介孔高温煤气脱硫剂的研制与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们对金属氧化物作为高温煤气脱硫剂进行了深入的研究。为了解决金属氧化物的烧结、利用率低和粉化等技术难题,我们制备了高比表面积的介孔金属氧化物脱硫剂,并且研究了它们的高温煤气脱硫性能和稳定再生性能。
     采用湿法浸渍方法制备了不同Cu/Mn原子比例的Cu_xMn_y/SBA-15脱硫剂,并且在700-850℃的温度区间内测试了它们的脱硫性能。800℃条件下的Cu_1Mn_9/SBA-15的穿透(有效)硫容为13.8g单质硫/100g脱硫剂,其穿透硫容显著高于40wt%LaFeO_3/SBA-15和50wt%LaFe_2O_x/MCM-41在500-550℃条件下的穿透硫容(前者为4.8g-单质硫/100g-脱硫剂,后者为5.58g-单质硫/100g-脱硫剂)。这表明,湿法浸渍法制备的负载于SBA-15的Cu/Mn氧化物脱硫剂具有高热稳定性,其脱硫性能也大幅度提高。一定比例的氧化铜的掺杂保证了氧化锰具有较高的分散性,九次连续的800℃脱硫-再生循环性能测试显示,Cu_1Mn_9/SBA-15具有稳定的可再生性能。反应-再生前后样品的BET、HRTEM和SAXRD表征结果证实,使用前后脱硫剂的介孔结构依然紧致有序。
     为了提高脱硫剂在多次脱硫-再生循环的稳定性能,具有三维孔道结构的KIT-6被用于脱硫剂载体。我们采用湿法浸渍方法制备了不同La/Mn原子比例的La_xMn_y/KIT-6脱硫剂,并且在700-850℃温度区间内测试了它们的脱硫性能。800℃条件下La_3Mn_(97)/KIT-6脱硫性能最好,其穿透硫容为11.56g单质硫/100g脱硫剂。八次连续脱硫(800℃)-再生(600℃)循环测试结果表明,La_3Mn_(97)/KIT-6脱硫剂显示了良好的稳定再生性能,并且保持了80%的初始硫容。采用BET、XRD、HRTEM和H_2-TPR等多种手段对使用前后的脱硫剂进行了表征。新鲜样品和使用后样品的XRD谱图和HRTEM图像结果显示,采用KIT-6作为载体有效地抑制了Mn_2O_3的聚集,从而大幅度提高了其稳定再生性能。
     我们应用软模板法制备介孔无负载纯金属氧化物脱硫剂的探索性工作,考察了脱硫剂的脱硫活性,并且采用了BET及XRD等技术对其脱硫剂进行表征。
In recent years, metal oxides as desulfurizer for hot coal gas desulfurization havebeen in depth studied. To solve these technical problems, such as sintering,lowutlization and pulverization, mesoporous metal oxides with large surface area wereprepared and the performance for hot coal gas desulfurization was investigated.
     A series of mesoporous Cu_xMn_y/SBA-15sorbents with different Cu/Mn atomicratios were prepared by wet impregnation method and their desulfurizationperformance in hot coal gas was investigated in the temperature range of700-850℃.The breakthrough sulfur capacity of Cu_1Mn_9/SBA-15observed at800°C is13.8gS/100g sorbents, which is remarkably higher than these of40wt%LaFeO3/SBA-15(4.8g S/100g sorbents) and50wt%LaFe_2O_x/MCM-41(5.58g S/100g sorbents) usedat500-550°C. This suggested that the loading of Mn_2O_3active species with highthermal stability to SBA-15support significantly increased sulfur capacity atrelatively higher sulfidation temperature. The successive ninedesulfurization-regeneration cycles at800°C revealed that Cu_1Mn_9/SBA-15presentedhigh performance with endurable regeneration ability due to the high dispersion ofMn_2O_3particles incorporated with a certain amount of copper oxides. The fresh andused Cu_xMn_y/SBA-15sorbents were characterized by means of BET, XRD, andHRTEM techniques, confirmed that the structure of the sorbents remained intactbefore and after hot coal gas desulfurization.
     To enhance the stability of sorbent during continuous desulfurization-regenerationcycles, KIT-6with3-D pore channels was applied as support for desulfurizers. Aseries of mesoporous La_xMn_y/KIT-6sorbents with different La/Mn atomic ratio werefabricated by wet impregnation method and their desulfurization properties for hotcoal gas desulfurization were investigated in the temperature range of700-850℃.La_3Mn_(97)/KIT-6performed the best at800℃with breakthrough sulfur capacity of11.56g sulfur/100g sorbent. The successive eight desulfurization (800℃)-regeneration (600℃) cycles revealed that La_3Mn_(97)/KIT-6performed well withendurable regeneration ability, which obtained80%of its initial sulfur capacity. Thefresh and used La_xMn_y/KIT-6sorbents were characterized by means of BET, XRD,HRTEM and H_2-TPR techniques. The XRD patterns and HRTEM images of fresh andused La_3Mn_(97)/KIT-6confirmed that the utilization of KIT-6suppressed the aggregation of Mn_2O_3particles effectively and improved the stability of sorbent.
     Some attempts were tried to fabricate mesoporous metal oxides by usingsoft-template method. The performance of sorbents was investigated and the sorbentwas characterized by means of BET and XRD techniques.
引文
[1] Su S., Li B., Cui S., Tao S., Sulfur dioxide emissions from combustion in China:from1990to2007, Environ. Sci. Technol.,2011,45(19):8403-8410.
    [2] Srivastava R. K., Jozewicz W., Flue gas desulfurization: The state of the art, J. AirWaste Manage. Assoc.,(2001),51(12):1676-1688.
    [3]许士森,张东亮,任永强,大规模煤气化技术,化学工业出版社,2007,68~87.
    [4] Ordorica-Garcia G., Douglas P., Croiset E., et al., Technoeconomic evaluation ofIGCC power plants for CO2avoidance, Energy Convers. Manage.,2006,47(15–16):2250-2259.
    [5] Jiang L., Lin R., Jin H., et al., Study on thermodynamic characteristic andoptimization of steam cycle system in IGCC, Energy Convers. Manage.,2002,43(9–12):1339-1348.
    [6] Cheah S., Carpenter D.L., Magrini-Bair K.A., Review of mid-to high-temperaturesulfur sorbents for desulfurization of biomass-and coal-derived syngas, EnergyFuels,2009,23(11):5291-5307.
    [7] Westmoreland P.R., Harrison D.P., Evaluation of candidate solids forhigh-temperature desulfurization of low-btu gases, Environ. Sci. Technol.,(1976),10(7):659-661.
    [8] Westmoreland P.R., Gibson J.B., Harrison D.P., Comparative kinetics ofhigh-temperature reaction between hydrogen sulfide and selected metal oxides,Environ. Sci. Technol.,1977,11(5):488-491.
    [9] Fenouil L.A., Lynn S., Study of calcium-based sorbents for high-temperature H2Sremoval.2. Kinetics of H2S sorption by calcined limestone, Ind. Eng. Chem. Res.,1995,34(7):2334-2342.
    [10] De Diego L.F., Abad A., García-Labiano F., et al., Simultaneous calcination andsulfidation of calcium-based sorbents, Ind. Eng. Chem. Res.,2004,43(13):3261-3269.
    [11] Al-Shawabkeh A., Matsuda H., Hasatani M., Dry, high-temperature de-SO2andde-H2S via treated calcium-based materials, Energy Convers. Manage.,1997,38(10-13):1389-1397.
    [12] Akiti T.T., Constant K.P., Doraiswamy L.K., et al., A regenerable calcium-basedcore-in-shell sorbent for desulfurizing hot coal gas, Ind. Eng. Chem. Res.,2002,41(3):587-597.
    [13] Ben-Slimane R., Hepworth M.T., Desulfurization of hot coal-derived fuel gaseswith manganese-based regenerable sorbents.1. Loading (sulfidation) tests,Energy Fuels,1994,8(6):1175-1183.
    [14] Ben-Slimane R., Hepworth M.T., Desulfurization of hot coal-derived fuel gaseswith manganese-based regenerable sorbents.2. Regeneration and multicycle tests,Energy Fuels,1994,8(6):1184-1191.
    [15] Ben-Slimane R., Hepworth M.T., Desulfurization of hot coal-derived fuel gaseswith manganese-based regenerable sorbents.3. Fixed-bed testing, Energy Fuels,1995,9(2):372-378.
    [16] Alonso L., Palacios J.M., Performance and recovering of a Zn-doped manganeseoxides as a regenerable sorbent for hot coal gas desulfurization, Energy Fuels,2002,16(6):1550-1556.
    [17] Atakül H., Wakker J.P., Gerritsen A.W., et al., Removal of H2S from fuel gases athigh temperatures using MnO/γ-Al2O3, Fuel,1995,74(2):187-191.
    [18] Zhang J., Wang Y., Ma R., Wu D., A study on regeneration of Mn–Fe–Zn–Osupported upon γ-Al2O3sorbents for hot gas desulfurization, Fuel ProcessTechnol.,(2003),84(1-3):217-227.
    [19] Karayilan D., Dogu T., Yasyerli S., et al., Mn Cu and Mn Cu V mixed-oxideregenerable sorbents for hot gas desulfurization, Ind. Eng. Chem. Res.,2005,44(14):5221-5226.
    [20] Alonso L, Palacios J.M., Garc a E., et al., Characterization of Mn and Cu oxidesas regenerable sorbents for hot coal gas desulfurization, Fuel Process Technol.,2000,62(1):31-44.
    [21] García E., Palacios J.M., Alonso L., et al., Performance of Mn and Cu mixedoxides as regenerable sorbents for hot coal gas desulfurization, Energy Fuels,2000,14(6):1296-1303.
    [22] Reeve L., Desulfurization of coke-oven gas at Appleby-Frodingham, J Inst Fuel,1958,31:319-324.
    [23] Tamhankar S.S., Hasatani M., Wen C.Y., Kinetic studies on the reactionsinvolved in the hot gas desulfurization using a regenerable iron oxide sorbent-I:Reduction and sulfidation of iron oxide, Chem. Eng. Sci.,1981,36(7):1181-1191.
    [24] Tseng S.C., Tamhankar S.S., Wen C.Y., Kinetic studies on the reactions involvedin the hot gas desulfurization using a regenerable iron oxide sorbent-II. Reactionsof iron sulfide with oxygen and sulfur dioxide, Chem. Eng. Sci.,1981,36(8):1287-1294.
    [25] Tamhankar S.S., Garimella S., Wen C.Y., Kinetic study on the reactions involvedin hot gas desulfurization using a regenerable iron oxide sorbent-III. Reactions ofthe sulfided sorbent with steam and steam-air mixtures, Chem. Eng. Sci.,1985,40(6):1019-1025.
    [26] Sasaoka E., Sakamoto M., Ichio T., et al., Reactivity and durability of iron oxidehigh temperature desulfurization sorbents, Energy Fuels,1993,7(5):632-638.
    [27] Fan H.L., Li C.H., Testing of iron oxide sorbent for high-temperature coal gasdesulfurization, Energy Sources,2005,27(3):245-250.
    [28] Shirai H., Nunokawa M., Characteristics of H2S removal of mixed-oxidesorbents containing Fe and Zn at high temperatures, Nihon EnerugiGakkaishi/Journal of the Japan Institute of Energy,1998,77(11):1100-1110.
    [29] Shirai H., Nunokawa M., Reduction of Fe2O3–SiO2particle in air blown coalgasification gas, Kagaku Kogaku Ronbunshu,1999,25:714–720.
    [30] Tsukada M., Abe K., Yonemochi Y., et al., Dry gas cleaning in coal gasificationsystems for fuel cells using composite sorbents, Powder Technol.,2008,180(1-2):232-238.
    [31] Wang X., Jia J., Zhao L., et al., Mesoporous SBA-15supported iron oxide: Apotent catalyst for hydrogen sulfide removal, Air, Soil Pollut.,2008,193(1):247-257.
    [32] Xie W., Chang L., Wang D., et al., Removal of sulfur at high temperatures usingiron-based sorbents supported on fine coal ash, Fuel,2010,89(4):868-873.
    [33] Zeng Y., Zhang S., Groves F.R., et al., High temperature gas desulfurization withelemental sulfur production, Chem. Eng. Sci.,1999,54(15-16):3007-3017.
    [34] Zhou G., Shah P.R., Montini T., et al., Oxidation enthalpies for reduction of ceriasurfaces, Surf. Sci.,2007,601(12):2512-2519.
    [35] Zinkevich M., Djurovic D., Aldinger F., Thermodynamic modelling of thecerium-oxygen system, Solid State Ionics,2006,177(11-12):989-1001.
    [36] Kim T., Vohs J.M., Gorte R.J, Thermodynamic investigation of the redoxproperties of ceria-zirconia solid solutions, Ind. Eng. Chem. Res.,2005,45(16):5561-5565.
    [37] Xiao W., Guo Q., Wang E.G., Transformation of CeO2(111) to Ce2O3(0001)films, Chem. Phys. Lett.,2003,368(5-6):527-531.
    [38] Huang S., Li L., Van der Biest O., et al., Influence of the oxygen partial pressureon the reduction of CeO2and CeO2-ZrO2ceramics, Solid State Sci.,2005,7(5):539-544.
    [39] Wheelock K.S., Aldridge C.L., Sulfide Removal Process, U.S. Patent,3974256,Aug.10,1976.
    [40] Zeng Y., Zhang S., Groves F.R., et al., High temperature gas desulfurization withelemental sulfur production, Chem. Eng. Sci.,1999,54(15-16):3007-3017.
    [41] Kobayashi M., Flytzani-Stephanopoulos M., Reduction and sulfidation kineticsof cerium oxide and Cu-modified cerium oxide, Ind. Eng. Chem. Res.,2002,41(13):3115-3123.
    [42] Wang Z., Flytzani-Stephanopoulos M., Cerium oxide-based sorbents forregenerative hot reformate gas desulfurization, Energy Fuels,2005,19(5):2089-2097.
    [43] Flytzani-Stephanopoulos M., Sakbodin M., Wang Z., Regenerative adsorptionand removal of H2S from hot fuel gas streams by rare earth oxides, Science,2006,312(5779):1508-1510.
    [44] Yi K.B., Podlaha E.J., Harrison D.P., Ceria-zirconia high-temperaturedesulfurization sorbents, Ind. Eng. Chem. Res.,2005,44(18):7086-7091.
    [45] Yasyerli S., Cerium-manganese mixed oxides for high temperature H2S removaland activity comparisons with V-Mn, Zn-Mn, Fe-Mn sorbents, Chem. Eng.Process.,2008,47(4):577-584.
    [46] Mojtahedi W., Abbasian J., H2S removal from coal gas at elevated temperatureand pressure in fluidized bed with zinc titanate sorbents.1. Cyclic Tests, EnergyFuels,1995,9(3):429-434.
    [47] Siriwardane R.V., Woodruff S., FTIR characterization of the interaction ofoxygen with zinc sulfide, Ind. Eng. Chem. Res.,1995,34(2):699-702.
    [48] Siriwardane R.V., Woodruff S., In situ fourier transform infrared characterizationof sulfur species resulting from the reaction of water vapor and oxygen with zincsulfide, Ind. Eng. Chem. Res.,1997,36(12):5277-5281.
    [49] Sasaoka E., Hirano S., Kasaoka S., et al., Stability of zinc oxide high-temperaturedesulfurization sorbents for reduction, Energy Fuels,1994,8(3):763-769.
    [50] Baird T., Denny P.J., Hoyle R., et al., Modified zinc oxide absorbents forlow-temperature gas desulfurisation, J. Chem. Soc., Faraday Trans.,1992,88(22):3375-3382.
    [51] Bu X., Ying Y., Ji X., et al., New development of zinc-based sorbents for hot gasdesulfurization, Fuel Process. Technol.,2007,88(2):143-147.
    [52] Bu X., Ying Y., Zhang C., et al., Research improvement in Zn-based sorbent forhot gas desulfurization, Powder Technol.,2008,180(1-2):253-258.
    [53] Sánchez-Hervás J.M., Otero J., Ruiz E., A study on sulphidation and regenerationof Z-Sorb III sorbent for H2S removal from simulated ELCOGAS IGCC syngas,Chem. Eng. Sci.,2005,60(11):2977-2989.
    [54] Ya yerli S., Ar I., Do u G., et al., Removal of hydrogen sulfide by clinoptilolitein a fixed bed adsorber, Chem. Eng. Process.,2002,41(9):785-792.
    [55] Atimtay A.T., Gasper-Galvin L.D., Poston J.A., Novel supported sorbent for hotgas desulfurization, Environ. Sci. Technol.,1993,27(7):1295-1303.
    [56] Qiu B., Han L., Wang J., et al., Preparation of sorbents loaded on activatedcarbon to remove H2S from hot coal gas by supercritical water impregnation,Energy Fuels,2011,25(2):591-595.
    [57] Lew S., Sarofim A.F., Flytzani-Stephanopoulos M., The reduction of zinc titanateand zinc oxide solids, Chem. Eng. Sci.,1992,47(6):1421-1431.
    [58] Ko T.H., Chu H., Chaung L.K., The sorption of hydrogen sulfide from hot syngasby metal oxides over supports, Chemosphere,2005,58(4):467-474.
    [59] Wang D., Yu J., Chang L., et al., Effects of addition of Mo on the sulfidationproperties of Fe-based sorbents supported on fly ash during hot coal gasdesulfurization, Chem. Eng. J.,2011,166(1):362-367.
    [60] Ko T.H., Chu H., Liou Y.J., A study of Zn–Mn based sorbent for thehigh-temperature removal of H2S from coal-derived gas, J. Hazard. Mater.,2007,147(1-2):334-341.
    [61] Liu B.S., Rui G., Chang R.Z., et al., Dehydrogenation of ethylbenzene to styreneover LaVOx/SBA-15catalysts in the presence of carbon dioxide, Appl. Catal., A,2008,335(1):88-94.
    [62] Liu B.S., Xu D.F., Chu J.X., et al., Deep desulfurization by the adsorptionprocess of fluidized catalytic cracking (FCC) diesel over mesoporousAl-MCM-41materials, Energy Fuels,2006,21(1):250-255.
    [63] Subhan F., Liu B.S., Acidic sites and deep desulfurization performance of nickelsupported mesoporous AlMCM-41sorbents, Chem. Eng. J.,2011,178:69-77.
    [64] Kresge C.T., Leonowicz M.E., Roth W.J., et al., Ordered mesoporous molecularsieves synthesized by a liquid-crystal template mechanism, Nature,1992,359(6397):710-712.
    [65] Beck J.S., Vartuli J.C., Roth W.J., et al., A new family of mesoporous molecularsieves prepared with liquid crystal templates, J. Am. Chem. Soc.,1992,114(27):10834-10843.
    [66] Palmqvist A.E.C., Synthesis of ordered mesoporous materials using surfactantliquid crystals or micellar solutions, Curr. Opin. Colloid Interface Sci.,2003,8(2):145-155.
    [67] Stucky G.D., Zhao D., Yang P., et al., Using the organic-inorganic interface todefine pore and macroscale structure, Stud. Surf. Sci. Catal.,1998,117:1-12.
    [68] Patarin J., Lebeau B., Zana R., Recent advances in the formation mechanisms oforganized mesoporous materials, Curr. Opin. Colloid Interface Sci.,2002,7(1-2):107-115.
    [69] Soler-Illia G.J.D., Sanchez C., Lebeau B., et al., Chemical strategies to designtextured materials: From microporous and mesoporous oxides to nanonetworksand hierarchical structures, Chem. Rev.,2002,102(11):4093-4138.
    [70] Linssen T., Cassiers K., Cool P., et al., Mesoporous templated silicates: Anoverview of their synthesis, catalytic activation and evaluation of the stability,Adv. Colloid Interface Sci.,2003,103(2):121-147.
    [71] Carp O., Huisman C.L., Reller A., Photoinduced reactivity of titanium dioxide,Prog. Solid State Chem.,2004,32(1-2):33-177.
    [72] Ribbens S., Meynen V., Tendeloo G.V., et al., Development of photocatalyticefficient Ti-based nanotubes and nanoribbons by conventional and microwaveassisted synthesis strategies, Microporous Mesoporous Mater.,2008,114(1-3):401-409.
    [73] Hwang Y.K., Chang J.S., Kwon Y.U., et al., Microwave synthesis of cubicmesoporous silica SBA-16, Microporous Mesoporous Mater.,2004,68(1-3):21-27.
    [74] Newalkar B.L., Komarneni S., Katsuki H., Rapid synthesis of mesoporousSBA-15molecular sieve by a microwave-hydrothermal process, Chem.Commun.,2000,(23):2389-2390.
    [75] Celer E.B., Jaroniec M., Temperature-programmed microwave-assisted synthesisof SBA-15ordered mesoporous silica, J. Am. Chem. Soc.,2006,128(44):14408-14414.
    [76] Newalkar B.L., Komarneni S., Simplified synthesis of micropore-freemesoporous silica, SBA-15, under microwave-hydrothermal conditions, Chem.Commun.,2002,(16):1774-1775.
    [77] Yanagisawa T., Shimizu T., Kuroda K., et al., The preparation ofalkyltrimethylammonium-kanemite complexes and their conversion tomicroporous materials, Bull. Chem. Soc. Jpn.,1990,63(4):988-992.
    [78] Selvam P., Bhatia S.K., Sonwane C.G., Recent advances in processing andcharacterization of periodic mesoporous MCM-41silicate molecular sieves, Ind.Eng. Chem. Res.,2001,40(15):3237-3261.
    [79] Thomas J.M., Design, synthesis, and in situ characterization of new solidcatalysts, Angew. Chem. Int. Ed.,1999,38(24):3588-3628.
    [80] He X.G., Jin H.Y., Ma J.P., Radiative decay of Y into a scalar glueball, Phys. Rev.D: Part. Fields,2002,66(7).
    [81] Wei M., Konishi Y., Zhou H., et al., Formation of nanotubes TiO2from layeredtitanate particles by a soft chemical process, Solid State Commun.,2005,133(8):493-497.
    [82] Huang D., Luo G.S., Wang Y.J., Using phosphoric acid as a catalyst to control thestructures of mesoporous titanium dioxide materials, Microporous MesoporousMater.,2005,84(1-3):27-33.
    [83] Collart O., Cool P., Van Der Voort P., et al., Aluminum incorporation intoMCM-48toward the creation of br nsted acidity, J. Phys. Chem. B,2004,108(37):13905-13912.
    [84] Meziani M.J., Zajac J., Jones D.J., et al., Number and strength of surface acidicsites on porous aluminosilicates of the MCM-41type inferred from a combinedmicrocalorimetric and adsorption study, Langmuir,2000,16(5):2262-2268.
    [85] Meziani M.J., Zajac J., Douillard J.M., et al., Evaluation of surface enthalpy ofporous aluminosilicates of the MCM-41type using immersional calorimetry:Effect of the pore size and framework Si:Al ratio, J. Colloid Interface Sci.,2001,233(2):219-226.
    [86] ye G., Axelrod E., Feldman Y., et al., Dielectric properties and Fouriertransform IR analysis of MCM-48, Al-MCM-48and Ti-MCM-48mesoporousmaterials, Colloid. Polym. Sci.,2000,278(6):517-523.
    [87] ye G., Sj blom J., St cker M., Synthesis and characterization of the titaniumcontaining mesoporous molecular sieve MCM-48, J. Dispersion Sci. Technol.,2000,21(1):49-63.
    [88] Ciesla U., Schüth F., Ordered mesoporous materials, Microporous MesoporousMater.,1999,27(2-3):131-149.
    [89] Van Der Voort P., Mathieu M., Mees F., et al., Synthesis of high-quality MCM-48and MCM-41by means of the GEMINI surfactant method, J. Phys. Chem. B,1998,102(44):8847-8851.
    [90] Collart O., Van Der Voort P., Vansant E.F., et al., A high-yield reproduciblesynthesis of MCM-48starting from fumed silica, J. Phys. Chem. B,2001,105(51):12771-12777.
    [91] Benjelloun M., Van Der Voort P., Cool P., et al., Reproducible synthesis of highquality MCM-48by extraction and recuperation of the gemini surfactant, PCCP,2001,3(1):127-131.
    [92] Huo Q., Margolese D.I., Stucky G.D., Surfactant control of phases in thesynthesis of mesoporous silica-based materials, Chem. Mater.,1996,8(5):1147-1160.
    [93] Zhang J., Luz Z., Goldfarb D., EPR studies of the formation mechanism of themesoporous materials MCM-41and MCM-50, J. Phys. Chem. B,1997,101(36):7087-7094.
    [94] Silvestre-Albero J., Sepúlveda-Escribano A., Reinoso F.R., Preparation andcharacterization of zinc containing MCM-41spheres, Microporous MesoporousMater.,2008,113(1-3):362-369.
    [95] Silvestre-Albero J., Serrano-Ruiz J.C., Sepúlveda-Escribano A., et al.,Zn-modified MCM-41as support for Pt catalysts, Appl. Catal., A,2008,35(1):16-23.
    [96] Cassiers K., Linssen T., Mathieu M., et al., A detailed study of thermal,hydrothermal, and mechanical stabilities of a wide range of surfactant assembledmesoporous silicas, Chem. Mater.,2002,14(5):2317-2324.
    [97] Kim J.M., Jun S., Ryoo R., Improvement of hydrothermal stability ofmesoporous silica using salts: Reinvestigation for time-dependent effects, J. Phys.Chem. B,1999,103(30):6200-6205.
    [98] Kim J.M., Kwak J.H., Jun S., et al., Ion exchange and thermal stability ofMCM-41, J. Phys. Chem.,1995,99(45):16742-16747.
    [99] Koyano K.A., Tatsumi T., Tanaka Y., et al., Stabilization of mesoporousmolecular sieves by trimethylsilylation, J. Phys. Chem. B,1997,101(46):9436-9440.
    [100] Ozaydin Z., Yasyerli S., Dogu G., Synthesis and activity comparison ofcopper-incorporated MCM-41-type sorbents prepared by one-pot andimpregnation procedures for H2S removal, Ind. Eng. Chem. Res.,2008,47(4):1035-1042.
    [101] Karvan O., Sirkecio lu A., Atakül H., Investigation of nano-CuO/mesoporousSiO2materials as hot gas desulphurization sorbents, Fuel Process Technol.,2009,90(12):1452-1458.
    [102] Liu B.S., Wan Z.Y., Zhan Y.P., et al., Desulfurization of hot coal gas overhigh-surface-area LaMeOx/MCM-41sorbents, Fuel,2012,98(0):95-102.
    [103] Wan Z.Y., Liu B.S., Zhang F.M., et al., Characterization and performance ofLaxFeyOz/MCM-41sorbents during hot coal gas desulfurization, Chem. Eng. J.,2011,171(2):594-602.
    [104] Vartuli J.C., Schmitt K.D., Kresge C.T., et al., Effect of surfactant/silica molarratios on the formation of mesoporous molecular sieves: Inorganic mimicry ofsurfactant liquid-crystal phases and mechanistic implications, Chem. Mater.,1994,6(12):2317-2326.
    [105] Monnier A., Schuth F., Huo Q., et al., Cooperative formation ofinorganic-organic interfaces in the synthesis of silicate mesostructures, Science,1993,261(5126):1299-1303.
    [106] ye G., Sj blom J., St cker M., Synthesis, characterization and potentialapplications of new materials in the mesoporous range, Adv. Colloid InterfaceSci.,2001,89-90:439-466
    [107] Zhao D., Huo Q., Feng J., et al., Nonionic triblock and star diblock copolymerand oligomeric sufactant syntheses of highly ordered, hydrothermally stable,mesoporous silica structures, J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [108] Zhao D., Feng J., Huo Q., et al., Triblock copolymer syntheses of mesoporoussilica with periodic50to300angstrom pores, Science,1998,279(5350):548-552.
    [109] Kao H.M., Wu J.D., Cheng C.C., et al., Direct synthesis of vinyl-functionalizedcubic mesoporous silica SBA-1, Microporous Mesoporous Mater.,2006,88(1-3):319-328.
    [110] Kim J.M., Stucky G.D., Synthesis of highly ordered mesoporous silica materialsusing sodium silicate and amphiphilic block copolymers, Chem. Commun.,2000,(13):1159-1160.
    [111] Kruk M., Jaroniec M., Ko C.H., et al., Characterization of the porous structureof SBA-15, Chem. Mater.,2000,12(7):1961-1968.
    [112] Nossov A., Haddad E., Guenneau F., et al., Characterization of the porosity inSBA-15silicas by hyperpolarized129Xe NMR, J. Phys. Chem. B,2003,107(45):12456-12460.
    [113] Miyazawa K., Inagaki S., Control of the microporosity within the pore walls ofordered mesoporous silica SBA-15, Chem. Commun.,2000,(21):2121-2122.
    [114] Galarneau A., Cambon H., Di Renzo F., et al., Microporosity and connectionsbetween pores in SBA-15mesostructured silicas as a function of the temperatureof synthesis, New J. Chem.,2003,27(1):73-79.
    [115] Ryoo R., Ko C.H., Kruk M., et al., Block-copolymer-templated orderedmesoporous silica: Array of uniform mesopores or mesopore-microporenetwork?, J. Phys. Chem. B,2000,104(48):11465-11471.
    [116] Kipkemboi P., Fogden A., Alfredsson V., et al., Triblock copolymers astemplates in mesoporous silica formation: Structural dependence on polymerchain length and synthesis temperature, Langmuir,2001,17(17):5398-5402.
    [117] Imperor-Clerc M., Davidson P., Davidson A., Existence of a microporouscorona around the mesopores of silica-based SBA-15materials templated bytriblock copolymers, J. Am. Chem. Soc.,2000,122(48):11925-11933.
    [118] Karvan O., Atakül H., Investigation of CuO/mesoporous SBA-15sorbents forhot gas desulfurization, Fuel Process Technol.,2008,89(9):908-915.
    [119] Liu B.S., Wei X.N., Zhan Y.P., et al., Preparation and desulfurizationperformance of LaMeOx/SBA-15for hot coal gas, Appl Catal B,2011,102(1-2):27-36.
    [120] Stevens W.J.J., Lebeau K., Mertens M., et al., Investigation of the morphologyof the mesoporous SBA-16and SBA-15materials, J. Phys. Chem. B,2006,110(18):9183-9187.
    [121] Li L., King D.L., Liu J., et al., Stabilization of metal nanoparticles in cubicmesostructured silica and its application in regenerable deep desulfurization ofwarm syngas, Chem. Mater.,2009,21(22):5358-5364.
    [122] Kleitz F., Hei Choi S., Ryoo R., Cubic Ia3d large mesoporous silica: synthesisand replication to platinum nanowires, carbon nanorods and carbon nanotubes,Chem. Commun.,2003,(17):2136.
    [123] Soni K., Rana B.S., Sinha A.K., et al.,3-D ordered mesoporous KIT-6supportfor effective hydrodesulfurization catalysts, Appl. Catal., B,2009,90(1-2):55-63.
    [124] Soni K., Mouli K.C., Dalai A.K., et al., Influence of frame connectivity ofSBA-15and KIT-6supported NiMo catalysts for hydrotreating of gas oil, Catal.Lett.,2010,136(1-2):116-125.
    [125] Liu B.S., Zhang Y., Liu J.F., et al., Characteristic and mechanism of methanedehydroaromatization over Zn-Based/HZSM-5catalysts under conditions ofatmospheric pressure and supersonic jet expansion, J. Phys. Chem. C,2011,115(34):16954-16962.
    [126] Dou Y.Q., Zhai Y., Zeng F., et al., Encapsulation of polyaniline in3-Dinterconnected mesopores of silica KIT-6, J. Colloid Interface Sci.,2010,341(2):353-358.
    [127] Tseng T.K., Chang H.C., Chu H., et al., Hydrogen sulfide removal from coal gasby the metal-ferrite sorbents made from the heavy metal wastewater sludge, J.Hazard. Mater.,2008,160(2-3):482-488.
    [128] Alonso L., Palacios J.M., A TEM and XRD study of the structural changesinvolved in manganese-based regenerable sorbents for hot coal gas desulfurization,Chem. Mater.,2001,14(1):225-231.
    [129] Ko T.H., Chu H., Chaung L.K., et al., High temperature removal of hydrogensulfide using an N-150sorbent, J. Hazard. Mater.,2004,114(1–3):145-152.
    [130] Yasyerli S., Dogu G., Ar I., et al., Activities of copper oxide and Cu V andCu Mo mixed oxides for H2S removal in the presence and absence of hydrogenand predictions of a deactivation model, Ind. Eng. Chem. Res.,2001,40(23):5206-5214.
    [131] Li Z., Flytzani-Stephanopoulos M., Cu Cr O and Cu Ce O regenerable oxidedorbents for hot gas desulfurization, Ind. Eng. Chem. Res.,1997,36(1):187-196.
    [132] Gasper-Galvin L.D., Atimtay A.T., Gupta R.P., Zeolite-supported metal oxidesorbents for hot-gas desulfurization, Ind. Eng. Chem. Res.,1998,37(10):4157-4166.
    [133] Lew S., Sarofim A.F., Flytzani-Stephanopoulos M., Sulfidation of zinc titanateand zinc oxide solids, Ind. Eng. Chem. Res.,1992,31(8):1890-1899.
    [134] Tang Q., Hu S., Chen Y., et al., Highly dispersed manganese oxide catalystsgrafted on SBA-15: Synthesis, characterization and catalytic application intrans-stilbene epoxidation, Microporous Mesoporous Mater.,2010,132(3):501-509.
    [135] Han Y.F., Chen F., Ramesh K., et al., Preparation of nanosized Mn3O4/SBA-15catalyst for complete oxidation of low concentration EtOH in aqueous solutionwith H2O2, Appl. Catal., B,2007,76(3-4):227-234.
    [136] Han Y.F., Chen F., Zhong Z., et al., Controlled synthesis, characterization, andcatalytic properties of Mn2O3and Mn3O4nanoparticles supported on mesoporoussilica SBA-15, J. Phys. Chem. B,2006,110(48):24450-24456.
    [137] Polychronopoulou K., Cabello G.F., López G.M., et al., Novel Fe–Mn–Zn–Ti–Omixed-metal oxides for the low-temperature removal of H2S from gas streams inthe presence of H2, CO2, and H2O, J. Catal.,2005,236(2):205-220.
    [138] Dhage P., Samokhvalov A., Repala D., et al., Regenerable Fe-Mn-ZnO/SiO2sorbents for room temperature removal of H2S from fuel reformates:performance, active sites, Operando studies, PCCP,2011,13(6):2179-2187.
    [139] Zhang Y., Zhang Z., Wang S., et al., Synthesis and characterization of α-MnSpolyhedrons and spheres, Mater. Chem. Phys.,2006,97(2-3):365-370.
    [140] Wagner C.D., Riggs W.M., Davis L.E., et al., Handbook of X-ray photoelectronspectroscopy, Eden Prairie: Perkin-Elmer, MN,1992.
    [141] Dake L.S., King D.E., Czanderna A.W., Ion scattering and X-ray photoelectronspectroscopy of copper overlayers vacuum deposited onto mercaptohexadecanoicacid self-assembled monolayers, Solid State Sci.,2000,2(8):781-789.
    [142] Li S., Wang H., Xu W., et al., Synthesis and assembly of monodispersespherical Cu2S nanocrystals, J. Colloid Interface Sci.,2009,330(2):483-487.
    [143] Mirji S.A., Halligudi S.B., Sawant D.P., et al., Adsorption of methanol onSi(100)/SiO2and mesoporous SBA-15, Colloids Surf., A,2006,287(1-3):51-58.
    [144] Svintsitskiy D.A., Stadnichenko A.I., Demidov D.V., et al., Investigation ofoxygen states and reactivities on a nanostructured cupric oxide surface, Appl.Surf. Sci.,2011,257(20):8542-8549.
    [145] Baythoun M.S.G., Sale F.R., Production of strontium-substituted lanthanummanganite perovskite powder by the amorphous citrate process, J. Mater. Sci.,1982,17(9):2757-2769.
    [146] Yue Z., Li L., Zhou J., et al., Preparation and characterization of NiCuZn ferritenanocrystalline powders by auto-combustion of nitrate-citrate gels, Mater. Sci.Eng., B,1999,64(1):68-72.
    [147] Azadmanjiri J., Preparation of Mn-Zn ferrite nanoparticles from chemicalsol-gel combustion method and the magnetic properties after sintering, J.Non-Cryst. Solids,2007,353(44-46):4170-4173.
    [148] Shobana M.K., Sankar S., Rajendran V, Structural and thermal studies ofNi0.25Mn0.75Fe2O4composites by sol-gel combustion method, J. Alloys Compd.,2009,472(1-2):421-424.
    [149] Bastanov S.S., Ryabinina O.I., Obzherina K.F., et al., On the chemical structureof manganese oxysulfides, Russ. Chem. Bull.,1968,17(1):6-11.
    [150] Dunn J.G., Muzenda C., Thermal oxidation of covellite (CuS), Thermochim.Acta,2001,369(1-2):117-123.
    [151] Karayilan D., Dogu T., Yasyerli S., et al., Mn-Cu and Mn-Cu-V mixed-oxideregenerable sorbents for hot gas desulfurization, Ind. Eng. Chem. Res.,2005,44(14):5221-5226.
    [152] Bakker W.J.W., Kapteijn F., Moulijn J.A., A high capacity manganese-basedsorbent for regenerative high temperature desulfurization with direct sulfurproduction: Conceptual process application to coal gas cleaning, Chem. Eng. J.,2003,96(1-3):223-235.
    [153] Okabe K., Murata K., Nakanishi M., et al., Fischer-Tropsch synthesis over Rucatalysts by using syngas derived from woody biomass, Catal. Lett.,2009,128(1):171-176.
    [154] Liu Y., Ye Q., Shen M., et al., Carbon dioxide capture by functionalized solidamine sorbents with simulated flue gas conditions, Environ. Sci. Technol.,2011,45(13):5710-5716.
    [155] Zhang F.M., Liu B.S., Zhang Y., Guo Y.H., Wan Z.Y., Subhan F., Highly stableand regenerable Mn-based/SBA-15sorbents for desulfurization of hot coal gas, J.Hazard. Mater.,2012,233-234:219-227.
    [156] Kleitz F., Bérubé F., Guillet-Nicolas R., et al., Probing adsorption, porecondensation, and hysteresis behavior of pure fluids in three-dimensional cubicmesoporous KIT-6silica, J. Phys. Chem. C,2010,114(20):9344-9355.
    [157] Zhang F., Yan, Yang H., et al., Understanding effect of wall structure on thehydrothermal stability of mesostructured silica SBA-15, J. Phys. Chem. B,2005,109(18):8723-8732.
    [158] Tian B., Liu X., Solovyov L.A., et al., Facile synthesis and characterization ofnovel mesoporous and mesorelief oxides with gyroidal structures, J. Am. Chem.Soc.,2003,126(3):865-875.
    [159] Arena F., Torre T., Raimondo C., et al., Structure and redox properties of bulkand supported manganese oxide catalysts, PCCP,2001,3(10):1911-1917.
    [160] Gac W., The influence of silver on the structural, redox and catalytic propertiesof the cryptomelane-type manganese oxides in the low-temperature CO oxidationreaction, Appl. Catal., B,2007,75(1-2):107-117.
    [161] Zhu J., Xiao D., Li J., et al., Perovskite-like mixed oxides (LaSrMn1xNixO4+δ,0≤x≤1) as catalyst for catalytic NO decomposition: TPD and TPR studies,Catal. Lett.,2009,129(1):240-246.
    [162] Tang X., Li J., Sun L., et al., Origination of N2O from NO reduction by NH3over β-MnO2and α-Mn2O3, Appl. Catal., B,2010,99(1-2):156-162.
    [163] Guo X., Xiao H.S., Wang F., et al., Micro-Raman and FTIR spectroscopicobservation on the phase transitions of MnSO4droplets and ionic interactionsbetween Mn2+and SO42, J. Phys. Chem. A,2010,114(23):6480-6486.
    [164] Julien C.M., Massot M., Poinsignon C., Lattice vibrations of manganese oxides:Part I. Periodic structures, Spectrochim. Acta, Part A,2004,60(3):689-700.
    [165] Subhan F., Liu B.S., Zhang Y., et al., High desulfurization characteristic oflanthanum loaded mesoporous MCM-41sorbents for diesel fuel, Fuel ProcessTechnol.,2012,97:71-78.
    [166] Selvaraj M., Kim B.H., Lee T.G., FTIR studies on selected mesoporousmetallosilicate molecular sieves, Chem. Lett.,2005,34(9):1290-1291.
    [167] Selvaraj M., Sinha P.K., Lee K., et al., Synthesis and characterization ofMn-MCM-41and Zr-Mn-MCM-41, Microporous Mesoporous Mater.,2005,78(2-3):139-149.
    [168] Park S.H., Kim B.H., Selvaraj M., et al., Synthesis and characterization ofmesoporous Ce-Mn-MCM-41molecular sieves, J. Ind. Eng. Chem.,2007,13(4):637-643.
    [169] Reddy S.M., Rao S.S., Venkanna N., Electrical and structural studies of pureand MnSO4doped poly (vinyl alcohol) polymer electrolyte films, Int. J. Chem.Anal. Sci.,2011,2(8):126-129.
    [170] Yang P., Zhao D., Margolese D.I, et al., Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks, Nature,1998,396(6707):152-155.
    [171] Lundberg M., Sk rman B., Cesar F., et al., Mesoporous thin films ofhigh-surface-area crystalline cerium dioxide, Microporous Mesoporous Mater.,2002,54(1-2):97-103.
    [172] Li X., Chen F., Lu X., et al., Modified-EISA synthesis of mesoporous highsurface area CeO2and catalytic property for CO oxidation, J. Rare Earths,2009,27(6):943-947.
    [173] Liu Y., Li Y., Wang Y., et al., Sonochemical synthesis and photocatalytic activityof meso-and macro-porous TiO2for oxidation of toluene, J. Hazard. Mater.,2008,150(1):153-157.
    [174] Chen L.F., Wang J.A., Nore a L.E., et al., Synthesis and physicochemicalproperties of Zr-MCM-41mesoporous molecular sieves andPt/H3PW12O40/Zr-MCM-41catalysts, J. Solid State Chem.,2007,180(10):2958-2972.
    [175] Lyons D.M., Ryan K.M., Morris M.A., Preparation of ordered mesoporous ceriawith enhanced thermal stability, J.Mater. Chem.,2002,12(4):1207-1212.
    [176] On D.T., Nguyen S.V., Kaliaguine S., New SO2resistant mesoporous La-Co-Zrmixed oxide catalysts for hydrocarbon oxidation, PCCP,2003,5(12):2724-2729.
    [177] Zou Z.Q., Meng M., Luo J.Y., et al., A novel mesoporous oxidation catalystLa-Co-Zr-O prepared by using nonionic and cationic surfactants as co-templates,J. Mol. Catal. A: Chem.,2006,249(1-2):240-245.
    [178] Zou Z.Q., Meng M., Zha Y.Q., The effect of dopant Cu, Fe, Ni or La on thestructures and properties of mesoporous Co-Ce-O compound catalysts, J. AlloysCompd.,2009,470(1-2):96-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700