(3):41~44
    [43] 何苏浩,项光明,姚强,等. 沈阳化肥总厂新型液柱烟气脱硫除尘系统. 电站系统工程,2002,18(1):43~46
    [44] He Suhao, Xiang Guangming, Yao Qiang, et al. Commercial test of slurry jet and PM collection FGD system. Environmental Progress. 2002, 21(2): 131~136
    
    
    [45] 万玮,项光明,冯文,等. 简易液柱式湿法烟气脱硫装置的试验研究. 煤炭转化,2003,26(1):74~77
    [46] 颜俭. 湿法脱硫工艺的控制氧化. 电力环境保护,1997,13(2):41~44
    [47] 钟秦. 湿法烟气脱硫的理论和实验研究(I)——湿壁塔脱硫反应系统及操作特性. 南宁理工大学学报,1998,22(6):517~520
    [48] 胡震岗,黄信仪. 燃料与燃烧概论. 北京:清华大学出版社,1995
    [49] 李仁刚,管一明,周启宏,等. 烟气脱硫喷淋塔流体力学特性研究. 电力环境保护,2001,17(4):4~8
    [50] Lefebvre H. Atomization and sprays. Hemisphere Pub. Corp., 1989
    [51] Institute of Clean Air Companies Inc. Scrubber Myths and Realities. Power Eng. 1995, 99(1): 35~38
    [52] Klingspor J S, Bresowar G E. Advanced limestone based wet flue gas desulfurization. ABB Review, 1995,8:23~27
    [53] Lani B W, Babu M. Phase II: the age of high velocity scrubbing. Proc. Int. Tech. Conf. Coal Util. Fuel Syst., 1996, 21:145~155
    [54] Frandsen B W, Kiil S, Johnsson J E. Optimisation of a wet FGD pilot plant using fine limestone and organic acids. Chem. Eng. Sci., 2001, 56: 3275~ 3287
    [55] Calderbank P H, Saboni A. Hydrodynamics and mass transfer in a moving drop of water. Proc. Int. Symp. On Gas Transfer at Water Surface. Minneapolis, Reidel Publishing, 1956
    [56] Walcek C J, Pruppacher H R, Topallian J H, et al. On th scavenging of SO2 by cloud and rain drops: II. An experimental study of SO2 absorption and desorption for water drops in air. J. Atm. Chem., 1984,291(1)
    [57] Gerbec M, Stergarsec A, Kocjancic R. Simulation model of wet flue gas desulfurization plant. Computers Chem. Engng., 1995,19:283~286
    [58] Angelo J B, Lightfoot E N, Howard D W. Generalization of the penetration theory for surface stretch: application t forming and oscillating drops. AIChE J., 1966,12(4):751
    [59] Denckwerts P V. Gas-liquid reactions, McGr- aw Hill, 1970.
    
    
    [60] Levich V G. Motion and diffusion in thin liquid films. In: Physico Chemical Hydrodynamics. Englewood Cliffs, NJ: Prentice Hall, 1962
    [61] Henstock L, Hanratty J J. Gas absorption by a liquid layer flowing on the wall of a pipe. AIChE J., 1979, 122(25)
    [62] Davies T T. Turbulence Phenomenon. New York: Academic Press, 1972
    [63] Caussade B, Saboni A. Experimental study and parameterization of interfacial gas absorption. AIChE J., 1990, 36(2)
    [64] Ledwell J J. The variation of the gas transfer coefficient with molecular diffusivity. In: Bratsaert and Jirka, eds.Gas Transfer at Water Surfaces. Reidel Publishing, 1984: 293
    [65] Lamont J C, Bacon G. Experimental and theoretical study of condensation rate and charge. Proc. of the First World Renewable Energy Progress, Reading, UK. 2. 1990:867
    [66] Amokrane H, Saboni A, Cuussade B. Experimental study and parameterization of gas absorption by water drops. AIChE J., 1994, 40(12): 1950~1960
    [67] Altwicker E R, Lindhjem C E. Absorption of gases into drops. AIChE J., 1988, 34(2): 329~332
    [68] Kaji R, hishinuma Y, Kuroda H. SO2 absorption by water drops. J. Chem. Eng. Japan, 1985,18(2):169
    [69] Bravo, V. R. Camacho, F. R. and Moya, M. V. The influence of temperature and the concentration of MnSO4 on the simultaneous absorption and reactin of mixtures of SO2 and O2. Can. J. Chem. Engng. 1996, Vol 74, p104-109.
    [70] Pasiuk-Bronikowska, W. and Bronikowski, T. Kinetic model for sulphite autoxidation under heterogeneous conditions. Chem. Engng. Sci. 1989, Vol 44, p1361-1368.
    [71] Nurmi, D. B. Overman, J. W. Erwin, J. and Hudson, J. L. Sulfite oxidation in oraganic acid solutions. Flue gas desulfurization. ACS Symposium Series, 1982, Vol 188, p173-189.
    [72] Pasiuk-Bronikowska W, Bronikowski T. the rate equation for SO2 autoxidation in aqueous Mnso4 solutions containing H2SO4. Chem. Engng. Sci., 1981, 36(2):215~219
    
    
    [73] Pasiuk-Bronikowska W, Ziajka J. Oxygen absorption into aqueous sulpher dioxide solutions. Chem. Engng. Sci., 1985, 40(10):1567~1572
    [74] Pasiuk-Bronikowska W, Ziajka J. kinetics of aqueous SO2 oxidation at different rate controlling steps. Chem. Engng. Sci., 1989, 44(7): 915~920
    [75] Huss A, Lim P K, Eckert C A. Oxidation of aqueous sulphur dioxide. I. Homogeneous manganese(II) and iron(II) catalysis at low pH. J. Phys. Chem., 1982, 86(11):4224~4228
    [76] Erwin J, Wang C C, Hudson J L. A model of oxidation in calcium sulfite slurries. Flue gas desulfurization, ACS Symposium Series, 1982, 188: 191~120
    [77] Barron C H, O'Hern H A. Reaction kinetics of the sodium sulfite oxidation by the rapid-mixing method. Chem. Engng. Sci., 1966, 21(2):397~404
    [78] Mishra G C, Sricastava R D. Kinetics of oxidation of ammonium sulfite by rapid-mixing method. Chem. Engng. Sci., 1975, 30(10):1387~1390
    [79] Mishra G C, Sricastava R D. Homogeneous kinetics of potassium sulfite oxidation. Chem. Engng. Sci., 1976, 31(8):969~971
    [80] Bentsson S, Bjerle I. Catalytic oxidation of sulphite in diluted aqueous solutions. Chem. Engng. Sci. 1975, 30(11):1429~1435
    [81] Backstrom, H. L. J., Der kettenmechanismus bei der autoxydation von natriumsulfitlosungen. Z. Phys. Chem. B25, 1934, p122-138.
    [82] Greenhalgh S H, Mcmannamey W J, Porter K E. J. Appl. Chem. Biotechnol. 1975,25(2):143
    [83] [苏联]B. M. 拉姆 著,刘凤至 译. 气体吸收(第二版). 北京:化学工业出版社,1985
    [84] 刘炳江. 煤中硫的生命周期控制研究:[博士学位论文]. 北京:清华大学环境工程系,1998
    [85] Hao Jiming, Wang Shuxiao. Designation of acid rain and SO2 control zones and control policies in China. J. Environ. Sci. Health, Part A, 2000, 35(10): 1901~1914
    
    
    [86] 刘炳江,郝吉明,贺克斌,等. 酸雨污染控制区贺二氧化硫污染控制区划分及政策实施影响分析研究. 中国环境科学,1998,18(1):1~7
    [87] 国家环保局,2001年中国环境状况公报,2002
    [88] 谭天恩,金一中,骆有寿. 传质-反应过程. 浙江:浙江大学出版社,1990
    [89] (美)Yatish T Shan 著,萧明威 译. 气液固反应器设计.烃加工出版社,1989
    [90] 叶春珍,高翔,骆仲泱,等. 无溢流筛板塔烟气脱硫的试验研究. 动力工程,1999,19(6):494~497
    [91] Izumi T, Yusuke T, Koichi A. Experimental study of gas absorption with a spray column. J. Chem. Eng. Japan, 1997, 30(3): 427~433
    [92] Izumi T, Yusuke T, Koichi A. Absorption of carbon dioxide with a freely falling aqueous sodium hydroxide solution drop. Chem. Eng. Comm., 1997, 159: 119~135
    [93] Levenspiel O. The chemical reactor omnibook. New York: Wiley, 1993
    [94] Macek J, Zakrajsek S, Radkovic J, et al. Crystallization of gypsum from batch chemical neutralizations. Journal of Crystal Growth, 1993, 132(2): 99~102
    [95] 张成芳. 气液反应和反应器. 北京:化学工业出版社,1985
    [96] 丁绪淮,谈遒. 工业结晶. 北京:化学工业出版社,1985
    [97] Akita K, Yoshida F. Ind. Eng. Chem. P. D. D., 1974, 13(1):85
    [98] Hikita H. Chem. Eng. J., 1980, 21(1):59~67
    [99] Shah Y T. AIChE J., 1982, 28(8): 353~379
    [100] McCabe W D, Smith J C. Unit operation of chemical engineering(3rd). Ed. McGrow-Hill, 1976
    [101] Bennema P. Theory and experiment for crystal growth from solution: implications for industrial crystallization. Industrial crystallization, Plenum Press, N.Y., 1976
    [102] Laudise R A. The growth of single crystals. Prentia-Hall, 1970
    [103] Mullin J W. Crystallization(2nd). Ed. Butterworths, 1972
    
    
    [104] Astarita G. Mass Transfer with Chemical Reaction. Elsevier, Amsterdam, 1967
    [105] 李军,王建华,钟本和,等. Al3+对二水硫酸钙结晶动力学影响的研究. 成都科技大学学报,1996,92(2):53~59
    [106] 李军,王国平,钟本和. Fe3+、Al3+、Mg2 +对石膏结晶习性影响的研究. 化学工业与工程,1997,14(2):1~5
    [107] 李军,陶晓秋,钟本和. 铁、镁、氟杂质对石膏聚晶形成的影响研究. 磷肥与复肥,1997,20(2):6~10
    [108] Davini P, Demichele G, Ghetti P. An investigation of the influence of sodium chloride on the desulphurization properties of limestone. Fuel, 1992, 71(7):831~834
    [109] Fuller E N, Schettler P P, Giddings J C. Ind. Eng. Chem., 1966, 58(5): 19~27
    [110] Charlotte B, Hans T K. Modelling the absorption of SO2 in a spray scrubber using the penetration theory. Chem. Eng. Sci., 1997, 52(18): 3085~3099
    [111] Hsu C T, Shin S M. Simulation of SO2 absorption by falling water drops. Canadian J. of Chem. Eng., 1994, 72:256~261
    [112] Olausson D, Wallin M, Bjerle I. A model for the absorption of sulphui dioxide into a limestone slurry. Chem. Eng. J., 1993:99~108
    [113] Diehl K, Vohl O, Mistra S K, et al. A laboratory and theoretical study on the uptake of sulfur dioxide gas by small water drops containing hydrogen peroxide under laminar and turbulent conditions. Atmospheric Environment, 2000, 34:2865~2871

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700