戈登氏菌Gordonia sp.WQ-01对石油中二苯并噻吩(DBT)生物脱硫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室从大港油田污水中筛选分离出一株能够以DBT为硫源的专一性脱硫菌株WQ-01。色谱分析表明,WQ-01以“4S”途径脱除DBT中的硫,并且生成产物二羟基联苯(2-HBP)。由于WQ-01能够通过“4S”途径专一地作用于DBT的C-S键,而不影响C-C键,大大保留了石油燃料原有的燃烧值。
     通过形态特征和生理生化特征,并结合16SrRNA分析,从分子水平上确定该菌种为戈登氏菌,命名为Gordonia sp. WQ-01。
     为进一步提高WQ-01的脱硫能力,本课题使用了激光诱变育种技术。研究了不同照射功率、不同照射剂量对细胞的存活率和正突变率的影响。同时还以WQ-01与其激光诱变菌WQ-01A为研究对象,从温度效应、通透性变化、酶活及其编码酶基因序列、蛋白质结构等方面考察了激光诱变对戈登氏菌脱硫活性的影响。结果表明:温度效应和通透性并不是诱变菌株脱硫活性提高的主要原因;由基因的序列改变引发的酶的氨基酸序列,二级结构和空间结构发生的变化才是脱硫活性提高的根本原因。
     以突变株Gordonia sp. WQ-01A为研究对象进行固定化研究,考察了其静止细胞的最佳固定化条件,对比了水相中固定化细胞和静止细胞的脱硫性能。研究确定了Gordonia sp. WQ-01A最佳固定化条件:菌株经二次活化30℃摇床200rpm培养36小时后制备静止细胞;固定化载体海藻酸钠(SA)质量分数4%(w/v);菌体质量(g)与胶液体积(mL)比为1:20;4℃下在3%(w/v)氯化钙溶液中充分交联。同时,选取正十二烷作为模拟油相,固定化凝胶小球作为催化剂进行脱硫实验,考察油-水-固定化三相体系中固定化Gordonia sp. WQ-01A静止细胞降解DBT的能力。基于对该体系固定化静止细胞降解DBT反应过程的分析,本文建立一个模拟固定化静止细胞脱硫过程的数学模型研究其动力学行为。模型综合考虑了DBT和溶氧在凝胶小球内、外的传质阻力及DBT-溶氧双底物本征动力学,通过比较模型模拟与油相中实际测得DBT浓度的实验数据验证了该模型的合理性和可靠性。此外,模型对凝胶小球内DBT、溶氧随时间和半径的变化关系做了合理的预测分析。
A strain WQ-01was isolated from polluted water of Dagang Oil-field and it iscapable of specifically desulfurizing DBT as its sulfur source. HPLC shows the strainWQ-01can remove sulfur from DBT, yielding2-HBP through “4S” pathway, bywhich breaks the C-S-bond but remains the C-C-bond so that it can greatly keep thecaloric value of fuel.
     According to the morphologic properties, taxonomic properties and the16SrRNAanalysis of the strain, we identified it as Gordonia, named Gordonia sp. WQ-01.
     Laser was employed to irradiate the cells of the strain WQ-01to obtain themutant with the higher ability to desulfurize DBT. The effect of He-Ne laserirradiation on the induction of biodesulfuring activity and surviving fraction of cellsof Gordonia sp. WQ-01was studied. With WQ-01and laser-induced mutation strainWQ-01A, we studied the effects of laser-induced mutation on desulfurization of theGordonia sp. WQ-01by checking temperature effect, the permeability of cell, theactivity of enzyme related to desulfurization, the sequences of genes coded enzymeand the structures of enzyme. Based on the above analysis, it can be draw theconclusion that the improved desulfurizing activity of the mutant Gordonia sp.WQ-01was due to the increased activity of the enzymes involved in the “4S” pathway.The essential reason is the change of the sequences of the genes coding desulfurizingenzymes, not the temperature effect or the change of permeability of cell.
     At last, immobilization of Gordonia sp. WQ-01A resting cells was studied. Theeffects of immobilization conditions on biodesulfurization were investigated.Microstructure of alginate gel beads was observed by SEM and the biodesulfurizationcharacteristics between immobilized cells and resting cells was compared in waterphase. The results showed that the optimum immobilization condition is: bacteria iscultivated at30℃for36hours after activation twice; the concentration of carrier,sodium alginate (SA), is4%(w/v) and the ratio of cells (g) to SA (mL) is1:20withthe3%(w/v)calcium chloride as the precipitator under4℃.
     Batch DBT biodesulfurization in the oil-water-immobilization system wasconducted. A mathematical model was developed to simulate the biodesulfurizationprocess, which took into account the internal and external mass transfer resistances of DBT and oxygen and the intrinsic kinetics of bacteria. The good agreement betweenthe model simulations and the experimental measurements of DBT concentrationprofiles validated the proposed model. Moreover, the time and radius courses of DBTand oxygen concentration profiles within the alginate gel beads were reasonablypredicted and analysed by the proposed model.
引文
[1]寿德清,山红红.石油加工概论.山东省东营市:石油大学出版社,1996.
    [2]谢渝春,姜成英,王蓉等.石油生物催化深度脱硫.化工时刊,1999,6,1-5.
    [3] Malik K.A, Claus D. Microbial degradation of dibenzothiophene. ProceedingsFifth international Fermentation Symposium, Berlin, Abstract,1976,239(3):421-426.
    [4] D J Monticello, W R Finnerty. Microbial desulfurization of fossil fuels. AnnualReview of Microbiology,1985,39:371-389.
    [5] J Klein, M Van Afferden, F Pfeifer, S Schacht. Microbial desulfurization of coaland oil. Fuel Processing Technology,1994,40:297-310.
    [6] Kodama K K, UMEHARA K, Shimizu K, et al. Identification of microbialproducts from dibenzo thiophene and its proposeed oxidation pathway. AgricBiol Chem,1973,37:45.
    [7] Kilbane J J. Desulfurization of coal: the microbial solution. Trends Biotechnol,1989,7(4):97-101.
    [8] Gray k A, Pogrebinsky O S, Mrachko G T, et al. Molecular mechanisms ofbiocatalytic fossil fuel[J]. Nat Biotechnol,1996,14(13):1705-1709.
    [9] Gray k A, Squires C H, Monticello D J. DszD. Uilization in desulfurization ofDBT by rhodococcus sp. IGTS8[P]. US:5846813,1996.
    [10] McFarland B L.17. Biocatalytic sulfur removal from fuel applicability forproducing low sulfur gasoline[J]. Crit Rev microbial,1998,24(2):99-147.
    [11] Toshio Omori, Lisa M, Yuko S, et al. Desulfurization of dibenzothiophen byCorynebacterium sp.Strain SY1. Appl Environ Microbiol,1992,58(3):911-915.
    [12] Yoshikzu Izumi, Takashi Ohshiro, Hiroshi Ogino. Selective Desulfurization ofDibenzothiophene by Rhodococcus erythropolis D~1. Applied andEnvironmental Microbiology,1994,60(1):223-226.
    [13] Nekodzuka S, Toshiaki N, Nakajima K T, et al. Specific desulfurization of DBTby Mycobacterium sp strain G3[J]. Biocatal Biotransform,1997,15(1):17-27.
    [14] Rhee Sung Keum, Chang Je Hwan, Chang Yong Keun, et al. Desulfurization ofdibenzothiophen and diesel oil by a newly isolated Gordona sp. Strain CYKS1.Appl Environ Microbiol,1998,64(6):2327-2331.
    [15] MZ Li, CH Squires, DJ Monticello, et al. Genetic analysis of the dsz promoterand associated regulatory regions of Rhodococcus erythropolis IGTS8. Journalof Bacteriology,1996,178(22):6409-6418.
    [16] CS Piddington, BR Kovacevich, J Rambosek. Sequence and molecularcharacterization of a DNA region encoding the dibenzothiophene desulfurizationoperon of Rhodococcus sp. Strain IGTS8. Appl Environ Microbial,1995,61(2):468-475.
    [17] P C K Lau, C Denis-Larose, T MacPherson, et al. Biodesulfurization geneexpression by promoter replacement in Rhodococcus. Division of the FuelChemistry,1999,44(1):32-34.
    [18] Henschke PB, F R J Schmidt. Bacterial genetics in natural environment.Chapman and hall, London, UK,1990.
    [19] Lei Xi, Charles H. Squires, Daniel J. Monticello, et al. A FlavinReductaseStimulates DszA and DszC Proteins of Rhodococcus erythropolisIGTS8in Vitro. Biochemical and Biophysical Research Communication,1997,230:73-75.
    [20] David S.Reichmuth, Jessica L.Hittle, Harvey W.Blanch, Jay D Keasling.Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced byexpression of a vibrio harveyi oxidoreductase gene. Biotechnology andBioengineering,2000,67(1):72-79.
    [21] CH Squires, W Ji, L Xi, et al. Method of desulfurization of fossil fuel withflavoprotein. US59856501999.
    [22] A Darzins, L Xi, JD Childs, et al. Dsz gene expression in Pseudomonas hosts.US5952208,1999.
    [23] Noda Kenichi, Kimiko W, Kenji M. Cloning of a rhodococcal promoter using atransposon for dibenthiophene biodesulfurization. Biotechnology Letters,2002,24:1875-1882
    [24] Tanaka Y, T Matsui, J Konishi, et al. Biodesulfurization of benzothiophene anddibenzothiophene by a newly isolated Rhodococcus strain. Appl MicrobiolBiotechnol,2002,59:325-328.
    [25] M E Gallardo, A Ferrandez, V De Lorenzo, et al. Designing recombinantPseudomonas Strains to enhance biodesulfurization. Journal of Bacteriology,1997,179(22):7156-7160.
    [26]来鲁华,徐筱杰,唐有祺.蛋白质的结构预测与分子设计.北京:北京大学出版社,1993,12.
    [27]徐筱杰,陈丽蓉.化学及生物体系的分子识别.化学进展,1996,8(3):92-99.
    [28] Koshland DJ. Application of a theory of enzyme specificity to protein synthesis.Proc Natl Acad Sci,1958,44(2):98-104.
    [29] Jiang F, Kim SH. Soft docking-matching of molecular surface cubes. J Mol Biol,1991,219(1):79-102.
    [30] Kuntz ID. Structure-based strategies for drug design and discovery. Science,1992,257(5073):1078-1082.
    [31] Goodsell DS, Olson AJ. Automated docking of substrates to proteins bysimulated annealing. Proteins: Str Func and Genet,1990,8(3):195-202.
    [32] Woo Cheol Lee, Takashi Ohshiro. Crystal Structure and DesulfurizationMechanism of2’-Hydroxybiphenyl-2-sulfinic Acid Desulfinase. The Journal ofBiological Chemistry,2006,281(43):32534~32539.
    [33] Marzona M., Pessione E., Martino S. D., Giunta C.. Benzothiophene anddibenzothiophene as the sole sulfur source in Acinetobacter: growth kinetics andoxidation products. Fuel Processing Technology,1997,52:199-205.
    [34]谢渝春,姜成英,刘会洲等.石油生物催化深度脱硫.化工时刊,1999,6,1-5.
    [35] Wang J L, Liu D, Zhang Z J, Shan S, Han X. Structure-based discovery of anorganic compound that binds Bcl-2protein and induces apoptosis of tumor cells.Proc Natl Acad Sci USA2000,97,7124-7129.
    [36]向洋.激光生物学[M].长沙:湖南科学技术出版社,1995.114.
    [37]许春帆,汪荫棠.激光及其临床应用.江苏科技出版社,1983.
    [38]朱壬葆,刘永,罗祖玉.辐射生物学.科技出版社,1987:88-440,220-280.
    [39]杨国权.激光原理.中央民族学院出版,1989:5-35.
    [40]程极济.光生物物理学.高教出版社,1987.
    [41] Ben Dov N, Shefer G, Irinitehev A. Low-energy laser irradiation affects satellitecell proliferation and differentiation in vitro. Biochimica et Biophysica Acta,1999,1448:372-380.
    [42] Cao EH. DNA damage by laser and cytogenetics effects. Optronics Laser,1994,5(1):5-9.
    [43] Cao EH, Liu XQ, Zhu YR. Study of DNA damage induced by liposomeperoxidation. ACTA Biophysica Sinica,1994,10(1):68-74.
    [44] Liu XQ, Cao EH. DNA damage induced by liposome peroxidation. ProgBiochem Biophys,1994,21(3):218-222.
    [45] Chang J. H., Chang Y. K., Ryu H. W., Chang H. N.. Desulfurization of Light GasOil in Immobilized-Cell Systems of Gordona sp.CYKS1and Nocardiasp.CYKS2[J]. FEMS Microbiol Lett,2000,182(2):309-12.
    [46]侯影飞,孔瑛,杨金荣等.石油生物脱硫菌Agrobacterium tumefaciens UP-3的固定化研究[J].微生物学通报,2005,32(1):52-56.
    [47] Natio M., Kawamoto T., Fujino K., Kobayashi M., Maruhashi K.. A Long-termrepeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1cells [J]. Appl Microbiol Biotechnol,2005,55:374-378.
    [48] Shan G B, Xing J M, Luo M F, Liu HZH, Chen J Y. Immobilization ofPseudomonas delafieldii with magnetic polyvinyl alcohol beads and itsapplication in biodesulfurization [J]. Biotechnol Lett,2003,25:1977-1981.
    [49]王建龙,周定.固定化细胞凝胶内扩散行为研究进展[J].生物工程进展,1993,14(2):46-52.
    [50] Blandino A., Macias M., Cantero D.. Glucoseo xidaser elease from calciumalginate gel capsules [J]. Enzyme Microb Technol,2000,27:319-324.
    [51] Claus O. S., Morten R. R., Thomas N. J., Tonni K. R.. Characterisation ofEthanol Production by Saccharomyces cerevisiae Immobilised in CalciumAlginate Beads. Aalborg University, The Department of Life Science, Institute18,2000.
    [52]周建芹,陈实公,朱忠奎.微球载体固定化纤维素酶的反应动力学模型研究[J].生物工程学报,2005,21(5):799-803.
    [53]赵斌,何绍江主编.微生物学实验.科学出版社,2002.
    [54] Maghsoudia S., Kheirolomooma A., Vossoughib M., Tanakac E.. Selectivedesulfurization of dibenzothiophene by newly isolated Corynebacterium sp.strain P32C1. Biochemical Engineering Journal,2000,5:11-16.
    [55]黄培堂译.分子克隆实验指南.科学出版社,2002.
    [56] N. Eswar, M. A. Mari-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M.Shen, U. Pieper, A. Sali. Comparative Protein Structure Modeling WithMODELLER. Current Protocols in Bioinformatics, John Wiley&Sons, Inc.,Supplement15,5.6.1-5.6.30,200.
    [57]马挺.Rhodococcus erythropolis DS~3脱硫机理的研究及脱硫工程菌株的构建.[博士学位论文],天津;南开大学,2004.
    [58]李鹃,张耀庭,曾伟,罗璇,廖长春.应用考马斯亮蓝法测定总蛋白含量.中国生物制品学杂志,2000:118-120.
    [59] Takashi Ohshiro, Keitaro Suzuki, Yoshikazu Izumi. Dibenzothiophene(DBT)Degrading Enzyme Responsible for the First Step of DBT Desulfurization byRhodococcus erythropolis D-l: Purification and Characterization. Journal ofFermentation and Bioengeering,1997,83(3):233-231.
    [60]闰海,王子健.红串红球菌脱硫酶的活性调节.化工冶金,1999:376-380.
    [61] Kohli R., Bose B.,Gupta P.K.. Induction of phr gene expression in E. coli strainKY706/pPL-1by He-Ne laser(632.8nm) irradiation. Journal of Photochenmistryand Photobiology,2001,60(2):136-142.
    [62] Sudha Krishnan, Lalitha R. Gowda, N.G. Karanth. Studies on lactatedehydrogenase of Lactobacillus plantarum spp. Involved in lactic acidbiosynthesis using permeabilized cells. Process Biochemistry,2000,35,1191-1198.
    [63]商红岩,刘晨光,柴永明,刑金仙.二苯并噻吩在CoMoCNT催化剂表面上的吸附行为研究.化学学报,2004,62(9):888-894.
    [64]沈耀良,黄勇,赵丹等.固定化微生物污水处理技术[M].北京:化学工业出版社,2002,5.
    [65]郑洪河,张虎成,夏志清,张庆芝.海藻酸钠溶液的粘度性质与流变学特性[J].河南师范大学学报(自然科学版),1997,25(2):51-55.
    [66]翟晓荫,李道棠.海藻酸钠固定化包埋微生物处理有机污染源水[J].环境科学,2000,21(6):80-84.
    [67] Jia X Q, Wen J P, Sun Zh P, et al. Modeling of DBT biodegradation behaviors byresting cells of Gordonia sp. WQ-01and its mutant in oil-water dispersions [J].Chemical Engineering Science,2006,61:1987-2000.
    [68]俞俊棠,唐孝宣主编.生物工艺学.上海:华东理工大学出版社,1991.
    [69] Kilbane J. J.. Biodesulfurization: future prospects in coal cleaning. Proceedings7thAnnual International Pittsburgh Coal Conference,1990:373-381.
    [70] Wilke C. R., Chang P.. Correlation of diffusion coefficients in dilute solutions [J].AIChE J,1955,1:264-268.
    [71] Anders A., Bengt P.. Determination of diffusion coefficients in calcium alginateplates with varying yeast cell cantent [J]. Applied Biochemistry andBiotechnology,1988,18:231-250.
    [72] Yankov D.. Diffusion of glucose and maltose in polyacrylamide gel [J]. Enzymeand Microbial echnology,2004,34:603-610.
    [73] Livingston A. G., Chase H. A.. Modeling phenol degradation in a fluidized-bedbioreactor [J]. AIChE J,1989,35:1980-1992.
    [74] Tong X D, Sun Y. Agar-Based Magnetic Affinity Support for Protein Adsorption[J]. Biotechnol Prog,2001,17:738-743.
    [75] Dabros T., van de Ven T G M. Collision Induced Dispersion of Droplets Attachedto Solid Particles [J]. Journal of Colloid and Interface Science,1994,163(1):28-36.
    [76] Vesilind P. A.. Introduction to Environmental Engineering. PWS PublishingCompany, Boston,1996,468.
    [77] Bergey J.G., Holt N.R..Bergey's manual of determinative bacteriology.9thedition, Williams and Wilkins, Baltimore, U.S.A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700