生物质能铁矿烧结的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变暖、生态环境恶化的时代背景下,钢铁工业节能减排成为当前亟待解决的重点难题。铁矿烧结作为钢铁生产第一道工序,其能耗居钢铁企业第二位,且排放大量含有多种污染物的烟气,是钢铁工业的能耗大户和主要大气污染源。应用清洁可再生的生物质能源替代煤炭类化石燃料进行烧结,其燃烧产生的CO2参与大气碳循环,加之生物质燃料低S、低N的特点,因而可从源头降低烧结CO2、 SOx及NOx的产生,对我国钢铁工业的可持续发展和实现“低碳经济”具有重要的意义。
     本文针对木质炭、秸秆炭、果核炭等三种生物质燃料,系统研究了生物质燃料的物化性能、微观结构特征及热化学行为,揭示了生物质燃料的基础特性;深入研究了生物质燃料对烧结燃烧前沿、燃料燃烧程度、烧结料层热状态等的影响规律,揭示了生物质燃料影响铁矿烧结的机理;在此基础上开发了强化生物质能烧结的关键技术及基于烟气循环的生物质能烧结新工艺,为生物质能成功应用于铁矿烧结提供理论依据和技术支持。
     (1)生物质燃料的基础特性
     生物质燃料的灰分低、挥发分高、孔隙率高、比表面积大,决定了其具有良好的燃烧性和反应性:与焦粉相比,生物质燃料燃烧和气化温度低,反应速度快,反应活化能低;三种生物质燃烧性和反应性的顺序为:秸秆炭>木质炭>果核炭。
     (2)生物质影响铁矿烧结的规律和机理
     生物质能烧结特征表明,随着生物质燃料替代焦粉比例的增加,烧结速度加快,但成品率、转鼓强度和利用系数都呈降低的趋势,三种生物质燃料对烧结过程的影响程度从大到小依次为:秸秆炭>木质炭>果核炭,它们替代焦粉的适宜值分别为20%、40%、40%。生物质能烧结实现了污染物减排:秸秆炭、木质炭和果核炭分别取代20%、40%、40%的焦粉时,COx排放分别减少7.19%、18.65%、22.31%,SOx减少31.79%、38.15%、42.77%,NOx减少18.31%、26.76%、30.99%。
     揭示了生物质影响烧结的机理:生物质燃料燃烧速度快使烧结燃烧前沿速度增加,破坏了燃烧前沿和传热前沿速度的协调性;生物质燃料良好的反应性使烧结过程燃料的不完全燃烧程度增加,降低了燃料的热利用效率;生物质替代焦粉后,烧结料层最高温度降低、高温保持时间缩短。当木质炭替代焦粉比例从0%提高到40%、100%,燃烧前沿速度从34.11mm/min提高到41.67mm/min、46.90mm/min,传热前沿速度保持35.71mm/min不变;燃烧比(CO/(CO+CO2)从12.17%提高到13.08%、14.85%;料层最高温度由1305℃下降到1255℃、1178℃,高温保持时间由2.67min下降到1.83min、0min。
     (3)强化生物质能烧结的关键技术
     研究了生物质燃料制备、生物质燃料改性、燃料预制粒、优化配矿等技术强化生物质能烧结。通过两段炭化工艺制备木质炭、果核炭,成型预处理-两段炭化制备秸秆炭,降低了生物质燃料的孔隙率和比表面积;采用液态的硼酸和硅溶胶、固体粉末硼砂和Si02钝化木质炭,降低反应表面积或起物理阻隔作用,都可使生物质燃烧性和反应性降低;采用预制粒技术控制生物质燃料分布在制粒小球内部,通过改善其二次燃烧的条件而提高生物质完全燃烧的程度;通过优化配矿,调控烧结矿熔融区的CaO/Fe2O3摩尔比、Si02含量、Al203含量和MgO含量等化学成分,提高了熔融区液相生成量和针柱状铁酸钙生成量,使烧结物料在较低温度下快速成矿而适合生物质烧结料层温度低、高温时间短的特点。在秸秆炭、木质炭、果核炭分别替代20%、40%、40%焦粉的条件下,上述关键技术都使烧结矿产量和质量不受影响。
     (4)基于烟气循环的生物质能烧结新工艺
     依据生物质能烧结和烟气循环烧结对燃料燃烧、料层传热的互补性,提出基于烟气循环的生物质能烧结新工艺。在循环烟气中O2含量15%、CO26%、H2O(g)氐于8%、热风温度150~250℃的条件下,燃烧前沿速度和传热前沿速度趋于一致,并且CO在料层中二次燃烧及烟气带入的物理热使料层温度提高、高温保持时间延长;在非选择性循环比例40%、面积覆盖比为100%,以及选择性循环比例40%、面积覆盖比为44.5%的工艺条件下,生物质替代40%焦粉的烧结指标与100%焦粉的指标相当;生物质能与烟气循环相结合可起到协同减排的作用,在生物质替代40%焦粉的条件下,两种循环方式分别降低COx排放30.04%和31.78%,SOx41.04%和44.51%,NOx42.25%和45.07%。
Under the background of global warming and environmental deterioration, reducing energy consumption and pollutant emissions becomes a key issue in iron&steel industry. Sintering is the first procedure of iron&steel production. However, the energy consumption of sintering process ranks second, and the flue gas it emits contains diverse pollutants, so it is the large energy consumption and the main source of air pollution in iron&steel industry. Therefore, replacing fossil fuels with renewable and clean energy of biomass fuels, which is low in N and S content, and CO2participates in carbon cycle of atmosphere, can decrease the generations of COx, SOx, NOx et al. from the source, which is significant to the sustainable development of iron&steel industry and can realize low carbon economy.
     For such three biomass fuels as woodchar, strawchar and nutchar, their physico-chemical properties, microstructure characteristics and thermochemical behaviors have been studied systematically to illuminate the basic characteristics of biomass fuels in the dissertation. And then the fundamental theoretics of biomass affecting the flame front, the burning degree of fuels and the thermal state of sintering layer have been deeply discussed to reveal the mechanism of biomass fuels affecting sintering. Based on the research stated above, critical techniques to strengthen sintering with biomass fuels and new process of sintering with biomass energy based on flue gas recirculation have been exploited, so as to provide a theoretical basis and technical guidance for applying biomass in sintering successfully.
     (1) Basic characteristics of biomass fuels
     Biomass fuel is low in ash content while high in volatile constituent, porosity and specific surface area, and these properties results to its good combustion and gasification, which perform as lower reaction temperatures, faster reaction speed, and lower activation energy than coke breeze does. The prior order of combustion and gasification is strawchar>woodcharl>nutchar.
     (2) Laws and mechanisms of using biomass as fuel affecting sintering
     The characteristics of biomass sintering indicate that, with the proportion of biomass replacing coke breeze increasing, vertical sintering speed is accelerated, while yield, tumble index and productivity are decreased. The effects of biomass types on sintering show that the order of affecting degree is strawchar>woodchar>nutchar. The appropriate proportions of three biomass fuels are20%,40%and40%respectively. Biomass replacing coke breeze realizes the pollutant emission reduction of sinter. When the replacement ratios of three biomass fuels are20%,40%and40%respectively, the emission of COx can be decreased by7.19%,18.65%and22.31%, SOx by31.79%,38.15%and42.77%, NOx by18.31%,26.76%and30.99%respectively.
     Mechanisms of using biomass as fuel affecting sintering were illuminated. The flame front speed is accelerated due to the excellent combustion property of biomass, which will ruin the consistency of heat front speed and flame front speed. Meanwhile, the degree of fuels combustion decreases because of the good reactivity of biomass, which will decrease the thermal utilization efficiency of fuel. In addition, the maximum temperature of sintering layer and high temperature duration time decrease as biomass replacing coke breeze. When the proportion of woodchar replacing coke breeze increases from0%to40%,100%respectively, the flame front speed rises from34.11mm/min to41.67mm/min,46.90mm/min but the heat front speed maintaining at35.71mm/min, and the combustion ratios increases from12.17%to13.08%,14.85%, the maximum temperature of sintering layer decreases from1305℃to1255℃,1178℃, and high temperature duration time decreases from2.67min to1.83min, Omin.
     (3) Key technologies of strengthening biomass sintering
     Technologies of strengthening biomass sintering with reinforcing the preparation of biomass fuels, modifying the properties of biomass, pregranulation technology of fuels and optimization technology of ore blending have been studied. The use of two carbonization process to strengthen the production of woodchar and nutchar, and the use of molding process combining two carbonization process to strengthen preparation of strawchar can decrease the porosity and specific surface area of biomass, and the use of liquid boric acid and silica sol, and solid powder borax and SiO2to passivate biomass can decrease the reactive suface area or take the action of physical obstruction, which result in lowering the combustion and reactivity of biomass. Taking the pregranulating technology, biomass distributes inside the balls, which can improve secondary combustion and result in increasing the combustion degree. On the base of optimization of ore blending, regulating the chemical compositions of melting zone of sinter, such as the molar ratio of CaO/Fe2O3, the contents of SiO2, Al2O3and MgO, can improve the liquid phase formation and needle-columnar SFCA generation to suit for the characteristics of sintering layer which is low in temperature and short in high temperature duration time. All the above technologies can make strawchar, woodchar and nutchar replace20%,40%and40%coke breeze respectively in the premise of not affecting the indexes of sintering yield and quality.
     (4)New process of sintering with biomass energy based on flue gas recirculation
     According to the complementary properties of the effect of biomass sintering and flue gas circulation sintering on combustion and heat transfer, the new process of combinating both technologies has been proposed. The results of the effects of circulating gas composition and temperature on biomass sintering show that, the re-consistent of flame front speed and heat front speed can be promoted on the conditions of15%O2content, CO26%, H2O(g) less than8%and150~250℃of circulating gas. And the maximum temperature and high temperature duration time can be improved by CO combustion and the physical heat transfer to the bed. On the appropriate cycling conditions, ie the circulating ratio of non-selective-circulation is40%and the area coverage ratio is100%, and the circulating proportion of selective-circulation is40%and the area coverage ratio is44.5%, the sintering indexes which the proportion of biomass replacing coke breeze is40%are comparative to that of using coke breeze completely. In addition, the emission of COx reduces by30.04%,31.78%, SO, by41.04%,44.51%, and NO, by42.25%,45.07%, which indicates that the combination of biomass sintering and flue gas circulating sintering may play a cooperative effect of energy saving and pollutant reduction.
引文
[1]胡邦喜.当今世界钢铁工业发展特征浅析[J].冶金设备,2005,(4):32~34
    [2]Anthony P. The global restructuring of the steel industry. Innovations, Institutions, and Industrial Change[M]. New York:Routledge,1999
    [3]张晓平,张青云.世界钢铁工业发展趋势及对我国钢铁工业的影响[J].世界地理研究,2005,14(2):80-86
    [4]国际钢协.钢产量统计数据.http://www.worldsteel.org/index.php,2011
    [5]张寿荣.21世纪的钢铁工业及对我国钢铁工业的挑战[J].天津理工学院学报,2000,16(3):14~24
    [6]杨婷.世界钢铁工业格局的演变[J].冶金信息导刊,2007,3(5):5-8.
    [7]院士、专家献言.钢铁工业发展的思考-《我国钢铁工业的科学发展观》[J].新材料产业,2008,7:2-6.
    [8]Takamatsu N, Furukawa T. Challenge to global environment and resources energy. Challenge of iron and steel industry for the durable development[J]. Metals Sciece & Technology,1999,69(5):413-417
    [9]周维富.我国钢铁工业未来发展面临的挑战及对策[J].中国经贸导刊,2007,17:24-26.
    [10]殷瑞钰.钢铁工业发展循环经济的有效模式与途径[J].新材料产业,2008,(7):7-9.
    [11]Heynike JJ. Some aspects of energy and the environment in the steel industry[J]. Journal of the South African Institute of Mining and Metallurgy, 1977,78(2):24-33
    [12]李震.我国钢铁工业节能降耗技术的现状和发展趋势[J].鞍钢技术,2005,335(5):1-5
    [13]张春霞,齐渊洪,胡长庆,等.中国炼铁系统的节能与环境保护[J].钢铁,2006,41(11):1-5
    [14]北京世经未来投资咨询有限公司.2010年钢铁行业风险分析报告.国家发展改革委中国经济导报社,2010.
    [15]韩颖,李廉水.中国钢铁工业二氧化碳排放研究[J].南京信息工程大学学报.2011,3(1):53~57
    [16]James A F, Dan S. Golomb.Energy and the environment[M]. Oxford University Press,2002
    [17]Abdeen M O. Energy, environment and sustainable development[J]. Renewable and Sustainable Energy Reviews,2008,12(9):2265-2300
    [18]Malko J. Roadmap to low-carbon economy[J]. Rynek Energy.2010, (4):26-30
    [19]岑可法,邱坤赞,朱燕群,等.中国能源与环境可持续发展问题的探讨[J].发电设备,2004,(5):245~250
    [20]匡祥琳.关于我国环境和能源的可持续发展与经济增长的探讨[J].中国经贸导刊,2010,(15):41~41
    [21]王邦鲲.我国能源消费产生的环境问题研究[D].吉林大学,2010
    [22]《冶金与经济管理》编辑部.加大节能减排力度促进钢铁工业可持续发展[J].2010,(4):1-2
    [23]任力.低碳经济与中国经济可持续发展[J].社会科学家,2009,12(2):47-50
    [24]鲁莉莉,史仕新.低碳经济视角下钢铁企业未来发展模式分析[J].中国集体经济·上,2011,(1):28-29
    [25]王筱留.钢铁冶金学(炼铁部分)[M].冶金工业出版社,2000,31-32
    [26]周传典.高炉炼铁生产技术手册.北京:冶金工业出版社,2002:1-63
    [27]Loo C E. Some progress in understanding the science of iron ore sintering[C]. 2nd International Congress on the Science and Technology of Ironmaking and 57th Ironmaking Conference, Toronto, Canada,22-25 Mar.1998.1299-1316
    [28]杨兆祥.炼铁原料技术[M].北京:冶金工业出版社,1988:76-78
    [29]周取定.中国铁矿石烧结研究[M].北京.冶金工业出版社.1997:67~73
    [30]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996,1~3,88~90,125~135
    [31]中南矿冶学院团矿教研室.铁矿粉造块[M].北京:冶金工业出版社,1978,10
    [32]周取定,孔令坛.铁矿石造块理论及工艺[M].冶金工业出版社.1992,4
    [33]王维兴.炼铁炉料结构技术的发展[J].中国钢铁业,2006,(8):24-25
    [34]吴钢生,边美柱,沈峰满,等.碱性含镁球团矿的应用及合理炉料结构研究[J].钢铁,2006,41(12):19~21
    [35]徐矩良.我国高炉合理炉料结构探讨[J].炼铁,2004,23(4):52~53
    [36]Fan X H, Chen X L, Wang Y. Expert system for controlling sintering process[M]. Edited by Petrica Vizureanu,INTECH,2010,1:65-90
    [37]唐先觉,朱雪琴.浅论我国烧结球团业50年来的技术进步[J].烧结球团,2004,29(6):1-3
    [38]陈翔勇.低硅烧结技术的开发[J].天津冶金,2006,136(5):9-13
    [39]朱德庆.强化制粒对高铁低硅混合料烧结的影响[J].烧结球团,2003,28(1):9-13
    [40]谭金馄.低温烧结及其技术措施[J].烧结球团,1992,27(3):1-4
    [41]贺真.低硅烧结矿试验研究[J].湘钢科技,2001,(3):26~32
    [42]唐先觉.我国烧结能耗状况及节能途径[J].烧结球团,1998,23(2):1-6
    [43]郜学.中国烧结行业的发展现状和趋势分析[J].钢铁,2008,43(1):85~88
    [44]唐先觉.我国烧结工业现状及面临的问题[J].烧结球团,1995,20(6):1-6
    [45]梁雪梅,朱德庆,姜涛,等.烧结节能技术现状与发展[J].烧结球团,2000,25(4):1-4
    [46]Dawson P R. Recent developments in iron ore sintering[J]. Ironmaking and Steelmaking,1993,20 (2):135-143
    [47]黎明译.福山制铁所烧结厂的节能措施和今后计划[J].鞍钢技术,1987,(4):5-15
    [48]金永龙,张军红,徐南平,等.烧结工艺综合节能与环保的现状与意义[J].冶金能源.2002,21(4):12~16
    [49]叶匡吾.我国烧结能耗现状及节能对策[J].烧结球团,1997,22(5):11-12
    [50]Peter S, Bodo L H, Gerhard E. Measures to reduce CO2 and other emissions in the steel industry in Germany and Europe [J]. Journal of Iron and Steel Research International,2009,16:42-50
    [51]Masanori N and Jun O. Influence of operational conditions on dust emission from sintering bed[J]. ISIJ International,2007,47 (2):240-244
    [52]Naoto T, Shunsuke K. Properties of dust particles sampled from windboxes of an iron ore sintering plant:surface structures of unburned carbon[J]. ISIJ International,2006,46 (7):1020-1026
    [53]Khosa J, Manuel J and Trudu.Results from preliminary investigation of particulate emission during sintering of iron ore[J].Mineral Processing and Extractive Metallurgy,2003,112(1):25-32
    [54]边美柱,何晓义,侯贵生,等.固体燃料在烧结料中的燃烧分析及降耗措施[J].包钢科技.2002,28(3):19~22
    [55]李寿宝,潘宝巨,任志国,等.降低烧结固体燃耗的理论分析及工艺技术[J].钢铁,1997,32(2):5-10.
    [56]陈凯华.铁矿石烧结过程中二氧化硫的生成机理及控制[J].烧结球团,2007,32(4):13~17
    [57]Garcia-Carcedo F, Ayaa N. Possible actions for the minimization of the environmental impact of the iron ore sintering fumes [J]. Revista De Metalurgia.2004,40(4):243-246
    [58]Patrick J W. Sulfur release from pyrites in relation to coal pyrolysis[J]. Fuel, 1993,72(3):281-285
    [59]郑瑛,史学锋,周英彪,等.煤燃烧过程中硫分析出规律的研究进展[J].煤炭转化,1998,21(1):36-40
    [60]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002:603-606.
    [61]Chin L M, Cher S T, Lan H, et.al. Admixing hydrocarbons in raw mix to reduce NOx emission in iron ore sintering process[J]. ISIJ International,1997, 37(4):350-357.
    [62]Eiki K, Takeshi S, Yasuo O. Suppression of nitrogen oxides formation from ion ore sintering process using iron-bearing coke[A].In:ISIJ,eds.the First International Congress of Science and Technology of Ironmaking [C]. Sendai: ISIJ,1994:665-670.
    [63]Koichi M, Shinichi I, Masakata S et al. Primary application of the "in-bed-deNOx" process using Ca-Fe oxides in iron ore sintering machines [J]. ISIJ International,2000,40(3):280-285.
    [64]Kouichi Morioka, Shoji Shirouchi, Takeshi Sugiyama.采用铁酸钙的烧结料层内脱NOx法[A].In:周取定,张济中,张志明等编.第六届国际造块会议论文选[C].北京:中国金属学会,1994:347~359.
    [65]贾汉忠,宋存义,戴振中,等.烧结过程中二噁英的产生机理及控制[J].烧结球团,2008,33(1):25-30
    [66]Heidelore F. Thermal formation of PCDD/PCDF asurvey[J]. Environmental Engineering Science,1998,15 (1):49-58
    [67]Philip J A. Reducing the emissions of dioxins from sinter plants[C]. Workshop proceedings, Steel research and developmenton environmental issues, Bilbao, 1999
    [68]贾汉忠,宋存义,戴振中,等.烧结过程中二噁英的产生机理及控制[J].烧结球团,2008,33(1):25~30
    [69]Fisher R, Anderson D, Fray T. Investigation of the formation of dioxins in the sinter process[C]. In:Proceedings of the Second International Congress on the Science and Technology of Ironmaking in Conjunction with the 57th Ironmaking Conference of the Iron and Steel Society, Toronto, Canada; 1998.
    [70]胡怀生,郑旭东,胡浩斌.氮氧化物对环境污染的分析与防治措施[J].甘肃高师学报,2003,8(5):38~39.
    [71]杨飏.环境保护专论选[M].北京:冶金工业出版社,1999:13.
    [72]高太忠,戚鹏,张杨.酸雨对土壤营养元素迁移转化的影响[J].生态环境,2004,13(1):23~26
    [73]牛建刚,牛荻涛,周浩爽.酸雨的危害及其防治综述[J].灾害学,2008,23(4):110~116
    [74]国家环境保护总局,国家质量监督检验检疫总局.钢铁工业大气污染物排放标准烧结(球团),中华人民共和国国家标准,2008
    [75]段冬梅.烧结固体燃耗分析[J].浙江冶金,2008,(2):3~6
    [76]胡长庆,张玉柱,张春霞.烧结过程物质流和能量流分析[J].烧结球团,2007,32(1):16~21
    [77]王宏斌,张咏梅.降低烧结工序能耗的措施[J].钢铁,1999,34(1):1~4
    [78]陶宗道.日本烧结点火技术的现状[J].烧结球团,1987,(5):28~33
    [79]廖国瑞译.川崎千叶厂4号烧结系统的最低能耗烧结生产[J].鞍钢技术,1998,(3):7-13
    [80]孔德萱.现阶段日本烧结工业生产技术的发展[J].烧结球团,1986,(3):74~86
    [81]唐先觉.我国烧结行业的技术进步[J].烧结球团,33(2):1~4
    [82]宋国良,傅志华,张全,等.烧结机增产节能的途径[J].钢铁研究学报.2000,12(6):61~64
    [83]Trisc A. Coke combustion efficiency in sintering[J]. Metallurgic (Zagreb), 2001,40,(3):143-146.
    [84]张军红,徐南平,谢安国.烧结过程降低固体燃耗途径的探讨[J].冶金能源,2002,21(1):25~27
    [85]李寿宝,潘宝巨,任志国,等.降低烧结固体燃耗的理论分析及工艺技术[J].钢铁,1997,32(2):5~10.
    [86]梁迪超.低碳厚料烧结与节能[J].鞍钢技术,1991,(9):19~26
    [87]蔡湄夏,曲敬海,贺淑珍,等.低温烧结技术在太钢推广应用的探讨[J].钢铁,2002,37(10):1-4
    [88]鲁逢霖.低温烧结技术研究[J].甘肃冶金,2003,25(1):16~20
    [89]Gan M, Fan X H, Jiang T, Wang Y,et.al. Mineralization behavior of fluxes during iron ore sintering[C]. TMS 2011,2nd International Symposium on High-Temperature Metallurgical Processing:371-378
    [90]贺先新.浅析武钢厚料层烧结的发展[J].烧结球团,2004,29(3):1~5
    [91]Dawson P R. Recent development in iron ore sintering. Ⅱ. Research studies on sintering and sinter quality[J]. Ironmaking and Steelmaking (UK),1993,20(2), 137-143.
    [92]刘竹林.烧结矿FeO含量的影响因素探讨[J].重庆科技学院学报,2005,7(1):8-10.
    [93]张同山.均质烧结技术的发展与配套设计(续一)[J].烧结球团.2001,26(5):5-8
    [94]张同山.均质烧结技术的发展与配套设计[J].烧结球团.2001,26(2):1~5
    [95]黄柱成,江源,毛晓明,等.铁矿烧结中燃料合理分布研究[J].中南大学学报(自然科学版).2006,37(5):884~890
    [96]王振海,代汝昌,王兴璞,等.烧结热量梯度优化技术的研究与应用[J].钢铁,2008,33(5):1-4
    [97]陈永国,郭森魁,王华,等.钢铁企业烧结厂余热资源的回收利用[J].能源研究与利用,2001,(5):43~45
    [98]徐国群.烧结余热利用回收现状与发展[J].世界钢铁,2009,(5):27~31
    [99]宋磊.提高烧结余热发电量的实践[J].烧结球团,2008,33(2):55~58
    [100]张瑞堂,傅国水,李真明,等.济钢320m2烧结机余热发电投产实践[J].烧结球团,2007,32(5):47~51
    [101]大多和公昭,下田省夫.抽鼓联合式烧结设备的研究[J].烧结球团,1983,8(4):109~120
    [102]Cappel F.铁矿石烧结过程中减少废气量的可能性[C].//周取定.第四届国际造块会议论文集.冶金工业部鞍山黑色冶金矿山设计研究院:1986:99~115
    [103]Ikehara S, Kubo S, Terada Y, Sakuragi J. Application of exhaust gas recirculation system at Tobata No.3 sinter plant[J]. Nippon Steel Technical Report,1996,(70):55-61
    [104]甘勤.攀钢采用热风烧结的可行性[J].攀枝花科技与信息,2000,25(1):49~51
    [105]吴志军,高斌,曹斌.热风烧结技术在莱钢3#105m2烧结机上的应用[J].山东冶金,2006,28(3):15~17
    [106]孙德民,李兴文,何玉红,等.济钢热风烧结工艺技术改进[J].山东冶金,2009,31(2):16~17
    [107]王建军,蔡九菊,陈春霞,等.我国钢铁工业余热余能调研报告[J].工业 加热,2007,36(2):1-3
    [108]丁皓,郭新有.关于我国钢铁工业二次能源利用的思考[J].科技进步与对策,2004,(10):102~104
    [109]沙高原,刘颖昊.钢铁工业节能与C02排放的现状及对策分析[J].冶金能源,2008,27(1):3-8
    [110]张寿荣,毕学工.我国钢铁工业C02排放状况及减排的途径[J].中国钢铁年会论文集,2005,655-662
    [111]唐先觉.论铁矿烧结减排C02的途径[J].全国烧结球团技术交流年会论文集,2009,1-4
    [112]李现勇.C02减排及封存利用技术概况及发展[J].电力设备,2008,9(5):7-11
    [113]Christian A, Kristian L, Eric L. Carbon capture and storage from fossil fuels and biomass-costs and potential role in stabilizing the atmosphere[J]. Climatic Change,2007,74(1):47-79
    [114]Damen K. A comparison of electricity and hydrogen productionsystem with CO2 capture and storage[J]. Progress in Energy and Combustion Science,2006, (32):215-246
    [115]Azar C. and Rodhe H. Targets for stabilization of atmospheric CO2[J]. Science, 1997,276,1818-1819.
    [116]Gustavsson L, Borjesson P, Johansson B and Svenningsson P. Reducing CO2 emissions by substituting biomass for fossil fuels[J]. Energy,1995, (20), 1097-1113.
    [117]方梦祥,晏水平,王金莲.烟气中C02化学吸收法脱除技术分析与进展.二氧化碳减排控制技术与资源化利用研讨会,152~161
    [118]苏天森.中国钢铁工业的清洁生产[J].炼钢,2003,19(2):1~5.
    [119]马广大.大气污染控制工程[M].北京:中国环境科学出版社,1985
    [120]李庭寿,苏笑鹏.烧结烟气脱硫技术[C].2005中国钢铁年会论文集.北京:出版者,2005:484~487
    [121]李江.钢铁企业烧结烟气脱硫技术的研究现状[J].钢铁技术,2006,(6):41-44
    [122]张同文.钢铁联合企业二氧化硫减排与控制[J].工业安全与环保,2004,30(7):37~38
    [123]欧阳琦.浅谈烟气脱硫技术[J].工业安全与防尘,2000,(7):31-32
    [124]郝素菊,乐天勤,蒋武锋,等.烧结固硫的热力学研究[J].烧结球团,2009, 34(2):1-6
    [125]毕学工,廖继勇,熊玮,等.降低铁矿石烧结过程中S02排放量的初步研究[J].武汉科技大学学报.2008,25(2):109~112
    [126]汤静芳,黄新发.烧结厂大气污染控制技术的应用及发展[J].武钢技术,2002,40(5):50~53
    [127]戴华.烟气干法脱硫新工艺[J].环境科学动态,1983,10:6
    [128]陈东,林继发.湿法烟气脱硫技术简述[J].陕西环境,2003,10(5):32~34
    [129]Richter E. Modelling of crossflow moving bed absorbers exemplified for gas desulfurigafion by acfivated coke[J]. VTVerfahrenstech,1980,14(5):338-42
    [130]Alexander D F. Improved dry type gas cleaning process for the treatment of sinter offgas[J]. Metallurgical Plant & Technology International,2006, (3):36-40
    [131]朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社,2001:375-376
    [132]Kasama S, Kitaguchi H, Yamamura Y. Analysis of exhaust gas visibility in iron ore sintering plant[J]. ISIJ International,2006,46(7):1027-1032
    [133]胡国生.攀钢烧结烟气脱硫技术研究[J].工业安全与环保,2002,28(8):7-10
    [134]童伟刚,姚雪荣,莫伟标.烟气脱硫方法分析及脱硫石膏的应用途径[J].新型建筑材料,2006,(8):55~57
    [135]任如山.影响石灰/石灰石湿法烟气脱硫的因素分析[J].新疆环境保护,2003,25(1):36-38.
    [136]Zong Y B, Zhang L. Emission of SO2 from iron ore and fuel used in sintering process [J]. Journal of Iron and Steel Research International, 2009,(16):533-536
    [137]刘永峰,韦传稳,张旭.适合烧结烟气脱硫的SDA技术[J].中国钢铁业,2008,(5):32~33.
    [138]王增愉.美国和日本采用的烟道气脱NOx和S02方法[J].环境保护科技消息,1981,61:2~3
    [139]杨飏.清洁生产与宝钢的S02削减方略[J].宝钢技术,1997,(6):28-32
    [140]沈学静,王海舟.固定源NOx的排放控制及DeNOx催化剂的应用[J].钢铁,2000,9:68~72
    [141]Marek A, Wojtowicz, Jan R, et al.The fate of nitrogen functionalities in coal during pyrolysis and combustion[J]. Fuel,1995,74(4):507-516
    [142]吴碧君,刘晓勤.燃烧过程NOx的控制技术与原理[J].电力环境保护,2004,20(2):29~33
    [143]Alejandro M, Eric G. E, David W P, et al. Nitricoxide destruction during coal and char oxidation under pulverized-coalcombustion conditions [J]. Combustion and Flame,2003,136(3):303-312
    [144]曾汉才.大型锅炉高效低NOx燃烧技术的研究[J].华中电力,2001,14(3):1-5
    [145]Fenimore C P. Reactions of fuel nitrogen in rich flame gases[J]. Combustion and Flame,1976,26:249-260
    [146]Tsubouchi N, Ohshima Y, Xu C B, et al. Enhancement of N2 formation from the nitrogen in carbon and coal by calcium[J]. Energy and Fuels,2001, 15(5):158-162
    [147]G.Gde Soete. Combustion related heterogeneous reactions involving N2O[C]. 5 th International Workshop on Nitrous Oxide Emissions, Tsukuba, Japan, 1992
    [148]Tashiro K, Souma H, Hosoya Y, et al.1979. Sinter operation control [P]. Japanese:JP54131503,1979-10-12
    [149]Hosoya Y, Umetsu A, Nakai H, et al.1997. Manufacture of sintered ore [P].Japan:JP9118936,1997-05-06
    [150]Fukutome M, Hanamizu I, Kodama T, et al.1980. Sintering method for decreasing nitrogen oxide [P]. Japan:JP55014862,1980-02-01,
    [151]Mo C L, Teo C. S, Hamilton I, et al. Adding hydrocarbons in row mix to reduce NOx emission iron ore sintering process[J].ISIJ International.1997,37 (4):350-357
    [152]Mo C L, Teo C S, Hamilton I, Morrison RJ. Reducing SOx and NOx emissions by adding selective reagents to iron ore sinter mix[C]. Paper 33.4, Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, Portugal; 3-6 July,1995.
    [153]陈彦广,王志,郭占成.烧结过程中解耦燃烧与烟气返回共脱硝新工艺Ⅰ:模拟烧结矿带的脱硝机理[J]环境科学学报.2008,28(9):1727-1732
    [154]Chen Y G, Guo Z C. NOx reduction in the sintering process International Journal of Minerals,Metallurgy and Materials.2009,16(2),143-147
    [155]陈彦广,王志,郭占成,等.燃煤过程NOx抑制与脱除技术的现状与进展[J].过程工程学报.2007,7(3):632-638
    [156]毕学工,廖继勇,熊玮,等.烧结过程中脱除S02和NOx的试验研究[J].武汉科技大学学报.2008,31(5):109~102
    [157]熊玮,廖继勇,毕学工,等.脱除烧结烟气中NOx的初步研究[J].烧结球团,2007,32(1):12~15
    [158]杨冬,徐鸿.SCR烟气脱硝技术及其在燃煤电厂的应用[J].电力环境保护,2007,23(1):49~51
    [159]Olanders B, Strombergd. A fixed bed study of formation and reduction of nitric oxide over different sand materials at fluidized bed temperatures and concentrations[A].13th International Conferenceon Fluidized Bed Combustion[C].New York:ASME,1995
    [160]Stegenger S, Soest R V, Kapteijn F, et al. Nitric oxide reduction and carbon monoxide oxidation over carbon-supported copper-chromium catalysts[J]. Appl Catal B,1993, (2):257-260
    [161]陈英红,刘育,李树本,等.一氧化碳催化还原消除氮氧化物的研究进展[J].分子催化,2000,14(5):392~398
    [162]Hayhurstan, Lawrence A D. The reduction of the nitrogen oxides NO and N2O to molecular nitrogen in the presence of iron, its oxides, and carbon monoxide in a hot fluidized bed[J]. Combustion and Flame,1997,110:351-365
    [163]Eiki K, WU S L, Takeshi S, et al. Combustion rate and NO emission during combustion of coke granules in packed beds[J]. Tetsu-to-Hagane,1992, 78(7):1005-1009
    [164]周浩生,陆继东,周琥,等.一氧化碳作用下铁对一氧化氮的催化还原实验与动力学过程分析[J].热能动力工程,2002,17(1):86-89
    [165]Hayhurst A N, Lawrence A D. The reduction of the nitrogen oxides NO and N2O to molecular nitrogen in the presence of iron, its oxides, and carbon monoxide in a hot fluidized bed[J]. Combustion and Flame,1997, (110):351-365
    [166]Klein R L, Schwartz S, Schmidt L D. Kinetics of the NO+CO reaction on clean Pt:steady-state rates[J]. J Phys Chem,1985,89:4908
    [167]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2000:325~339
    [168]Chan L K, Sarofim A F, Beer J M. Kinetics of the NO-carbon reaction at fluidized bed combustor conditions[J]. Combust and Flame,1983,52 (1): 37-45.
    [169]Hayhurst A N, Lawrence A D. The reduction of the nitrogen oxides NO and N2O to molecular nitrogen in the presence of iron, its oxides, and carbon monoxide in a hot fluidized bed[J].Combustion and Flame,1997, 110:351-365
    [170]Lo rimer D, BellA T. Reduction of NO by CO over a silica-supported platinum catalyst:Infrared and Kinetic Studies[J]. J Catal.1979,59:223
    [171]Dell M, Fung P, Lovel R, et al. Green Iron Ore Sintering[A]."The 2nd International Conference on the Sustainable Processing of Minerals"Green Processing[C]. Australia,2004:73-80.
    [172]范晓慧,余志元,甘敏,等.铁矿烧结节能减排现状及发展方向[C].全国烧结球团信息网.2011年度全国烧结球团技术交流年会,2011年6月,4-8
    [173]李庭寿,苏笑鹏.烧结烟气脱硫技术.中国金属学会编.2005中国钢铁年会论文集.北京:2005,484~487
    [174]陈健.烧结烟气脱硫方式的分析探讨[J].世界钢铁,2010,(3):1~6
    [175]汤静芳,符林涛,李富智.NID脱硫工艺在武钢三烧的应用[J].烧结球团.2009,34(5):13~16
    [176]A Fleischanderl. MEROS-改进型干法烧结废气处理工艺[J].世界钢铁.2008,(1):4-7
    [177]赵莉,李玉华,单涛,等.电除尘技术在烧结烟尘中的应用[J].第13届中国电除尘学术会议论文集,2009,431-435
    [178]李海军.电除尘器在烧结厂的应用及改进[J].现代经济信息,2009,(17):270~271
    [179]张咏梅.烧结除尘技术综述[J].冶金丛刊,2010,(1):48~51
    [180]易宁.浅谈提高烧结厂机头电除尘器的除尘效率[J].烧结球团,2008,33(2):52~55
    [181]魏学峰,罗婕,田学达,等.生物质燃料的开发利用现状与展望[J].冶金能源,2004,23(6):45-52
    [182]袁振宏,罗文,吕鹏梅,等.生物质能产业现状及发展前景[J].化工进展,2009,28(10):1687~1694
    [183]Cook J, Beyeaj. Bioenergy in the united states:progress and possibilities [J]. Biomass and Bioenergy,2000,8(6):441
    [184]孙永明,袁振宏,孙振钧,等.中国生物质能源与生物质利用现状与展望[J].可再生能源,2006,2(126):78-82.
    [185]袁振宏,吕鹏梅,孔晓英,等.生物质能源开发与应用现状和前景[J].生 物质化学工程,2006,40(12):13~21.
    [186]费世民,钱能志,陈秀明,等.林业生物质能及其研发进展[J].四川林业科技.2007,28(6):18~28
    [187]高岚,李伟.林木生物质能源的发展和我国能源林建设[J].生物质化学工程.2006,(1):265~275
    [188]张志达等.中国薪炭林发展战略[M].北京中国林业出版,1996
    [189]龙圣智.我国薪炭林发展面临的问题及对策[J].中南林业调查规划,2003,(10):11~12
    [190]汪海波,秦元萍,余康.我国农作物秸秆资源的分布、利用与开发策略[J].国土与自然资源研究,2008(2):92~93
    [191]毕于运,王道龙,寓春雨,等.中国秸秆资源评价与利用[M].北京:中国农业科学技术出版社,2008
    [192]Yang Z P, Guo K Q. Straw resources utilizing industry and patten[J]. Transactions of CSAE,2001,17(10):27-30
    [193]石磊,赵由才,柴晓利,等.我国农作物秸秆的综合利用技术进展[J].中国沼气,2005,23(2):11~18
    [194]Biksey T M, and Wu F. Biofuels:by-products[J]. Science,2009,326(5958): 1344-1345
    [195]Lai R, and Pimentel D. Biofuels from crop residues[J]. Soil and Tillage Research,2007,93(2):237-238
    [196]卞一丁.生物质能开发利用概述[J].农机推广与安全.2006,(7):10-12
    [197]石元春.中国生物质原料资源[J].中国工程科学.2011,13(2):16~24
    [198]杜艳艳.低碳经济下我国生物质能发展战略思考[J].安徽农业科学.2011,39(20):12281~12283
    [199]Lovel R, Vining K, andDell'Amico M. Iron ore sintering with charcoal[J]. Mineral Processing and Extractive Metallurgy,2007,116(2):85-92
    [200]Mohammad Z, Maria M P, Trevor A T F. Biomass for iron ore sintering [J]. Minerals Engineering.2010, (7):1-7
    [201]Tze Chean O, Eric A. The study of sunflower seed husks as a fuel in the iron ore sintering process[J]. Minerals Engineering,2008,(21):167-177
    [202]Silva S N, Vernilli F, Pinatti D G.Behaviour of biofuel addition on metallurgical properties of sinter [J]. Ironmaking and Steelmaking,2009, 36(5):333-340
    [203]Hannu H, Mikko H. Mathematical optimization of ironmaking with biomass as auxiliary reductant in the blast furnace[J]. ISIJ International,2009,49 (9), 1316-1324
    [204]范晓慧,姜涛,甘敏,等.一种烧结铁矿石液相生成特性的检测方法.中国:ZL200910307772.9[P],2009.11
    [205]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1):72-76
    [206]孙学信.燃煤锅炉燃烧试验技术与方法[J].北京,中国电力出版社,2001
    [207]Tseng H P and Edgar T F. Identification of the combustion behavior of lignite char between 350 and 900℃[J]. Fuel,1987,63:385-393.
    [208]Menad N, Tayibi H, Carcedo F Q Herna'ndez A. Minimization methods for emissions generated from sinter strands:a review[J].Journal of Cleaner Production,2006,(14):740-747
    [209]Heinz-Peter E. Construction of the exhaust recycling facilities at a sintering plant[J]. Stahl und Eisen,2004,124(5):37-40
    [210]Brunnbauer G, Ehler W, Zwittag E, Schmid H, Reidetschlaeger J, Kainz K.New waste-gas recycling system for the sinter plant at Voestalpine Stah[J].MPT Metallurgical Plant and Technology International, 2006,29(4):38-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700