过渡金属硅化物的制备、表征和加氢性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属硅化物是硅原子进入过渡金属晶格后而形成的一类化合物。由于其特殊的物理和化学性能,如高熔点、低电阻率、较好的传热性以及优异的耐高温、耐氧化、耐腐蚀和抗硫性等,过渡金属硅化物已被广泛应用于电热元件、集成电路和高温抗氧化涂层等领域。本文以开发高效过渡金属硅化物催化新材料为目的,通过程序升温硅化法制备了硅化镍修饰镍、硅化镍、镍钴双金属硅化物、负载型硅化镍催化剂,并将它们应用于苯乙炔、1,4-丁炔二醇、肉桂醛等不饱和化合物的选择加氢、二苯并噻吩的加氢脱硫、CO甲烷化等反应体系,表现出良好的催化性能。
     首先通过炭模板法制备氧化镍前驱体,并在SiH4/H2混合气中硅化处理,成功制备出了纳米尺度的硅化镍修饰镍。随着硅化温度的提高,硅化镍形成过程涉及如下相变过程:Ni2Si(斜方)→NiSi(斜方)→NiSi2(立方)。在苯乙炔选择加氢反应中,Si掺入Ni的晶格中,改变了金属Ni的晶体结构和电子结构,抑制了中间产物苯乙烯的反应吸附性能,从而提高其选择性。该新方法可以放大制备低成本、高催化活性和选择性的硅化物催化新材料,并为工业催化剂的设计提供了一个思路。
     此外,通过对工业用Raney Ni进行硅化处理,成功制备出Raney Ni-Si催化剂,从而提高了硅化镍修饰镍材料的比表面积。随着硅化温度的提高,表面壳层从Ni富集硅化镍转变成Si富集态。在1,4-丁炔二醇的选择加氢反应中,Si掺入Ni的晶格中,形成硅化镍降低了催化活性,但抑制了中间产物1,4-丁烯二醇的进一步加氢,显著提高了1,4-丁烯二醇的选择性。与传统的Lindlar催化剂相比较,所制备的Raney Ni-Si催化剂通过Si调变金属活性位点但避免了采用毒化助剂,具有良好的工业应用前景。
     为了消除催化剂中金属镍的影响,通过程序升温硅化法处理乙二醇沉淀法制备的高比表氧化镍(145m2g-1),成功合成出硅化镍纳米粒子。其在室温下呈铁磁性,且饱和磁场强度随着硅的量增加而发生显著变化。电化学性能测试表明硅化镍具有低电阻性和类贵金属性。对苯乙炔加氢,随着硅化温度的增加,所形成的硅化镍催化苯乙炔加氢的转化率先减小后增加;450-NiSiχ(主要成份:NiSi2)显示出高活性(反应时间3h,转化率接近100%,苯乙烯的选择性达90%以上)。对于肉桂醛加氢反应,不同相态的硅化镍催化剂都呈现出较高的活性,且硅原子的掺入抑制了C=O的加氢,促进了C=C的加氢,从而提高了中间产物苯丙醛的选择性。硅化镍作为新型催化材料在不饱和碳氢化合物的选择加氢中具有潜在应用。
     通过密度泛函理论计算对比了Ni2Si(111)和Ni(111)晶面的几何结构和电子态密度以及H2S在二者表面的解离吸附性能,发现硅化镍中Ni-Si相互作用,导致电子从Ni向Si转移,使其d态费米能级发生偏移,并且Si掺入Ni的晶格中导致Ni-Ni之间的间距发生变化,从而调变了其加氢脱硫活性和抗硫性能。因此,硅化镍是一种潜在的加氢脱硫催化剂,能有效的去除含硫化合物中的硫。其所具有的高抗硫性在工业应用上可替代镍催化剂。为了提高硅化镍加氢脱硫催化活性,通过直接硅化处理制备了不同镍钴比的双金属硅化物催化剂。随着Ni原子被Co原子均匀取代,其镍钴双金属硅化物结构和催化性能发生显著变化。富镍的Ni0.75Co0.25Si2催化剂表现出较单金属硅化物更高的加氢脱硫活性,且加氢性能显著提高,具有31.5%的加氢脱硫(HYD)选择性,硅化物中的Si的位点改变了金属的配位,弱化了金属与硫之间的结合,提高了其抗硫性能。
     基于硅化镍催化剂的选择加氢性能和抗硫性,通过Rochow逆反应以有机硅烷(CH3)nSiCl4-n为硅源,成功合成了单一相态的Ni2Si纳米粒子。其形成机理涉及到有机硅烷的反应沉积和Si原子的扩散。此外,通过直接硅化法成功制备了高分散性的Ni-Si/SiO2催化剂,并将其应用于CO甲烷化反应。结合原位CO化学吸附红外光谱和TPR-MS表征结果,Ni-Si/SiO2催化剂表现出高CO甲烷化催化活性,约在240℃就有CH4生成。硅化镍催化剂由于其电子结构和几何构型特殊性,显著提高了催化剂的抗烧结性能和抗积炭性能。
Interstitial silicides of early transition metals have specific physical and chemical properties. Unfortunately, conventional preparation methods, such as molten salt method, co-reduction route, inherited from the microelectronic industry resulted in a low surface area and tough experimental conditions, which restricted their applications in catalysis. Based on this, we have reasonably designed silicide-modified nickel, nickel silicides, nickel-cobalt silicide solid solution, and Ni-Si/SiO2catalysts. Their catalytic activities have been detected by hydrogenation of alkyne and cinnamaldehyde, CO methanation, and hydrodesulfurization reaction.
     Nanoscale silicide-modified nickel catalysts with significant catalytic activity and high selectivity for phenylacetylene selective hydrogenation have been successfully synthesized by using the carbon template for oxides and further SiH4/H2silicification to silicides. Nickel silicide formation involves the following sequence as a function of increasing temperature:Ni (cubic)→Ni2Si (orthorhombic)→NiSi (orthorhombic)→NiSi2(cubic). The insertion of Si atoms into the interstitial sites between Ni atoms resulted in a significant change in the unit cell lattice of nickel. All of the silicide-modified nickel materials were ferromagnetic at room temperature, and saturation magnetization values drastically decreased when Si was present. The as-prepared bulk silicide-modified nickel showed above92%styrene selectivity in the hydrogenation of phenylacetylene under0.41MPa H2and at50℃for5h. In addition, only low conversions were obtained for styrene hydrogenation under the same hydrogen pressure and temperature for50min. These results indicated that these novel silicide-modified nickels are promising catalysts for the selective hydrogenation of unsaturated hydrocarbons.
     Raney Ni-Si catalysts were synthesized by treating Raney Ni with silane in fluidized bed reactor and tested in the selective hydrogenation of2-butyne-1.4-diol (BYD) in high concentration. Raney Ni-Si catalysts were composed of a Ni core surrounded by nickel silicide intermetallic compounds, which transformed form Ni-rich silicide (Ni2Si) to Si-rich silicide (NiSi2) with the increasing silicification temperature from250℃to450℃. The insertion of Si atoms into Raney Ni catalysts decreased the catalytic activity, but significantly improved the selectivity to2-butene-1,4-diol (BED). The beneficial effect of Si on the selective hydrogenation of BYD may be caused by the presence of Si at Ni-defect sites and the formation of nickel silicide surface intermetallic compounds, which suppress the hydrogenation of BED. Compared with the traditional Lindlar-type catalysts, such Raney Ni-Si materials can be used extensively in organic synthesis for selective hydrogenation of alkynes, avoiding the associated hazards of toxic additives.
     Nickel silicides with outstanding physical and chemical properties, were synthesized by the reaction of nickel oxide with silane at relatively low temperature and atmospheric pressure. Electrochemical measurements revealed that the nickel silicides exhibited remarkably like-platinum property and lower electric resistivity, indicating that the nickel silicides are potential and efficient materials for CMOS and electrocatalysis. Furthermore, nickel silicides particles presented much higher selectivity to the intermediate product (hydrocinnamaldehyde) than monometallic nickel catalyst, which may be attributed to the repulsive force between the electronegative silicon atoms in the nickel silicides and oxygen atoms in the C=O bond of cinnamaldehyde. In addition, nickel silicides showed excellent selectivity for the hydrogenation of phenylacetylene to styrene (ca.93%) due to the strong modification of the electronic structure derived from the interaction of nickel and silicon.
     Bulk nickel silicides (Ni2Si, NiSi, and NiSi2) have been designed as promising hydrodesulfurization catalysts with high activity toward hydrodesulfurization (HDS) and good sulfur tolerance, which is due to the formation of an electron-deficient Ni by the Ni-Si interaction in the nickel silicides. These compounds might also serve as highly sulfur tolerant substitutes for Ni catalysts in industrial applications. For improving the HDS activity, we report on the synthesis and characterization of ferromagnetic nickel-cobalt silicide (Ni1-x CoxSi2) solid solution catalysts having large surface area by the reaction of nickel cobalt oxide solid solutions with SiH4. The results showed that the saturation magnetization of the Ni1-x CoxSi2solid solutions with fluorite structure can be controlled by changing the molar ratio of Ni to Co. The nickel-rich Ni0.75Co0.25Si2catalyst was much more active than that of monometallic silicides (NiSi2and CoSi2) and significantly improved the hydrogenation property (31.5%HYD selectivity), proving the synergistic effect between the components. The valence electron concentration of the Ni increased with increasing the Co substitution, enhancing the metal-silicon and metal-metal interactions. In addition, the Si sites in the silicides alter the metal coordination, which engendered a high activity for the HDS of DBT and weakened the metal-sulfur bonds, improving the sulfur tolerance.
     Single phase Ni2Si nanoparticles (NPs) have been successfully synthesized by using the Rochow reverse reaction, in which organosilanes ((CH3)nSiCl4-n) were used as silicon source. The formation mechanism of Ni2Si NPs has been proposed, which involved reaction deposition and subsequently diffusion of Si atoms. Magnetism performance tests indicated that the saturation magnetization and coercive field of Ni2Si NPs depend greatly on the environmental temperature and particle size. The blocking temperature (TB) of the materials was found to strongly depend on selecting the organosilanes precursor:in the case of the Ni2Si-0(148K) and Ni2Si-2(336K). This novel methodology opened a route to prepare other metal silicides with single phase and stoichiometry.
     Silicon-nickel intermetallic compounds (IMCs) supported on silica (Ni-Si/SiO2), as a highly efficient catalyst for CO methanation, had been prepared by direct silicification of Ni/SiO2with silane at relatively low temperature in a fluidized bed reactor. The results indicate that uniform NiSix nanoparticles with about3-4nm were evenly dispersed on silica. The combined in situ FTIR and TPR-MS results suggest that the Ni-Si/SiO2catalysts afforded high activity in CO methanation, promoting the formation of CH4at ca.240℃.The catalytic hydrogenation of CO on the Ni-Si/SiO2was investigated in a fixed-bed reactor at GHSVs48,000mL·h-1·g-1under1atm in the temperature interval200-600℃. In the higher temperature reaction region (500-600℃), it is notable that the Ni-Si/SiO2catalysts present high activity for CO methanation as compared to the Ni/SiO2catalyst. More importantly, the Ni-Si/SiO2-350catalyst containing thermally stable Ni-Si IMCs shows significantly higher resistance to the sintering of Ni particles. Raman characterization of the spent materials qualitatively shows that carbon deposition observed on the conversional Ni/SiO2catalyst is much higher than that of the used Ni-Si/SiO2-350. It is proposed that small amounts of silicon interacting with Ni atoms selectively prevent the adsorption of resilient carbon species.
引文
[1]易丹青,刘会群,王斌.金属硅化物[M].北京:冶金工业出版社,2012:1-258.
    [2]SCHLESINGER, M. E. Thermodynamics of solid transition-metal silicides [J]. Chem. Rev. 1990,90:607-628.
    [3]SCHMITT, A. L., HIGGINS, J. M., SZCZECH, J. R., et al. Synthesis and applications of metal silicide nanowires [J]. J. Mater. Chem.2010,20:223-235.
    [4]BISI, O., CALANDRA, C. Transition-metal silicides-aspects of the chemical-bond and trends in the electronic-structure [J]. J. Phys. C:Solid State Phys.1981,14:5479-5494.
    [5]MICHAELSON, H. B. Relation between an atomic electronegativity scale and work function [J]. IBM J. Res. Dev.1978,22:72-80.
    [6]MIETTINEN, J. Thermodynamic description of the Cu-Ni-Si system in the copper-rich corner above 700 degrees c [J]. Calphad:Comput. Coupling Phase Diagrams Thermochem.2005,29:212-221.
    [7]WEAVER, J. H., MORUZZI, V. L., SCHMIDT, F. A. Experimental and theoretical band-structure studies of refractory-metal silicides [J]. Phys. Rev. B 1981,23:2916-2922.
    [8]MURARKA, S. P. Refractory silicides for integrated-circuits [J]. J. Vac. Sci. Technol., A 1980,17:775-792.
    [9]TU, K. N., THOMPSON, R. D., TSAUR, B. Y. Low schottky-barrier of rare-earth silicide on n-Si [J]. Appl. Phys. Lett.1981,38:626-628.
    [10]MURARKA, S. P., READ, M. H., DOHERTY, C. J., et al. Resistivities of thin-film transition-metal silicides [J]. J. Electrochem. Soc.1982,129:293-301.
    [11]马剑华,谷云乐,钱逸泰.金属硅化物纳米线的化学合成[J].无机化学学报,2004,20:1009-1012.
    [12]BURTON, J. J., Robert L.G. Advanced materials in catalysis [M]. Academic Press:New York,1977: 118-119.
    [13]MA, J. H., GU, Y. L., SHI, L., et al. Synthesis and thermal stability of nano-crystalline vanadium disilicide [J]. J. Alloys Compd.2004,370:281-284.
    [14]AYLETT, B. J., COLQUHOUN, H. M. Chemical vapor-deposition of transition-metal silicides by pyrolysis of silyl transition-metal carbonyl-compounds [J]. J. Chem. Soc. Dalton Trans. 1977:2058-2061.
    [15]AYLETT, B. J., TANNAHILL, A. A. Chemical vapor-deposition of metal silicides from organometallic compounds with silicon metal bonds [J]. Vacuum 1985,35:435-439.
    [16]HIGGINS, J. M., SCHMITT, A. L., GUZEI, I. A., et al. Higher manganese silicide nanowires of nowotny chimney ladder phase [J]. J. Am. Chem. Soc.2008,130:16086-16094.
    [17]NOVAK, I., HUANG, W., LUO, L., et al. Ups study of compounds with metal-silicon bonds: M(CO)nSiCl3 (m=Co, Mn; n=4,5) and Fe(CO)4(SiCl3)2 [J]. Organometallics 1997,16:1567-1572.
    [18]SCHMITT, A. L., JIN, S. Selective patterned growth of silicide nanowires without the use of metal catalysts [J]. Chem. Mater.2007,19:126-128.
    [19]SCHMITT, A. L., ZHU, L., SCHMEISSER, D., et al. Metallic single-crystal cosi nanowires via chemical vapor deposition of single-source precursor [J]. J. Phys. Chem. B 2006,110:18142-18146.
    [20]SCHMITT, A. L., BIERMAN, M. J., SCHMEISSER, D., et al. Synthesis and properties of single-crystal FeSi nanowires [J]. Nano Lett.2006,6:1617-1621.
    [21]SCHMITT, A. L., HIGGINS, J. M., JIN, S. Chemical synthesis and magnetotransport of magnetic semiconducting Fe(1-X)Co(x)Si alloy nanowires [J]. Nano Lett.2008,8:810-815.
    [22]SONG, Y. P., SCHMITT, A. L., JIN, S. Ultralong single-crystal metallic Ni2Si nanowires with low resistivity [J]. Nano Lett.2007,7:965-969.
    [23]SZCZECH, J. R., SCHMITT, A. L., BIERMAN, M. J., et al. Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport [J]. Chem. Mater.2007,19:3238-3243.
    [24]SONG, Y. P., JIN, S. Synthesis and properties of single-crystal beta(3)-Ni3Si nanowires [J]. Appl. Phys. Lett.2007,90.
    [25]QI, Y., DU, N., ZHANG, H., et al. CoO/NiSix core-shell nanowire arrays as lithium-ion anodes with high rate capabilities [J]. Nanoscale 2012,4:991-996.
    [26]GAO, Y., ZHOU, Y. S., QIAN, M., et al. Fast growth of branched nickel monosilicide nanowires by laser-assisted chemical vapor deposition [J]. Nanotechnology 2011,22.
    [27]KANG, K., KIM, S. K., KIM, C. J., et al. The role of NiOx overlayers on spontaneous growth of NiSix nanowires from ni seed layers [J]. Nano Lett.2008,8:431-436.
    [28]MURTY, B. S., RANGANATHAN, S. Novel materials synthesis by mechanical alloying/milling [J]. Int. Mater. Rev.1998,43:101-141.
    [29]RESTREPO, D., HICK, S. M., GRIEBEL, C., et al. Size controlled mechanochemical synthesis of zrsi2 [J]. Chem. Commun.2013,49:707-709.
    [30]BUX, S. K., YEUNG, M. T., TOBERER, E. S., et al. Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide [J]. J. Mater. Chem.2011,21:12259-12266.
    [31]JACUBINAS, R. M., KANER, R. B. Synthesis of high-temperature silicides via rapid solid-state metathesis [J]. Mat. Res. Soc. Symp. Proc.1994,322:133-137.
    [32]PARKIN, I. P. Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: Ionic or elemental pathways [J]. Chem. Soc. Rev.1996,25:199-+.
    [33]PARKIN, I. P. Solvent free reactions in the solid state:Solid state metathesis [J]. Transition Met. Chem.2002,27:569-573.
    [34]NARTOWSKI, A. M., PARKIN, I. P. Solid state metathesis synthesis of metal silicides; reactions of calcium and magnesium silicide with metal oxides [J]. Polyhedron 2002,21:187-191.
    [35]WANG, X. D., ALTMANN, L., STOVER, J., et al. Pt/Sn intermetallic, core/shell and alloy nanoparticles:Colloidal synthesis and structural control [J]. Chem. Mater.2013,25:1400-1407.
    [36]YANG, C., ZHAO, H. B., HOU, Y. L., et al. Fe5C2 nanoparticles:A facile bromide-induced synthesis and as an active phase for fischer-tropsch synthesis [J]. J. Am. Chem. Soc.2012,134:15814-15821.
    [37]CARENCO, S., HU, Y., FLOREA, I., et al. Metal-dependent interplay between crystallization and phosphorus diffusion during the synthesis of metal phosphide nanoparticles [J]. Chem. Mater. 2012,24:4134-4145.
    [38]DAHAL, N., CHIKAN, V. Phase-controlled synthesis of iron silicide (Fe3Si and FeSi2) nanoparticles in solution [J]. Chem. Mater.2010,22:2892-2897.
    [39]BAUDOUIN, D., SZETO, K. C., LAURENT, P., et al. Nickel-silicide colloid prepared under mild conditions as a versatile ni precursor for more efficient CO2 reforming of CH4 catalysts [J]. J. Am. Chem. Soc.2013,135:2384-2384.
    [40]MASZARA, W. P. Fully silicided metal gates for high-performance cmos technology:A review [J]. J. Electrochem. Soc.2005,152:G550-G555.
    [41]FANG, X. S., BANDO, Y., GAUTAM, U. K., et al. Inorganic semiconductor nanostructures and their field-emission applications [J]. J. Mater. Chem.2008,18:509-522.
    [42]CHUEH, Y. L., CHOU, L. J., CHENG, S. L., et al. Synthesis and characterization of metallic TaSi2 nanowires [J]. Appl. Phys. Lett.2005,87.
    [43]CHUEH, Y. L., KO, M. T., CHOU, L. J., et al. TaSi2 nanowires:A potential field emitter and interconnect [J]. Nano Lett.2006,6:1637-1644.
    [44]DEBSKI, A., GASIOR, W., GORAL, A. Enthalpy of formation of intermetallic compounds from the Li-Si system [J]. Intermetallics 2012,26:157-161.
    [45]ZHANG, H. L., LI, F., LIU, C., et al. The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage [J]. Nanotechnology 2008,19.
    [46]ZHOU, S., SIMPSON, Z. I., YANG, X. G., et al. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction [J]. ACS Nano 2012,6:8114-8119.
    [47]ZHOU, S., YANG, X. G., LIN, Y. J., et al. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime [J]. ACS Nano 2012,6:919-924.
    [48]ZHOU, S., LIU, X. H., WANG, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries [J]. Nano Lett.2010,10:860-863.
    [49]ZHOU, S., WANG, D. W. Unique lithiation and delithiation processes of nanostructured metal silicides [J]. ACS Nano 2010,4:7014-7020.
    [50]TAKAHASHI, M., ARAI, H., WAKIYAMA, T. Magnetostriction constants for Fe-Al-Si (sendust) single-crystals with DO3 ordered structure [J]. IEEE Trans. Magn.1987,23:3523-3525.
    [51]CHEN, C. Y., LIN, Y. K., HSU, C. W., et al. Coaxial metal-silicide Ni2Si/C54-TiSi2 nanowires [J]. Nano Lett.2012,12:2254-2259.
    [52]LI, M., CHEN, X., GUAN, J. C., et al. A facile and novel approach to magnetic Fe@SiO2 and FeSi2@Si02 nanoparticles [J]. J. Mater. Chem.2012,22:609-616.
    [53]NUZZO, R. G., DUBOIS, L. H., BOWLES, N. E., et al. Derivatized, high surface-area, supported nickel-catalysts [J]. J. Catal.1984,85:267-271.
    [54]MAUGH, T. H. A new route to intermetallics [J]. Science 1984,225:403-403.
    [55]NUZZO, R. G., DUBOIS, L. H. The chemisorption and catalytic properties of nickel intermetallic compounds-studies of single crystalline and high surface-area, supported materials [J]. Appl. Surf. Sci.1984,19:407-413.
    [56]DUBOIS, L. H., NUZZO, R. G. Small-molecule chemisorption on NiSi2-implications for heterogeneous catalysis [J]. J. Am. Chem. Soc.1983,105:365-369.
    [57]DUBOIS, L. H., NUZZO, R. G. The decomposition of silane and germane on Ni(111)-implications for heterogeneous catalysis [J]. Surf. Sci.1985,149:133-145.
    [58]WIEGAND, B. C., LOHOKARE, S. P., NUZZO, R. G. Si-h bond activation on Cu-reaction of silane on Cu(111) [J]. J. Phys. Chem.1993,97:11553-11562.
    [59]BONDOS, J. G., DRUMMER, N. E., GEWIRTH, A. A., et al. Thermal phase evolution of Pt-Si intermetallic thin films prepared by the activated adsorption of SiH4 on pt(100) and comparison to known structural models [J]. J. Am. Chem. Soc.1999,121:2498-2507.
    [60]NASHNER, M. S., BONDOS, J. C., HOSTETLER, M. J., et al. Chemisorption properties and structural evolution of pt-si intermetallic thin films prepared by the activated adsorption of SiH* on Pt(111) [J]. J. Phys. Chem. B 1998,102:6202-6211.
    [61]LOHOKARE, S. P., WIEGAND, B. C., NUZZO, R. G. Reactions of disilane on Cu(111)-direct observation of competitive dissociation, disproportionation, and thin-film growth-processes [J]. Langmuir 1995,11:3902-3912.
    [62]VLASENKO, N. V., ILCHENKO, N. I. Catalytic activity of transition-metal silicides in hydrogen oxidation [J]. React. Kinet. Catal. Lett.1988,36:189-193.
    [63]LIN, Y. J., ZHOU, S., LIU, X. H., et al. TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting [J]. J. Am. Chem. Soc.2009,131:2772-2773.
    [64]RITTERSKAMP, P., KUKLYA, A., WUSTKAMP, M. A., et al. A titanium disilicide derived semiconducting catalyst for water splitting under solar radiation-reversible storage of oxygen and hydrogen [J]. Angew. Chem. Int. Ed.2007,46:7770-7774.
    [65]BOHMHAMMEL, K., ROEWER, G., WALTER, H. Hydrodehalogenation of chlorosilanes in the presence of metal silicides-experimental studies of gas and solid-phase composition related to thermodynamic calculations [J]. J. Chem. Soc., Faraday Trans.1995,91:3879-3882.
    [66]WALTER, H., ROEWER, G., BOHMHAMMEL, K. Mechanism of the silicide-catalysed hydrodehalogenation of silicon tetrachloride to trichlorosilane [J]. J. Chem. Soc., Faraday Trans. 1996,92:4605-4608.
    [67]HOUALLA, M., DANG, T. A., EDDY, E. L., et al. Surface characterization and methanation activity of catalysts derived from binary and ternary intermetallics [J]. ACS Symp. Ser.1985,288:305-316.
    [68]HOUALLA, M., KIBBY, C. L., PETRAKIS, L., et al. Surface characterization of methanation catalysts formed by oxidation of nickel-silicon intermetallics [J]. J. Phys. Chem.1983,87:3689-3693.
    [69]IMAMURA, H., WALLACE, W. E. Methanation by catalysts formed from intermetallic compounds [J]. J. Phys. Chem.1979,83:2009-2012.
    [70]HOUALLA, M., DANG, T. A., KIBBY, C. L., et al. The spectroscopic characterization of intermetallic synthesis gas conversion catalysts and the correlation of their activity with surface-structure [J]. Appl. Surf. Sci.1984,19:414-429.
    [71]SUIB, S. L. Selectivity in catalysis-an overview [J]. ACS Symp. Ser.1993,517:1-19.
    [72]LEE, I., DELBECQ, F., MORALES, R., et al. Tuning selectivity in catalysis by controlling particle shape [J]. Nat. Mater.2009,8:132-138.
    [73]BLASER, H. U., MALAN, C, PUGIN, B., et al. Selective hydrogenation for fine chemicals:Recent trends and new developments [J]. Adv. Synth. Catal.2003,345:103-151.
    [74]TSCHAN, R., WANDELER, R., SCHNEIDER, M. S., et al. Semihydrogenation of a propargylic alcohol over highly active amorphous Pd81Si19 in "supercritical" carbon dioxide [J]. Appl. Catal., A 2002,223:173-185.
    [75]SHIN, E. W., CHOI, C. H., CHANG, K. S., et al. Properties of si-modified Pd catalyst for selective hydrogenation of acetylene [J]. Catal. Today 1998,44:137-143.
    [76]SHIN, E. W., KANG, J. H., KIM, W. J., et al. Performance of Si-modified Pd catalyst in acetylene hydrogenation:The origin of the ethylene selectivity improvement [J]. Appl. Catal., A 2002,223:161-172.
    [77]ZHU, J., SOMORJAI, G. A. Formation of platinum silicide on a platinum nanoparticle array model catalyst deposited on silica during chemical reaction [J]. Nano Lett.2001,1:8-13.
    [78]LIANG, C. H., ZHAO, A. Q., ZHANG, X. F., et al. CoSi particles on silica support as a highly active and selective catalyst for naphthalene hydrogenation [J]. Chem. Commun.2009:2047-2049.
    [79]GUAN, J. C, JIN, J. H., CHEN, X., et al. Preparation and formation mechanism of highly dispersed manganese silicide on silica by mocvd of Mn(CO)5SiCl3 [J]. Chem. Vap. Deposition 2013,19:68-73.
    [80]ZHAO, A., ZHANG, X., CHEN, X., et al. Cobalt silicide nanoparticles in mesoporous silica as efficient naphthalene hydrogenation catalysts by chemical vapor deposition [J]. J. Phys. Chem. C 2010,114:3962-3967.
    [81]ZHAO, A. Q., CHEN, X., GUAN, J. C., et al. The formation mechanism of cobalt silicide on silica from Co(SiCl3)(CO)(4) by in situ fourier transform infrared spectroscopy [J]. Phys. Chem. Chem. Phys. 2011,13:9432-9438.
    [82]肖剑,陈秀宏,陈祎华,等.苯乙烯存在下苯乙炔选择性加氢过程的研究[J].河南化工,2004,1:1-4.
    [83]DOMINGUEZ-DOMINGUEZ, S., BERENGUER-MURCIA, A., PRADHAN, B. K., et al. Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials [J]. J. Phys. Chem. C 2008,112:3827-3834.
    [84]DOMINGUEZ-DOMINGUEZ, S., BERENGUER-MURCIA, A., LINARES-SOLANO, A., et al. Inorganic materials as supports for palladium nanoparticles:Application in the semi-hydrogenation of phenylacetylene [J]. J. Catal.2008,257:87-95.
    [85]BAUTISTA, F. M., CAMPELO, J. M., GARCIA, A., et al. Influence of surface support properties on the liquid-phase selective hydrogenation of phenylacetylene on supported nickel catalysts [J]. Catal. Lett.1998,52:205-213.
    [86]WILHITE, B. A., MCCREADY, M. J., VARMA, A. Kinetics of phenylacetylene hydrogenation over Pt/gamma-Al2O3 catalyst [J]. Ind. Eng. Chem. Res.2002,41:3345-3350.
    [87]ADAMS, R. D., CAPTAIN, B., ZHU, L. The importance of cluster fragmentation in the catalytic hydrogenation of phenylacetylene by ptru5 carbonyl cluster complexes [J]. J. Organomet. Chem. 2006,691:3122-3128.
    [88]PELLEGATTA, J. L., BLANDY, C., COLLIERE, V., et al. Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene [J]. J. Mol. Catal. A:Chem. 2002,178:55-61.
    [89]WINTERBOTTOM, J. M., MARWAN, H., VILADEVALL, J., et al. Selective catalytic hydrogenation of 2-butyne-l,4-diol to cis-2-butene-1,4-diol in mass transfer efficient slurry reactors [J]. Hetero. Catal. Fine Chem.1997,108:59-66.
    [90]CHAUDHARI, R. V., JAGANATHAN, R., KOLHE, D. S., et al. Kinetic modelling of hydrogenation of butynediol using 0.2% Pd/C catalyst in a slurry reactor [J]. Appl. Catal.1987,29:141-159.
    [91]CHAUDHARI, R. V., PARANDE, M. G., RAMACHANDRAN, P. A., et al. Hydrogenation of butynediol to cis-butenediol catalyzed by pd-Zn-CaCO3-reaction-kinetics and modeling of a batch slurry reactor [J]. AlChE J.1985,31:1891-1903.
    [92]WOOD, J., BODENES, L., BENNETT, J., et al. Hydrogenation of 2-butyne-1,4-diol using novel bio-palladium catalysts [J].Ind. Eng. Chem. Res.2010,49:980-988.
    [93]TANIELYAN, S., SCHMIDT, S., MARIN, N., et al. Selective hydrogenation of 2-butyne-1,4-diol to 1,4-butanediol over particulate raney(a (r)) nickel catalysts [J]. Top. Catal.2010,53:1145-1149.
    [94]TELKAR, M. M., RODE, C. V., RANE, V. H., et al. Selective hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol:Roles of ammonia, catalyst pretreatment and kinetic studies [J]. Appl. Catal., A 2001,216:13-22.
    [95]ZHANG, Y. K., LIAO, S. J., XU, Y., et al. Catalytic selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde [J]. Appl. Catal., A 2000,192:247-251.
    [96]WANG, H., SHU, Y. Y., ZHENG, M. Y., et al. Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over SiO2 supported nickel phosphide catalysts [J]. Catal. Lett. 2008,124:219-225.
    [97]TSANG, S. C., CAILUO, N., ODURO, W., et al. Engineering preformed cobalt-doped platinum nanocatalysts for ultraselective hydrogenation [J]. ACS Nano 2008,2:2547-2553.
    [98]GALLEZOT, P., RICHARD, D. Selective hydrogenation of alpha,beta-unsaturated aldehydes [J]. Cat. Rev.-Sci. Eng.1998,40:81-126.
    [99]YANG, R. T., HERNANDEZ-MALDONADO, A. J., YANG, F. H. Desulfurization of transportation fuels with zeolites under ambient conditions [J]. Science 2003,301:79-81.
    [100]MA, X. L., VELU, S., KIM, J. H., et al. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications [J]. Appl. Catal., B 2005,56:137-147.
    [101]PAWELEC, B., NAVARRO, R. M., MIGUEL CAMPOS-MARTIN, J., et al. Towards near zero-sulfur liquid fuels:A perspective review [J]. Catal. Sci. Technol.2011,1:23-42.
    [102]NIQUILLE-ROETHLISBERGER, A., PRINS, R. Hydrodesulfurization of 4,6-dimethyldibenzothiophene and dibenzothiophene over alumina-supported Pt, Pd, and Pt-Pd catalysts [J]. J. Catal.2006,242:207-216.
    [103]SUN, Y., PRINS, R. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites [J]. Angew. Chem. Int. Ed.2008,47:8478-8481.
    [104]FU, W., ZHANG, L., TANG, T., et al. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over pd supported on mesoporous zeolite Y [J]. J. Am. Chem. Soc. 2011,133:15346-15349.
    [105]OYAMA, S. Novel catalysts for advanced hydroprocessing:Transition metal phosphides [J]. J. Catal. 2003,216:343-352.
    [106]PRINS, R., BUSSELL, M. E. Metal phosphides:Preparation, characterization and catalytic reactivity [J]. Catal. Lett.2012,142:1413-1436.
    [107]YANG, S. F., LIANG, C. H., PRINS, R. A novel approach to synthesizing highly active Ni2P/Si02 hydrotreating catalysts [J]. J. Catal.2006,237:118-130.
    [108]DUFRESNE, P. Hydroprocessing catalysts regeneration and recycling [J]. Appl.Catal., A 2007,322:67-75.
    [109]EL-GENDY, A. A., KHAVRUS, V. O., HAMPEL, S., et al. Morphology, structural control, and magnetic properties of carbon-coated nanoscaled niru alloys [J]. J. Phys. Chem. C 2010,114:10745-10749.
    [110]GLASPELL, G., ABDELSAYED, V., SAOUD, K. M., et al. Vapor-phase synthesis of metallic and intermetallic nanoparticles and nanowires:Magnetic and catalytic properties [J]. Pure Appl. Chem. 2006,78:1667-1689.
    [111]WANG, D.-W., LI, F., LIU, M., et al.3d aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage [J]. Angew. Chem. Int. Ed.2008,47:373-376.
    [112]YANG, S. F., PRINS, R. New synthesis method for nickel phosphide hydrotreating catalysts [J]. Chem. Commun.2005:4178-4180.
    [113]LAVOIE, C, D'HEURLE, F. M., DETAVERNIER, C., et al. Towards implementation of a nickel silicide process for cmos technologies [J]. Microelectron. Eng.2003,70:144-157.
    [114]LIN, Y., ZHOU, S., LIU, X., et al. TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical h2O splitting [J]. J. Am. Chem. Soc.2009,131:2772-+.
    [115]ZHOU, F., SZCZECH, J., PETTES, M. T., et al. Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations [J]. Nano Lett. 2007,7:1649-1654.
    [116]TSCHAN, R., WANDELER, R., SCHNEIDER, M. S., et al. Continuous semihydrogenation of phenylacetylene over amorphous Pd81Si19 alloy in "supercritical" carbon dioxide:Relation between catalytic performance and phase behavior [J]. J. Catal.2001,204:219-229.
    [117]LIANG, C., ZHAO, A., ZHANG, X., et al. CoSi particles on silica support as a highly active and selective catalyst for naphthalene hydrogenation [J]. Chem. Commun.2009:2047-2049.
    [118]PUNJI, B., MAGUE, J. T., BALAKRISHNA, M. S. Ruthenium(ii), copper(i) and silver(i) complexes of large bite bisphosphinite, bis(2-diphenylphosphinoxynaphthalen-l-yl)methane:Application of ru(ii) complexes towards the hydrogenation of styrene and phenylacetylene [J]. J. Organomet. Chem. 2006,691:4265-4272.
    [119]LU, Q. Y., HU, J. Q., TANG, K. B., et al. Benzene-thermal co-reduction reaction for nanocrystalline intermetallics Fe3Si andNi3Al [J]. Solid State Ionics 1999,124:317-321.
    [120]SONG, Y., SCHMITT, A. L., JIN, S. Ultralong single-crystal metallic Ni2Si nanowires with low resistivity [J]. Nano Lett.2007,7:965-969.
    [121]GRUNEWALD, G. C., DRAGO, R. S. Carbon molecular-sieves as catalysts and catalyst supports [J]. J. Am. Chem. Soc.1991,113:1636-1639.
    [122]LIANG, C. H., QIU, J. S., LI, Z. L., et al. Synthesis of nanostructured ceria, zirconia and ceria-zirconia solid solutions using an ultrahigh surface area carbon material as a template [J]. Nanotechnology 2004,15:843-847.
    [123]LIANG, C, MA, Z., LIN, H., et al. Template preparation of nanoscale CexFe1-xO2 solid solutions and their catalytic properties for ethanol steam reforming [J]. J. Mater. Chem.2009,19:1417-1424.
    [124]SCHUTH, F. Endo- and exotemplating to create high-surface-area inorganic materials [J]. Angew. Chem. Int. Ed.2003,42:3604-3622.
    [125]SCHWICKARDI, M., JOHANN, T., SCHMIDT, W., et al. High-surface-area oxides obtained by an activated carbon route [J]. Chem. Mater.2002,14:3913-3919.
    [126]CABRERA, A. L., KIRNER, J. F., PIERANTOZZI, R. Si diffusion coating on steels by SiH4/H2 treatment for high-temperature oxidation protection [J]. J. Mater. Res.1990,5:74-82.
    [127]LEE, K. S., MO, Y. H., NAHM, K. S., et al. Anomalous growth and characterization of carbon-coated nickel silicide nanowires [J]. Chem. Phys. Lett.2004,384:215-218.
    [128]FOGGIATO, J., YOO, W. S., OUAKNINE, M., et al. Optimizing the formation of nickel silicide [J]. Mater. Sci. Eng., B 2004,114:56-60.
    [129]BRITO, J. L., LAINE, J., PRATT, K. C. Temperature-programmed reduction of Ni-Mo oxides [J]. J. Mater. Sci.1989,24:425-431.
    [130]RODRIGUEZ, J. A., HANSON, J. C., FRENKEL, A. I., et al. Experimental and theoretical studies on the reaction of H2 with NiO:Role of o vacancies and mechanism for oxide reduction [J]. J. Am. Chem. Soc.2002,124:346-354.
    [131]LIANG, C. H., TIAN, F. P., LI, Z. L., et al. Preparation and adsorption properties for thiophene of nanostructured W2C on ultrahigh-surface-area carbon materials [J]. Chem. Mater.2003,15:4846-4853.
    [132]CONNETABLE, D., THOMAS, O. First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi [J]. Phys. Rev. B 2009,79.
    [133]DUBOIS, L. H., NUZZO, R. G. Reactivity of intermetallic thin-films formed by the surface mediated decomposition of main group organometallic compounds [J]. J. Vac. Sci. Technol., A 1984,2:441-445.
    [134]SZCZECH, J. R., JIN, S. Epitaxially-hyperbranched fesi nanowires exhibiting merohedral twinning [J]. J. Mater. Chem.2010,20:1375-1382.
    [135]TAM, P. L., NYBORG, L. Sputter deposition and xps analysis of nickel silicide thin films [J]. Surf. Coat. Technol.2009,203:2886-2890.
    [136]SAHA, S. K., HOWELL, R. S., HATALIS, M. K. Silicidation reactions with Co-Ni bilayers for low thermal budget microelectronic applications [J]. Thin Solid Films 1999,347:278-283.
    [137]PRALIAUD, H., MARTIN, G. A. Evidence of a strong metal-support interaction and of Ni-Si alloy formation in silica-supported nickel-catalysts [J]. J. Catal.1981,72:394-396.
    [138]JARRIGE, I., CAPRON, N., JONNARD, P. Electronic structure of ni and Mo silicides investigated by x-ray emission spectroscopy and density functional theory [J]. Phys. Rev. B 2009,79.
    [139]HUI, C., SHEN, C., YANG, T., et al. Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method [J]. J. Phys. Chem. C 2008,112:11336-11339.
    [140]YAN, X. Q., YUAN, H. J., WANG, J. X., et al. Synthesis and characterization of a large amount of branched Ni2Si nanowires [J]. Appl. Phys. A 2004,79:1853-1856.
    [141]KIM, C.-J., KANG, K., WOO, Y. S., et al. Spontaneous chemical vapor growth of nisi nanowires and their metallic properties [J]. Adv. Mater.2007,19:3637-+.
    [142]ONDA, A., KOMATSU, T., YASHIMA, T. Preparation and catalytic properties of single-phase Ni-Sn intermetallic compound particles by CVD of Sn(CH3)(4) onto Ni/silica [J]. J. Catal. 2001,201:13-21.
    [143]WEI, Z. B., XIN, Q., GRANGE, P., et al. TPD and TPR studies of molybdenum nitride [J].J. Catal. 1997,168:176-182.
    [144]LEARY, K. J., MICHAELS, J. N., STACY, A. M. The use of TPD and TPR to study subsurface mobility-diffusion of oxygen in Mo2C [J]. J. Catal.1987,107:393-406.
    [145]FRANCIOSI, A., WEAVER, J. H., SCHMIDT, F. A. Electronic-structure of nickel silicides Ni2Si, NiSi, and NiSi2 [J]. Phys. Rev. B 1982,26:546-553.
    [146]THEVENOT, D. R., TOTH, K., DURST, R. A., et al. International union of pure and applied chemistry-physical chemistry division, steering committee on biophysical chemistry-analytical chemistry division, commission v.5 (electroanalytical chemistry)-electrochemical biosensors: Proposed definitions and classification-synopsis of the report [J]. Sens. Actuators, B 1996,30:81-81.
    [147]MIKKOLA, J. P., VAINIO, H., SALMI, T., et al. Deactivation kinetics of mo-supported raney Ni catalyst in the hydrogenation of xylose to xylitol [J]. Appl. Catal., A 2000,196:143-155.
    [148]BECKER, L., AMINPIROOZ, S., HILLERT, B., et al. Threefold-coordinated hollow adsorption site for Ni(111)-C(4x2)-CO:A surface-extended x-ray-absorption fine-structure study [J]. Phys. Rev. B 1993,47:9710-9714.
    [149]KOVNIR, K., ARMBRUSTER, M., TESCHNER, D., et al. A new approach to well-defined, stable and site-isolated catalysts [J]. Sci. Technol. Adv. Mater.2007,8:420-427.
    [150]CHEN, X., LIU, X., WANG, L., et al. High sulfur tolerance of Ni-Si intermetallics as hydrodesulfurization catalysts [J]. RSC Adv.2013,3:1728-1731.
    [151]CHEN, X., WANG, X. K., XIU, J. H., et al. Synthesis and characterization of ferromagnetic nickel-cobalt silicide catalysts with good sulfur tolerance in hydrodesulfurization of dibenzothiophene [J]. J. Phys. Chem. C 2012,116:24968-24976.
    [152]YU, X. B., LI, H. X., DENG, J. F. Selective hydrogenation of adiponitrile over a skeletal Ni-P amorphous catalyst (raney Ni-P) at 1 atm pressure [J]. Appl. Catal., A 2000,199:191-198.
    [153]LEI, H., SONG, Z., TAN, D. L., et al. Preparation of novel raney-Ni catalysts and characterization by xrd, sem and xps [J]. Appl. Catal., A 2001,214:69-76.
    [154]BENNETT, J. A., ATTARD, G. A., DEPLANCHE, K., et al. Improving selectivity in 2-butyne-1,4-diol hydrogenation using biogenic Pt catalysts [J]. ACS Catal.2012,2:504-511.
    [155]Davis, M. E., Suib, S. L. Selectivity in catalysis-an overview [M]. Acs symposium series,1993; Vol. 517; pp 1-19.
    [156]CHEN, J. G. G. Carbide and nitride overlayers on early transition metal surfaces:Preparation, characterization, and reactivities [J]. Chem. Rev.1996,96:1477-1498.
    [157]LIANG, C. H., LI, W. Z., WEI, Z. B., et al. Catalytic decomposition of ammonia over nitrided MoNx/alpha-Al2O3 and NiMoNy/alpha-Al203 catalysts [J]. Ind. Eng. Chem. Res.2000,39:3694-3697.
    [158]YANG, S., LIANG, C., PRINS, R. Preparation and hydrotreating activity of unsupported nickel phosphide with high surface area [J]. J. Catal.2006,241:465-469.
    [159]SCHREIFELS, J. A., MAYBURY, P. C, SWARTZ, W. E. Comparison of the activity and lifetime of raney-nickel and nickel boride in the hydrogenation of various functional-groups [J]. J.Org. Chem. 1981,46:1263-1269.
    [160]ARMBRUESTER, M., KOVNIR, K., BEHRENS, M., et al. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts [J]. J. Am. Chem. Soc.2010,132:14745-14747.
    [161]SONG, C., MA, X. L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization [J]. Appl. Catal., B 2003,41:207-238.
    [162]WU, Y., XIANG, J., YANG, C, et al. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures [J]. Nature 2004,430:61-65.
    [163]LIU, Z., ZHANG, H., WANG, L., et al. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of ni foil [J]. Nanotechnology 2008,19.
    [164]MANYALA, N., SIDIS, Y., DITUSA, J. F., et al. Large anomalous hall effect in a silicon-based magnetic semiconductor [J]. Nat. Mater.2004,3:255-262.
    [165]WANG, H., WU, J.-C., SHEN, Y., et al. CrSi2 hexagonal nanowebs [J]. J. Am. Chem. Soc. 2010,132:15875-15877.
    [166]HWANG, C.-M., LIM, C.-H., YANG, J.-H., et al. Electrochemical properties of negative simox electrodes deposited on a roughened substrate for rechargeable lithium batteries [J]. J. Power Sources 2009,194:1061-1067.
    [167]WOLFENSTINE, J. CaSi2 as an anode for lithium-ion batteries [J]. J. Power Sources 2003,124:241-245.
    [168]SEO, K., VARADWAJ, K. S. K., MOHANTY, P., et al. Magnetic properties of single-crystalline cosi nanowires [J]. Nano Lett.2007,7:1240-1245.
    [169]IMAMURA, H., WALLACE, W. E. Methanation activity of catalysts formed by treating intermetallic compounds (NisSi2, NiiSi, and Co2Si with oxygen [J]. J. Phys. Chem. 1979,83:3261-3264.
    [170]WANG, G. X., SUN, L., BRADHURST, D. H., et al. Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries [J]. J. Alloys Compd.2000,306:249-252.
    [171]LEE, C.-Y., LU, M.-P., LIAO, K.-F., et al. Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties [J]. J. Phys. Chem. C 2009,113:2286-2289.
    [172]Gaigneaux, E. M., Devillers, M., Hermans, S., et al. Studies in surface science and catalysis [M]. 2010,175:77-84.
    [173]XIE, X., LI, Y., LIU, Z.-Q., et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods [J]. Nature 2009,458:746-749.
    [174]LI, Y., ZHANG, B. C., XIE, X. W., et al. Novel Ni catalysts for methane decomposition to hydrogen and carbon nanofibers [J]. J. Catal.2006,238:412-424.
    [175]LI, Y., XIE, X., LIU, J., et al. Synthesis of alpha-Ni(OH)(2) with hydrotalcite-like structure:Precursor for the formation of nio and ni nanomaterials with fibrous shapes [J]. Chem. Eng. J. 2008,136:398-408.
    [176]SONG, X., GAO, L. Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties [J]. J. Phys. Chem. C 2008,112:15299-15305.
    [177]RAMESH, T. N. X-ray diffraction studies on the thermal decomposition mechanism of nickel hydroxide [J]. J. Phys. Chem. B 2009,113:13014-13017.
    [178]ZHOU, F., ZHAO, X., VAN BOMMEL, A., et al. Coprecipitation synthesis of NixMn1-x(OH)(2) mixed hydroxides [J]. Chem. Mater.2010,22:1015-1021.
    [179]CHEN, X., ZHAO, A., SHAO, Z., et al. Synthesis and catalytic properties for phenylacetylene hydrogenation of silicide modified nickel catalysts [J]. J. Phys. Chem. C 2010,114:16525-16533.
    [180]KUANG, D.-B., LEI, B.-X., PAN, Y.-P., et al. Fabrication of novel hierarchical beta-Ni(OH)(2) and NiO microspheres via an easy hydrothermal process [J]. J. Phys. Chem. C 2009,113:5508-5513.
    [181]WANG, Y,, SIBENER, S. J. Reactive deposition of silicon nanowires templated on a stepped nickel surface [J]. J. Phys. Chem. B 2002,106:12856-12859.
    [182]ZHAO, F. F., ZHENG, J. Z., SHEN, Z. X., et al. Thermal stability study of nisi and NiSi2 thin films [J]. Microelectron. Eng.2004,71:104-111.
    [183]MANGELINCK, D., HOUMMADA, K. Effect of stress on the transformation of Ni(2)Si into NiSi [J]. Appl. Phys. Lett.2008,92.
    [184]ALBERTI, A., BONGIORNO, C., ALIPPI, P., et al. Structural characterization of Ni2Si pseudoepitaxial transrotational structures on 001 Si [J]. Acta Crystallogr., Sect. B:Struct. Sci 2006,62:729-736.
    [185]IKARASHI, N. Atomic structure of a Ni diffused si (001) surface layer:Precursor to formation of NiSi2 at low temperature [J]. J. Appl. Phys.2010,107.
    [186]JIANG, H., ZHAO, T., YAN, C., et al. Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances [J]. Nanoscale 2010,2:2195-2198.
    [187]LIANG, Z. X., ZHAO, T. S., XU, J. B., et al. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochim. Acta 2009,54:2203-2208.
    [188]GRDEN, M., CZERWINSKI, A. Eqcm studies on Pd-Ni alloy oxidation in basic solution [J]. J. Solid State Electrochem.2008,12:375-385.
    [189]LEE, J. W., PYUN, S. I., FILIPEK, S. The kinetics of hydrogen transport through amorphous Pd82-yNiySi18 alloys (y=0-32) by analysis of anodic current transient [J]. Electrochim. Acta 2003,48:1603-1611.
    [190]LO, Y. L., HWANG, B. J. In situ raman studies on cathodically deposited nickel hydroxide films and electroless Ni-P electrodes in 1 M KOH solution [J]. Langmuir 1998,14:944-950.
    [191]COLGAN, E. G. Activation energy for Ni2Si and nisi formation measured over a wide range of ramp rates [J]. Thin Solid Films 1996,279:193-198.
    [192]JIANG, Q. W., LI, G. R., LIU, S., et al. Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells [J]. J.Phys. Chem. C 2010,114:13397-13401.
    [193]LI, C. Z., LIU, Y. L., LUONG, J. H. T. Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles [J]. Anal. Chem.2005,77:478-485.
    [194]YANG, H., WHITTEN, J. L. Dissociative adsorption of H2 on Ni(111) [J]. J. Chem. Phys. 1993,98:5039-5049.
    [195]FRANCIOSI, A., WEAVER, J. H., ONEILL, D. G., et al. Chemical bonding at the Si-metal interface-Si-Ni and Si-Cr [J]. J. Vac. Sci. Technol., A 1982,21:624-627.
    [196]KOMATSU, T., KISHI, T., GORAI, T. Preparation and catalytic properties of uniform particles of Ni3Ge intermetallic compound formed inside the mesopores of MCM-41 [J]. J. Catal. 2008,259:174-182.
    [197]LI, H., ZHANG, D., LI, G., et al. Mesoporous Ni-B amorphous alloy microspheres with tunable chamber structure and enhanced hydrogenation activity [J]. Chem. Commun.2010,46:791-793.
    [198]WANG, H., SHU, Y., ZHENG, M., et al. Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over SiO(2) supported nickel phosphide catalysts [J]. Catal. Lett. 2008,124:219-225.
    [199]HSU, C.-Y., CHIU, T.-C., SHIH, M.-H., et al. Effect of electron density of Pt catalysts supported on alkali titanate nanotubes in cinnamaldehyde hydrogenation [J]. J. Phys. Chem. C 2010,114:4502-4510.
    [200]SONG, C. S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel andjet fuel [J]. Catal. Today 2003,86:211-263.
    [201]OYAMA, S. T. Novel catalysts for advanced hydroprocessing:Transition metal phosphides [J]. J. Catal.2003,216:343-352.
    [202]LAVOIE, C., D'HEURLE, F. M., DETAVERNIER, C., et al. Towards implementation of a nickel silicide process for cmos technologies [J]. Microelectron. Eng.2003,70:144-157.
    [203]BHASKARAN, M., SRIRAM, S., SIM, L. W. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching [J]. J. Micromech. Microeng.2008,18.
    [204]CHEN, X., LI, M., GUAN, J., et al. Nickel-silicon intermetallics with enhanced selectivity in hydrogenation reactions of cinnamaldehyde and phenylacetylene [J]. Ind. Eng. Chem. Res. 2012,51:3604-3611.
    [205]MEDICI, L., PRINS, R. The influence of chelating ligands on the sulfidation of ni and mo in nimo/sio2 hydrotreating catalysts [J]. J. Catal.1996,163:38-49.
    [206]BURNS, A. W., GAUDETTE, A. F., BUSSELL, M. E. Hydrodesulfurization properties of cobalt-nickel phosphide catalysts:Ni-rich materials are highly active [J]. J. Catal.2008,260:262-269.
    [207]OYAMA, S. T., ZHAO, H., FREUND, H.-J., et al. Unprecedented selectivity to the direct desulfurization (DDS) pathway in a highly active FeNi bimetallic phosphide catalyst [J]. J. Catal. 2012,285:1-5.
    [208]HUBER, G. W., SHABAKER, J. W., DUMESIC, J. A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons [J]. Science 2003,300:2075-2077.
    [209]ALFONSO, D. R. First-principles studies of H2S adsorption and dissociation on metal surfaces [J]. Surf. Sci.2008,602:2758-2768.
    [210]CONNETABLE, D., THOMAS, O. First-principles study of nickel-silicides ordered phases [J]. J. Alloys Compd.2011,509:2639-2644.
    [211]BESENBACHER, F., CHORKENDORFF, I., CLAUSEN, B. S., et al. Design of a surface alloy catalyst for steam reforming [J]. Science 1998,279:1913-1915.
    [212]Gates, B. C., Knozinger, H. Advances in catalysis [M] 2000,45:71-129.
    [213]STUDT, F., ABILD-PEDERSEN, F., BLIGAARD, T., et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene [J]. Science 2008,320:1320-1322.
    [214]BLIGAARD, T., NORSKOV, J. K., DAHL, S., et al. The bronsted-evans-polanyi relation and the volcano curve in heterogeneous catalysis [J]. J. Catal.2004,224:206-217.
    [215]LIU, P., RODRIGUEZ, J. A., ASAKURA, T., et al. Desulfurization reactions on Ni2P(001) and alpha-Mo2C(001) surfaces:Complex role of P and C sites [J]. J. Phys. Chem. B 2005,109:4575-4583.
    [216]SKRABALAK, S. E., SUSLICK, K. S. On the possibility of metal borides for hydrodesulfurization [J]. Chem. Mater.2006,18:3103-3107.
    [217]EGOROVA, M., PRINS, R. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided MMo/gamma-Al2O3, como/gamma-Al2O3, and Mo/gamma-Al2O3 catalysts [J]. J. Catal.2004,225:417-427.
    [218]LI, X., BAI, J., WANG, A., et al. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk Ni2P [J]. Top. Catal.2011,54:290-298.
    [219]BAI, J., LI, X., WANG, A., et al. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP [J]. J. Catal.2012,287:161-169.
    [220]ARMBRUESTER, M., WOWSNICK, G., FRIEDRICH, M., et al. Synthesis and catalytic properties of nanoparticulate intermetallic Ga-Pd compounds [J]. J. Am. Chem. Soc.2011,133:9112-9118.
    [221]SHAO, L., ZHANG, W., ARMBRUESTER, M., et al. Nanosizing intermetallic compounds onto carbon nanotubes:Active and selective hydrogenation catalysts [J]. Angew. Chem. Int. Ed. 2011,50:10231-10235.
    [222]SHEN, Y., LI, P., XU, X., et al. Selective adsorption for removing sulfur:A potential ultra-deep desulfurization approach of jet fuels [J]. RSC Adv.2012,2:1700-1711.
    [223]ITO, E., VAN VEEN, J. A. R. On novel processes for removing sulphur from refinery streams [J]. Catal. Today 2006,116:446-460.
    [224]CHEN, X., ZHANG, B., LI, C., et al. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide [J]. Mater. Res. Bull. 2012,47:867-877.
    [225]LI, M., CHEN, X., GUAN, J., et al. A facile and novel approach to magnetic Fe@SiO2 and FeSi2@Si02 nanoparticles [J]. J. Mater. Chem.2012,22:609-616.
    [226]LAYMAN, K. A., BUSSELL, M. E. Infrared spectroscopic investigation of co adsorption on silica-supported nickel phosphide catalysts [J]. J. Phys. Chem. B 2004,108:10930-10941.
    [227]CECILIA, J. A., INFANTES-MOLINA, A., RODRIGUEZ-CASTELLON, E., et al. The influence of the support on the formation of Ni2P based catalysts by a new synthetic approach. Study of the catalytic activity in the hydrodesulfurization of dibenzothiophene [J]. J. Phys. Chem. C 2009,113:17032-17044.
    [228]DUAN, X., TENG, Y., WANG, A., et al. Role of sulfur in hydrotreating catalysis over nickel phosphide [J]. J. Catal.2009,261:232-240.
    [229]CABO, M., PELLICER, E., ROSSINYOL, E., et al. Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties [J]. J. Mater. Chem. 2010,20:7021-7028.
    [230]ALCANTARA, R., JARABA, M., LA VELA, P., et al. NiCo2O4 spinel:First report on a transition metal oxide for the negative electrode of sodium-ion batteries [J]. Chem. Mater.2002,14:2847-+.
    [231]MONTESINOS-CASTELLANOS, A., LIMA, E., DE LOS REYES H, J. A., et al. Fractal dimension of Mop-Al2O3 catalysts and their activity in hydrodesulfurization of dibenzothiophene [J]. J. Phys. Chem. C 2007,111:13898-13904.
    [232]YAMAUCHI, Y., KOMATSU, M., FUZIWARA, M., et al. Ferromagnetic mesostructured alloys: Design of ordered mesostructured alloys with multicomponent metals from lyotropic liquid crystals [J]. Angew. Chem. Int. Ed.2009,48:7792-7797.
    [233]GARCIA-MENDEZ, M., GAL VAN, D. H., POSADA-AMARILLAS, A., et al. Experimental and theoretical study of the electronic properties of CoSi2 and NiSi2 [J]. Appl. Surf. Sci. 2004,230:386-392.
    [234]GARCIA-MENDEZ, M., CASTILLON, F. F., HIRATA, G. A., et al. Xps and hrtem characterization of cobalt-nickel silicide thin films [J]. Appl. Surf. Sci.2000,161:61-73.
    [235]YAO, J., LYUTYY, P., MOZHARIVSKYJ, Y. Crystal structure, coloring problem and magnetism of Gd5-xZrxSi4[J]. Dalton Trans.2011,40:4275-4283.
    [236]SONG, O., KIM, D., YOON, C. S., et al. Formation of nicosix silicide by thermal annealing of Ni/Co bilayer on si substrate [J]. Mater. Sci. Semicond. Process.2005,8:608-612.
    [237]KLICPERA, T., ZDRAZIL, M. Preparation of high-activity mgo-supported Co-Mo and Ni-Mo sulfide hydrodesulfurization catalysts [J]. J. Catal.2002,206:314-320.
    [238]MUETTERTIES, E. L., STEIN, J. Mechanistic features of catalytic carbon-monoxide hydrogenation reactions [J]. Chem. Rev.1979,79:479-490.
    [239]HUBER, G. W., IBORRA, S., CORMA, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering [J]. Chem. Rev.2006,106:4044-4098.
    [240]KOPYSCINSKI, J., SCHILDHAUER, T. J., BIOLLAZ, S. M. A. Production of synthetic natural gas (SNG) from coal and dry biomass-a technology review from 1950 to 2009 [J]. Fuel 2010,89:1763-1783.
    [241]BALIBAN, R. C., ELIA, J. A., FLOUDAS, C. A. Toward novel hybrid biomass, coal, and natural gas processes for satisfying current transportation fuel demands,1:Process alternatives, gasification modeling, process simulation, and economic analysis [J]. Ind. Eng. Chem. Res.2010,49:7343-7370.
    [242]GAO, J. J., WANG, Y. L., PING, Y., et al. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas [J]. RSC Adv.2012,2:2358-2368.
    [243]WIGMANS, T., MOULIJN, J. A. Activity and mechanism of co methanation on activated carbon-supported nickel [J]. J. Chem. Soc., Chem. Commun.1980:170-171.
    [244]EVERSON, R. C., MULAY, L. N., MAHAJAN, O. P., et al. Magnetic and catalytic properties of sintered nickel catalysts for the methanation reaction [J]. J. Chem. Technol. Biotechnol.1979,29:1-7.
    [245]PANAGIOTOPOULOU, P., KONDARIDES, D. I., VERYKIOS, X. E. Selective methanation of co over supported ru catalysts [J]. Appl. Catal., B 2009,88:470-478.
    [246]DALLABET.RA, PIKEN, A. G., SHELEF, M. Heterogeneous methanation-initial rate of co hydrogenation on supported ruthenium and nickel [J]. J. Catal.1974,35:54-60.
    [247]GOVENDER, N. S., BOTES, F. G., DE CROON, M. H. J. M., et al. Mechanistic pathway for methane formation over an iron-based catalyst [J]. J. Catal.2008,260:254-261.
    [248]FROSETH, V., STORSAETER, S., BORG, O., et al. Steady state isotopic transient kinetic analysis (ssitka) of CO hydrogenation on different co catalysts [J]. Appl. Catal., A 2005,289:10-15.
    [249]KUSTOV, A. L., FREY, A. M., LARSEN, K. E., et al. CO methanation over supported bimetallic ni-fe catalysts:From computational studies towards catalyst optimization [J]. Appl. Catal., A 2007,320:98-104.
    [250]ELATTAR, A., TAKESHITA, T., WALLACE, W. E., et al. Intermetallic compounds of type-MNi5 as methanation catalysts [J]. Science 1977,196:1093-1094:
    [251]THOMPSON, R. D., TSAUR, B. Y., TU, K. N. Contact reaction between si and rare-earth-metals [J]. Appl. Phys. Lett.1981,38:535-537.
    [252]SMITH, A. L., MCHARD, J. A. Spectroscopic techniques for identification of organosilicon compounds [J]. Anal. Chem.1959,31:1174-1179.
    [253]HURD, D. T. The vapor phase alkylation and hydrogenation of chlorosilanes [J]. J. Am. Chem. Soc. 1945,67:1545-1548.
    [254]CHANG, J. J., LIU, C. P., CHEN, S. W., et al. Direct CoSi2 thin-film formation with homogeneous nanograin-size distribution by oxide-mediated silicidation [J]. J. Vac. Sci. Technol., B 2004,22:2299-2302.
    [255]OKADA, K., KOTANI, A. Multiplet splitting in Ni2P x-ray photoemission spectra of Ni dihalides [J]. J. Phys. Soc. Jpn.1991,60:772-775.
    [256]GEANEY, H., DICKINSON, C., O'DWYER, C., et al. Growth of crystalline copper silicide nanowires in high yield within a high boiling point solvent system [J]. Chem. Mater. 2012,24:4319-4325.
    [257]TUAN, H. Y., LEE, D. C, HANRATH, T., et al. Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents [J]. Nano Lett.2005,5:681-684.
    [258]YUAN, C. L. Room-temperature coercivity of Ni/NiO core/shell nanoparticles fabricated by pulsed laser deposition [J]. J. Phys. Chem. C 2010,114:2124-2126.
    [259]FRIEBE, L., LIU, K., OBERMEIER, B., et al. Pyrolysis of polycarbosilanes with pendant nickel clusters:Synthesis and characterization of magnetic ceramics containing nickel and nickel silicide nanoparticles [J]. Chem. Mater.2007,19:2630-2640.
    [260]SING, K. S. W., EVERETT, D. H., HAUL, R. A. W., et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984) [J]. Pure Appl. Chem.1985,57:603-619.
    [261]CHEN, X., LI, M., GUAN, J. C., et al. Nickel-silicon intermetallics with enhanced selectivity in hydrogenation reactions of cinnamaldehyde and phenylacetylene [J]. Ind. Eng. Chem. Res. 2012,51:3604-3611.
    [262]KIM, C. J., KANG, K., WOO, Y. S., et al. Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties [J]. Adv. Mater.2007,19:3637-+.
    [263]AGNELLI, M., SWAAN, H. M., MARQUEZ-ALVAREZ, C., et al. CO hydrogenation on a nickel catalyst-ii. A mechanistic study by transient kinetics and infrared spectroscopy [J]. J. Catal. 1998,175:117-128.
    [264]FRETY, R., TOURNAYAN, L., PRIMET, M., et al. Influence of the reduction temperature on the properties of silica-supported nickel-catalysts [J]. J. Chem. Soc., Faraday Trans.1993,89:3313-3318.
    [265]UECKERT, T., LAMBER, R., JAEGER, N. I., et al. Strong metal support interactions in a Ni/SiO2 catalyst prepared via sol-gel synthesis [J]. Appl. Catal., A 1997,155:75-85.
    [266]PRALIAUD, H., PRIMET, M., MARTIN, G. A. Influence of sodium-ion addition on the physicochemical and catalytic properties of Ni SiO-comparison with potassium-ion [J]. Bull. Soc. Chim. Fr.1986:719-725.
    [267]CHIN, S. Y., WILLIAMS, C. T., AMIRIDIS, M. D. Ftir studies of co adsorption on Al2O3- and SiO2-supported ru catalysts [J]. J. Phys. Chem. B 2006,110:871-882.
    [268]DERROUICHE, S., BIANCHI, D. Heats of adsorption of the linear and bridged CO species on a Ni/Al2O3 catalyst by using the aeir method [J]. Appl. Catal., A 2006,313:208-217.
    [269]HU, C. W., CHEN, Y. Q., LI, P., et al. Temperature-programmed FT-IR study of the adsorption of CO and coadsorption of CO and H2 on Ni/Al2O3 [J]. J. Mol. Catal. A:Chem.1996,110:163-169.
    [270]HUSSAIN, S. T., NADEEM, M. A., MAZHAR, M., et al. Combined ftir and temperature programmed fischer-tropsch synthesis over Ru/SiO2 and Ru-Ag/SiO2 supported catalysts [J]. Bull. Korean Chem. Soc.2007,28:529-532.
    [271]KESTER, K. B., FALCONER, J. L. Co methanation on low-weight loading Ni/Al2O3-multiple reaction sites [J]. J. Catal.1984,89:380-391.
    [272]ZHAO, A. M., YING, W. Y., ZHANG, H. T., et al. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation [J]. Catal. Commun.2012,17:34-38.
    [273]MILLS, G. A., STEFFGEN, F. W. Catalytic methanation [J]. Catalysis Reviews 1974,8:159-210.
    [274]HELVEG, S., LOPEZ-CARTES, C., SEHESTED, J., et al. Atomic-scale imaging of carbon nanofibre growth [J]. Nature 2004,427:426-429.
    [275]LU, J. L., FU, B. S., KUNG, M. C., et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition [J]. Science 2012,335:1205-1208.
    [276]LI, C., STAIR, P. C. Ultraviolet raman spectroscopy characterization of coke formation in zeolites [J]. Catal. Today 1997,33:353-360.
    [277]CHUA, Y. T., STAIR, P. C. An ultraviolet raman spectroscopic study of coke formation in methanol to hydrocarbons conversion over zeolite h-MFI [J]. J. Catal.2003,213:39-46.
    [278]ESPINAT, D., DEXPERT, H., FREUND, E., et al. Characterization of the coke formed on reforming catalysts by laser raman-spectroscopy [J]. Appl. Catal.1985,16:343-354.
    [279]SHAO, L. D., ZHANG, W., ARMBRUSTER, M., et al. Nanosizing intermetallic compounds onto carbon nanotubes:Active and selective hydrogenation catalysts [J]. Angew. Chem. Int. Ed. 2011,50:10231-10235.
    [280]LI, L. D., ZHANG, B. S., KUNKES, E., et al. Ga-Pd/Ga2O3 catalysts:The role of gallia polymorphs, intermetallic compounds, and pretreatment conditions on selectivity and stability in different reactions [J]. Chemcatchem 2012,4:1764-1775.
    [281]JIA, C. M., GAO, J. J., LI, J., et al. Nickel catalysts supported on calcium titanate for enhanced co methanation [J]. Catal. Sci. Technol.2013,3:490-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700