负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物是危害大气的主要污染物之一,使用选择性催化还原(SCR)技术是脱除固定源排放烟气中NOx的有效方法之一。近年来低温SCR技术由于具有节能减耗和运行成本低的特点正得到越来越多研究者的关注。从国内外低温SCR技术的研究现状来看,该技术工业化的主要障碍是低温范围内活性不高、催化剂抗SO2毒化性能差、反应机理和SO2中毒机理不明确等问题。针对以上问题,本文使用以锰氧化物作为主要活性成分的催化剂,对其低温SCR脱硝性能进行了较为系统的研究。
     本文首先对Mn/TiO2催化剂进行金属元素掺杂改性,通过活性实验和分析测试表征结果发现,Ce掺杂可以大幅度提高催化剂的低温SCR活性(100℃时的催化活性从62%提高到95%左右),Ce的加入能够增强催化剂的储氧能力和表面酸性,促进NH3在催化剂表面的吸附和活化。
     在此研究基础上,本文使用上述Mn-Ce复合氧化物作为催化剂的活性组分,分别选择了TiO2、Al2O3、ZSM5和活性炭作为催化剂的载体,考察了这几种负载型催化剂的SCR活性,结果发现TiO2和Al2O3负载后的催化剂在低温下SCR活性较高。本文还研究了这两个负载型催化剂的低温SCR反应机理,发现在这两个催化剂上进行的SCR反应均存在多个反应途径。而由于TiO2和Al2O3载体性质的差异会导致各种反应途径在这两个负载型催化剂上所占比例不同。其中Mn-Ce/TiO2上以吸附态的配位铵和气相NO反应为主,而Mn-Ce/Al2O3催化剂上发生SCR反应时主要先进行NO的氧化反应,然后该氧化产物再和NH3之间发生反应完成整个SCR反应。
     此外,本文还较系统地考察了SO2在低温条件下对Mn/TiO2和Mn-Ce/TiO2催化剂SCR活性的影响,同时对SO2的影响机理进行了研究,发现Mn/TiO2催化剂在SO2反应气氛中失活很快,硫铵盐的沉积和活性组分的硫酸化是催化剂失活的重要原因;Ce的加入可以有效地抑制催化剂活性组分的硫酸化,同时还能降低硫酸盐在催化剂表面的稳定性从而可以提高催化剂的抗硫性。
     最后,本文研究了低温SCR反应中SO2浓度、水汽浓度、反应温度等工艺参数对催化剂活性的影响,为该技术的工业化应用提供基础数据。重点研究了反应温度对Mn-Ce/TiO2催化剂的影响,发现较低的反应温度可以缓解催化剂活性组分的硫酸化,减缓催化剂的失活。在此基础上对催化剂进行各种再生处理,发现通过简单的水洗过程可使催化剂的绝大部分活性得以恢复。
     通过本文的系统研究,开发了一种新型的Mn-Ce/TiO2复合氧化物低温SCR催化剂,与现有报道的SCR催化剂相比,该催化剂在低温条件下的催化活性高、抗SO2毒化能力强,为低温SCR工艺实现工业化应用奠定了基础。此外,还探明了在此类催化剂上进行的SCR反应的反应机理以及SO2对催化剂的毒化机理,为今后低温SCR催化剂的进一步改进提供了指导。
NOx is one of the main air pollutants and selective catalytic reduction (SCR) is an effective way to remove NOx in the flue gas from stationary sources. Recently, low-temperature SCR process has attracted more and more interests for its low energy consumption and operating cost. Based on the review of the current situation of SCR technology, it was pointed out that the following shortcomings are the main obstacle of the industrial application of the low-temperature SCR technology:low activity at low temperature, poor SO2 resistance of catalysts and uncertainty of reaction and SO2-poisoning mechanisms. In order to solve these problems, the low-temperature SCR reaction was systematically investigated by using MnOx based catalysts in this dissertation.
     Firstly, several metals were chosen to be doped into Mn/TiO2 catalyst. From activity tests and characterization results, it was found that Ce doping could greatly enhance the low-temperature SCR activity of the catalyst (the activity was enhanced from 62% to 95% at 100℃). The oxygen storage capacity and the surface acidity of the Mn/TiO2 catalyst were improved by the introduction of Ce, which would be beneficial to the adsoroption of NH3 and its activitation.
     Secondly, Mn-Ce oxides were supported on TiO2, Al2O3, ZSM5 and active carbon respectively. From the comparison results of these catalysts'activity, it was found that Mn-Ce/TiO2 and Mn-Ce/Al2O3 had relatively higher low-temperature SCR acivity than other supported samples. The SCR reaction mechanism of these two catalysts was then studied and the results indicated that there were several reaction paths for both of the samples and these reaction paths made different concentrations to the SCR activity of two catalysts because of the property differences between TiO2 and Al2O3. For Mn-Ce/TiO2 catalyst, the SCR reaction mainly took place between adsorbed NH3 species and gas-phase NO, while in the case of Mn-Ce/Al2O3, the SCR reaction commenced with NO oxidation, then its oxidation products reacted with NH3 to carry out SCR reaction.
     Fuethemore, the effects of SO2 on the SCR activity of Mn/TiO2 and Mn-Ce/TiO2 catalysts as well as its mechanism were investigated detailedly. A serious deactivation by SO2 was detected on Mn/TiO2 catalyst. The deposition of ammonium sulfate species on catalyst surface and the sulfation of catalyst active phase were proved to be the main reasons for the catalyst deactivation in the presence of SO2 during SCR reaction. Ce doping could effectively inhibit the sulfation of catalyst active phase and decrease the stability of the formed sulfate species.
     Finally, the relationship between SCR activity of Mn-Ce/TiO2 catalyst and operating parameters such as SO2 and H2O concentrations, reaction temperature, was investigated to provide possible guidances for industrial application. Especially the effects of reaction temperature on catalyst activity were studied in detail and the results suggested that low reaction temperature could relieve the sulfation of catalyst active phase and the deactivation by SO2. The deactivated samples were regenerated by different treatments and it was found that water-washing could effectively recover the most catalyst activity.
引文
[1]P.H. Abelson. Air pollution and acid rain[J]. Science 1985,8:617-617.
    [2]K.C. Taylor. Nitric oxide catalysis in automotive exhaust systems[J]. Catal. Rev. Sci. Eng. 1993,35:457-481.
    [3]J.N. Armor. Environmental catalysis[J]. Appl. Catal. B 1992,1:221-256.
    [4]A. Richter, J.P. Burrows, H. Nu. C. Granier, U. Niemeier. Increase in troposphericnitrogen dioxide over China observed from space[J]. Nature 2005,437:129-132.
    [5]马振安.立足能源以煤为主提升火电技术水平[N],中国电力报,2004,7.
    [6]罗水刚.易再生高比表面脱硫脱硝剂的设计[D],博士学位论文,东南大学,2004.
    [7]Z.M. Liu, S.I. Woo, Recent advances in catalytic DeNOx science and technology[J]. Catal. Rev.2006,48:43-89.
    [8]H. Bosch, F. Janssen. Formation and control of nitrogen oxides[J], Catal. Today 1988,2: 369-379.
    [9]张强,许世森,王志强.选择性催化还原烟气脱硝技术进展及工程应用[J],热力发电,2004,4:1-6.
    [10]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M],北京:化学工业出版社,2002.
    [11]S.T. Choo, S.D. Yim, I.-S. Nam, S.-W. Ham, J.-B. Lee. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J],Appl. Catal. B 2003,44:237-252.
    [12]M. Koebel, M. Elsener, M. Kleemann. Urea-SCR:a promising technique to reduce NOx emissions from automotive diesel engines[J], Catal. Today 2000,59:335-345.
    [13]H. Berndt, F.-W. Schutze, M. Richter, T. Sowade, W. Grunert. Selective catalytic reduction of NO under lean conditions by methane and propane over indium/cerium-promoted zeolites[J], Appl. Catal. B 2003,40:51-67.
    [14]M.F. Irfan, J.H. Goo, S.D. Kim, S.C. Hong. Effect of CO on NO oxidation over platinum based catalysts for hybrid fast SCR process[J], Chemosphere 2007,66:54-59.
    [15]黄竹青.关于大型燃煤电站锅炉选择性催化还原脱硝技术的探讨[J],能源与环境,2005,27:36-39.
    [16]鲁佳易,卢啸风,刘汉周,陈继辉.SCR法烟气脱硝催化剂及其应用特性的探讨[J],电站系统工程,2008,24:5-8.
    [17]E.V. Kondratenko, J. Perez-Ramirez. Transient studies on the effect of oxygen on the high-temperature NO reduction by NH3 over Pt-Rh gauze[J], Appl. Catal. A 2005,289: 97-103.
    [18]D.D. Miller, S.S.C. Chuang. In situ infrared study of NO reduction over Pd/Al2O3 and Ag-Pd/Al2O3 catalysts under H2-rich and lean-burn conditions [J], J. Chin. Inst. Chem. Eng. 2009,40:613-621.
    [19]E.C. Corbos, M. Haneda, X. Courtois, P. Marecot, D. Duprez, H. Hamada. Cooperative effect of Pt-Rh/Ba/Al and CuZSM-5 catalysts for NOx reduction during periodic lean-rich atmosphere[J], Catal. Commun.2008,10:137-141.
    [20]E.V. Kondratenko, V.A. Kondratenko, M. Richter, R. Fricke. Influence of O2 and H2 on NO reduction by NH3 over Ag/Al2O3:A transient isotopic approach[J], J. Catal.2006,239: 23-33.
    [21]G. Busca, L. Liett, G. Ramis, F. Berti. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J], Appl. Catal. B 1998,18:1-36.
    [22]C. Orsenigo, L. Lietti, E. Tronconi, P. Forzatti, F. Bregani. Dynamic investigation of the role of the surface sulfates in NOx reduction and SO2 oxidation over V2O5-WO3/TiO2 catalysts[J]. Ind. Eng. Chem. Res.1998,37:2350-2359.
    [23]G. Ramis, M.A. Larrubia. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts[J], J. Mol. Catal. A 2004,215:161-167.
    [24]S. Suarez, J.A. Martin, M. Yates, P. Avila, J. Blanco. N2O formation in the selective catalytic reduction of NOx with NH3 at low temperature on CuO-supported monolithic catalysts[J], J. Catal.2005,229:227-236.
    [25]K. Kohler, M. Maciejewski, H. Schneider, A. Baiker. Chromia Supported on Titania:V. Preparation and Characterization of Supported CrO2, CrOOH, and Cr2O3[J], J. Catal.1995, 157:301-311.
    [26]M. Wallin, S. Forser, P. Thormahlen, M. Skoglundh. Screening of TiO2-supported catalysts for selective NOx reduction with ammonia[J], Ind. Eng. Chem. Res.2004,43:7723-7731.
    [27]G. Delahay, D. Valade, A. Guzman-Vargas, B. Coq. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods[J], Appl. Catal. B 2005,55:149-155.
    [28]A. Sultana, T. Nanba, M. Haneda, H. Hamada. SCR of NOx with NH3 over Cu/NaZSM-5 and Cu/HZSM-5 in the presence of decane[J], Catal. Commun.2009,10:1859-1863.
    [29]X.M. Chen, X.F. Yang, A.M. Zhu, C.T. Au, C. Shi. In situ DRIFTS study during C2H4-SCR of NO over Co-ZSM-5[J], J. Mol. Catal. A 2009,312:31-39.
    [30]Z. Li, L.T.Shen, W. Huang, K.C. Xie. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst[J], J. Environ. Sci.2007,19:1516-1519.
    [31]G. Centi, S. Perathoner, F. Vazzana, M. Marella, M. Tomaselli, M. Mantegazza. Novel catalysts and catalytic technologies for N2O removal from industrial emissions containing O2, H2O and SO2[J], Adv. Environ. Res.2000,4:325-338.
    [32]A.T. Krishnan, A.L. Boehman. Selective catalytic reduction of nitric oxide with ammonia at low temperature[J], Appl. Catal. B 1998,18:189-198.
    [33]M. Kang, E.D. Park, J.M. Kim, J.E. Yie. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J], Catal. Today 2006,111:236-241.
    [34]G. Qi, R.T. Yang. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J], Appl. Catal. B 2003,44:217-225.
    [35]Z.H Chen, X.H. Li, X. Gao, Y.B. Jiang, Y.X. Lu, F.R. Wang, L.F. Wang. Selective catalytic reduction of NOx with NH3 on a Cr-Mn mixed oxide at low temperature[J], Chinese J. Catal. 2009,30:4-6.
    [36]I. Nova, L. Lietti, L. Casagrande, L. Dall'Acqua, E. Giamello, P. Forzatti. Characterization and reactivity of TiO2-supported MoO3 De-Nox SCR catalysts [J], Appl. Catal. B 1998,17: 245-258.
    [37]B.C. Huang, R. Huang, D.J. Jin, D.Q. Ye. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J], Catal. Today 2007,126:279-283.
    [38]Z.G. Huang, Z.Y Liu, X.L. Zhang, Q.Y. Liu. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature [J], Appl. Catal. B 2006,63: 260-265.
    [39]X.L. Zhang, Z.G. Huang, Z.Y. Liu. Effect of KCl on selective catalytic reduction of NO with NH3 over a V2O5/AC catalyst[J], Catal. Commun.2008,9:842-846.
    [40]M.A. Uddin, K. Shimizu, K. Ishibe, E. Sasaoka, Characteristics of the low temperature SCR of NOx with NH3 over TiO2[J], J. Mol. Catal. A 2009,309:178-183.
    [41]L. Casagrande, L. Lietti, I. Nova, P. Forzatti, A. Baiker, SCR of NO by NH3 over Ti02-supported V2O5-MoO3 catalysts:reactivity and redox behavior[J], Appl. Catal. B 1999, 22:63-77.
    [42]M.A. Centeno, I. Carrizosa, J. A. Odriozola. In situ DRIFTS study of the SCR reaction of NO with NH3 in the presence of O2 over lanthanide doped V2O5/Al2O3 catalysts[J], Appl. Catal. B 1998,19:67-73.
    [43]G.Y. Xie, Z.Y. Liu, Z.P. Zhu, Q.Y. Liu, J. Ge, Z.G. Huang. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent:I. Deactivation of SCR activity by SO2 at low temperatures[J], J. Catal.2004,224:36-41.
    [44]H. Sjovall, R.J. Blint, L. Olsson. Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5[J], Appl. Catal. B 2009,92:138-153.
    [45]O. Krocher, M. Devadas, M. Elsener, A. Wokaun, N. Soger, M. Pfeifer, Y. Demel, L. Mussmann. Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts[J], Appl. Catal. B 2006,66:208-216.
    [46]S.J. Tauster, S.C. Fung, R.L. Garten. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J], J. Am. Chem. Soc.1978,100:170-175.
    [47]S.J. Tauster, S.C. Fung, R.T.K. Baker, J.A. Horsley. Strong Interactions in Supported-Metal Catalysts[J], Science 1981,211:1121-1125.
    [48]Z.B. Wu, B.Q. Jiang, Y. Liu, W.R. Zhao, B.H. Guan. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method[J], J. Hazard. Mater.2007,145:488-494.
    [49]Z.B. Wu, B.Q. Jiang, Y. Liu, H.Q. Wang, R.B. Jin. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J], Environ. Sci. Technol.2007,41:5812-5817.
    [50]A. Kato, S. Marsuda, F. Nakajima, M. Imanari, Y. Watanabe. Reduction of nitric oxide with ammonia on iron oxide-titanium oxide catalyst[J], J. Phys. Chem.1981,85:1710-1713.
    [51]H.E. Curry-hyde, H. Musch, A. Baiker. Selective catalytic reduction of nitric oxide over amorphous and crystalline chromia:I. Comparative study of activities [J]. Appl. Catal.1990, 65:211-223.
    [52]D.A. Pena, B.S. Uphade, P.G. Smirniotis. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:I. evaluation and characterization of first row transition metals[J]. J. Catal.2004,221:421-431.
    [53]A. Hellman, H. Gronbeck. First-Principles Studies of NOx Chemistry on Ag-n/alpha-Al2O3[J], J. Phys. Chem. C 2009,113:3674-3682.
    [54]J.A. Sullivan, J.A. Doherty. NH3 and urea in the selective catalytic reduction of NOx over oxide-supported copper catalysts[J], Appl. Catal. B 2005,55:185-194.
    [55]F. Kapteijn, L. Singoredjo, A. Andreini. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl. Catal. B 1994,3: 173-189.
    [56]Y.S. Shen, S.M. Zhu, T. Qiu, S.B. Shen. A novel catalyst of CeO2/Al2O3 for selective catalytic reduction of NO by NH3[J]Catal. Commun.2009,11:20-23.
    [57]J. Pasel, P. Kaβner, B. Montanari, M. Gazzano, A. Vaccari, W. Makowski, T. Lojewski, R. Dziembaj, H. Papp. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3[J], Appl. Catal. B 1998, 18:199-213.
    [58]Y.C. Chiang, P.C. Chiang, C.P. Huang. Effects of pore structure and temperature on VOC adsorption on activated carbon[J], Carbon 2001,39:523-534.
    [59]E. Garcia-Bordeje, L. Calvillo, M. J. Lazaro, R. Moliner. Vanadium supported on carbon-coated monoliths for the SCR of NO at low temperature:effect of pore structure[J]. Appl. Catal. B 2004,50:235-242.
    [60]G. Marban, R. Antuna, A.B. Fuertes. Low-temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metal oxides[J], Appl. Catal. B 2003,41:323-338.
    [61]E. Garcia-Bordeje, L. Calvillo, M. J. Lazaro, R. Moliner. Vanadium supported on carbon-coated monoliths for the SCR of NO at low temperature:effect of pore structure[J], Appl. Catal. B 2004,50:235-242.
    [62]Z.P. Zhu, Z.Y. Liu, H.X. Niu, S.J. Liu, T.D.Hu, T. Liu, Y.N. Xie. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J], J. Catal.2001,197:6-16.
    [63]Z.P. Zhu, Z.Y. Liu, H.X. Niu, S.J. Liu. Promoting Effect of SO2 on activated carbon-supported vanadia catalyst for NO reduction by NH3 at low temperatures[J], J. Catal. 1999,187:245-248.
    [64]Z.P. Zhu, Z.Y. Liu, S.J. Liu, H.X. Niu, T.D. Hu, T. Liu, Y.N. Xie. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures[J], Appl. Catal. B 2000,26:25-35.
    [65]Z.P. Zhu, Z.Y. Liu, S.J. Liu, H.X. Niu, T.D. Hu, T. Liu, Y.N. Xian. Flue gas NOx removal by SCR with NH3 on CuO/AC at low temperatures[J], Stud. Surf. Sci. Catal.2000,130: 1385-1390.
    [66]Z.H. Zhu, L. R. Radovic, G. Q. Lu. Effects of acid treatments of carbon on N2O and NO reduction by carbon-supported copper catalysts[J], Carbon 2000,38:451-464.
    [67]L. Singoredjo, M. Slagt, J.V. Wees, F. Kapteijn, J.A. Moulijn. Selective catalytic reduction of NO with NH3 over carbon supported copper catalysts[J]. Catal. Today 1990,7:157-165.
    [68]H.H. Tseng, M.Y. Wey, Y.S. Liang, K.-H. Chen. Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbon-supported metal oxides[J], Carbon 2003,41: 1079-1085.
    [69]G. Marban, A.B. Fuertes. Low-temperature SCR of NOx with NH3 over NomexTM rejects-based activated carbon fibre composite-supported manganese oxides:Part Ⅰ. Effect of pre-conditioning of the carbonaceous support[J], Appl. Catal. B 2001,34:43-53.
    [70]G. Marban, A.B. Fuertes. Low-temperature SCR of NOx with NH3 over NomexTM rejects-based activated carbon fibre composite-supported manganese oxides:Part Ⅱ. Effect of procedures for impregnation and active phase formation[J], Appl. Catal. B 2001,34:55-71.
    [71]X.L. Tang, J.M. Hao, H.H. Yi, J.H. Li. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts[J], Catal. Today 2007,126:406-411.
    [72]沈伯雄,史展亮,施建伟,杨婷婷,赵宁.基于CeO2/ACFN的低温SCR烟气脱硝性能研究[J],燃料化学学报 2007,35:125-128.
    [73]J.H. Huang, Z.Q. Tong, Y. Huang, J.F. Zhang. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J], Appl. Catal.B 2008,78:309-314.
    [74]R.M. Caraba, S.G. Masters, K.M. Eriksen, V.I. Parvulescu, R. Fehrmann. Selective catalytic reduction of NO by NH3 over high surface area vanadia-silica catalysts[J], Appl. Catal. B 2001,34:191-200.
    [75]G. Carja, Y. Kameshima, K. Okada, CD. Madhusoodana. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3[J], Appl. Catal. B 2007,73:60-64.
    [76]P. Balle, B. Geiger, S. Kureti. Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust[J], Appl. Catal. B 2009,85:109-119.
    [77]胡玉才.铈锆固溶体的制备、表征及三效催化性能[J],材料科学与工艺,2005,13:34-37.
    [78]袁慎忠,肖彦,张燕,薛群山,刘毅,鞠文鹏,陈楠.(Ce-Zr-Pr)O2在三效催化剂中的应用[J],中国稀土学报,2006,24:66-68.
    [79]J.A. Anderson, R.A. Daley, S.Y. Christou, A.M. Efstathiou. Regeneration of thermally aged Pt-Rh/CexZr1-xO2-Al2O3 model three-way catalysts by oxychlorination treatments[J], Appl. Catal. B 2006,64:189-200.
    [80]G. Qi, R.T. Yang. A superior catalyst for low-temperature NO reduction with NH3[J], Chem. Comm.2003,7:848-849.
    [81]G. Qi, R.T. Yang, R. Chang. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J], Appl. Catal. B 2004,51: 93-106.
    [82]孙锦宜,林西平.环保催化材料与应用[M].北京:化学工业出版社,2002.
    [83]M.A. Gomez-Garcia, S. Thomas, V. Pitchon, A. Kiennemann. Selective reduction of NOx by liquid hydrocarbons with supported HPW-metal catalysts. Catal. Today 2007,119:52-58.
    [84]M. Labaki, M. Mokhtari, J.F. Brilhac, S. Thomas, V. Pitchon. Simulation of NO and NO2 sorption-desorption-reduction behaviours on Pt-impregnated HPW supported on TiO2. Appl. Catal. B 2007,76:386-394.
    [85]刘杨先,张军,盛昌栋,张永春,陈洁,谢芳.NOx低温选择性催化还原催化剂研究进展[J],化工进展,2008,27:1198-1203.
    [86]孙琪,杨佳,任亮.溶胶凝胶法和浸渍法制备的Cu/SiO2催化剂的表征与性能[J],辽宁师范大学学报(自然科学版),2008,31:189-191.
    [87]M. Kang, J.H. Park, J.S. Choi, E.D. Park, J.E. Yie. Low-temperature catalytic reduction of nitrogen oxides with ammonia over supported manganese oxide catalysts[J], Korean J. Chem. Eng.2007,24:191-195.
    [88]T. Valdes-Solis, G. Marban, A.B. Fuertes. Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts[J], Appl. Catal. B 2003,46:261-271.
    [89]W.Q. Xu, Y.B. Yu, C.B Zhang, H. He. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J], Catal. Commun.2008,9:1453-1457.
    [90]G. Qi, R.T. Yang. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J], J. Catal.2003,217:434-441.
    [91]D. Avnir. Organic chemistry within ceramic matrices:doped sol-gel materials[J], Acc. Chem. Res.1995,25:328-334.
    [92]X. Zhang, X.G. Li, J.S. Wu, R.C. Yang, Z.H. Zhang. Selective catalytic reduction of no by ammonia on V2O5/TiO2 catalyst prepared by sol-gel method[J], Catal. Lett.2009,130: 235-238.
    [93]P. Kornelak, D.S. Su, C. Thomas, J. Camra, A. Weselucha-Birczynska, M. Toba, M. Najbar. Surface species structure and activity in NO decomposition of an anatase-supported V-O-Mo catalyst[J], Catal. Today 2008,137:273-277.
    [94]M. Schwidder, M.S. Kumar, U. Bentrup, J. Perez-Ramirez, A. Bruckner, W. Grunert. The role of Brφnsted acidity in the SCR of NO over Fe-MFI catalysts[J], Micropor. Mesopor. Mat. 2008,111:124-133.
    [95]J.H.A. Kiel, A.C.S. Edelaar, W. Prins, W.P.M.V. Swaaij. Performance of silica-supported copper oxide sorbents for SOx/NOx-removal from flue gas:Ⅱ. Selective catalytic reduction of nitric oxide by ammonia[J], Appl. Catal. B 1992,1:41-60.
    [96]D.A. Pena, B.S. Uphade, E.P. Reddy, P.G. Smirniotis. Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts[J], J. Phys. Chem. B 2004,108:9927-9936.
    [97]G. Qi, R.T. Yang. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J], J. Catal.2003,217:434-441.
    [98]G. Busca, G. Centi, L. Marchetti, F. Trifiro. Chemical and spectroscopic study of the nature of a vanadium oxide monolayer supported on a high-surface-area TiO2 anatase[J], Langmuir 1986,2:568-577.
    [99]F. Eigenmann, M. Maciejewski, A. Baiker. Selective reduction of NO by NH3 over manganese-cerium mixed oxides:Relation between adsorption, redox and catalytic behavior[J], Appl. Catal. B 2006,62:311-318.
    [100]W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek. Mechanism of the Selective Catalytic Reduction of NO by NH3 over MnOx/Al2O3[J], J. Catal,1997,171:208-218.
    [101]W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 Ⅱ. Reactivity of adsorbed NH3 and NO complexes[J], J. Catal,1997,171:219-230.
    [102]L. Lietti, J. L. Alemany, P. Forzatti, G. Busca, G. Ramis, E. Giamello, F. Bregani. Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia[J], Catal. Today 1996,29:143-148.
    [103]G. Ramis, G. Busca, F. Bregani, P. Forzatti. Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction[J]. Appl. Catal.1990,64: 259-278.
    [104]H. Schneider, U. Scharf, A. Wokaun, A. Baiker. Vanadia-titania aerogels:Ⅲ. Influence of niobia on structure and activity for the selective catalytic reduction of NO by NH3[J], J. Catal.1994,150:284-300.
    [105]K.I. Hadjiivanov. Identification of neutral and charged NxOy surface species by IR spectroscopy[J], Catal. Rew.-Sci. Eng.2000,42:71-144.
    [106]V. Parvulescu, P. Grange, and B. Delmon. Effect of Coexchanging with a second metal upon the interaction of nitric oxide with Cu-ZSM-5[J], J. Phys. Chem., B 1997,101: 6933-6942.
    [107]A. Raj, T.H.N. Le, S. Kaliaguine, A. Auroux. Involvement of nitrate species in the SCR of NO by NH3 at ambient conditions over TS-1 catalysts[J], Appl. Catal. B 1998,15:259-267.
    [108]T.S. Park, S.K. Jeong, S.H. Hong, S.C. Hong. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature[J], Ind. Eng. Chem. Res. 2001,40:4491-4495.
    [109]W.S. Kijlstra, M. Biervliet, E.K. Poels, A. Bliek. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl. Catal. B 1998,16:327-337.
    [110]J.A. Wang, Z.L. Zhu, C.L. Li. Pathway of the cycle between the oxidative adsorption of SO2 and the reductive decomposition of sulfate on the MgAl2-xFexO4 catalyst[J], J. Mol. Catal. A 1999,139:31-41.
    [111]Z.P. Zhu, H.X. Niu, Z.Y. Liu, S.J. Liu. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J], J. Catal.2000,195:268-278.
    [112]Z.G. Huang, Z.P. Zhu, Z.Y. Liu, Q.Y. Liu. Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures[J], J. Catal.2003,214:213-219.
    [113]H.H. Phil, M.P. Reddy, P.A. Kumar, L.K. Ju, J.S. Hyo. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures [J], Appl. Catal. B 2008,78: 301-308.
    [114]M.A. Peralta, V.G. Milt, L.M. Cornaglia, C.A. Querini. Stability of Ba,K/CeO2 catalyst during diesel soot combustion:Effect of temperature, water, and sulfur dioxide[J], J. Catal. 2006,242:118-130.
    [115]刘炜,童志权,罗婕Ce-Mn/TiO2催化剂选择性催化还原NO的低温活性及抗毒化性能[J],环境科学学报,2006,26:1240-1245.
    [116]S.-S. Lim, H.-J. Lee, D.-J. Moon, J.-H. Kim, N.-C. Park, J.-S. Shin, Y.-C. Kim. Autothermal reforming of propane over Ce modified Ni/LaAlO3 perovskite-type catalysts[J], Chem. Eng. J.2009,152:220-226.
    [117]R. Xu, W. Wei, W.-H. Li, T.-D. Hu, Y.-H. Sun. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas:Effect of calcination temperature[J], J. Mol. Catal. A 2005, 234:75-83.
    [118]V. Parvulescu, Cr. Tablet, C. Anastasescu, B. L. Su. Activity and stability of bimetallic Co (V, Nb, La)-modified MCM-41 catalysts[J], Catal. Today 2004,93-95:307-313.
    [119]M. Pisarek, M. Lukaszewski, P. Winiarek, P. Kedzierzawski, M. Janik-Czachor. Catalytic activity of Cr- or Co-modified Ni-based rapidly quenched alloys in the hydrogenation of isophorone[J],Appl. Catal. A 2009,358:240-248.
    [120]F. Delbecq, P. Sautet. Electronic and chemical properties of the Pt80Fe20(111) alloy surface: a theoretical study of the adsorption of atomic H, CO, and unsaturated molecules[J], J. Catal.1996,164:152-165.
    [121]A. Gil, L.M. Gandia, S.A. Korili. Effect of the temperature of calcination on the catalytic performance of manganese- and samarium-manganese-based oxides in the complete oxidation of acetone[J], Appl. Catal. A 2004,274:229-235.
    [122]S.D. Qin, C.H. Zhang, J. Xu, B.S. Wu, H.W. Xiang, Y.W. Li. Effect of Mo addition on precipitated Fe catalysts for Fischer-Tropsch synthesis[J], J. Mol. Catal. A 2009,304: 128-134.
    [123]S.M. Al-Zahrani, B.Y. Jibril, A.E. Abasaeed. Selection of optimum chromium oxide-based catalysts for propane oxidehydrogenation[J], Catal. Today 2003,81:507-516.
    [124]C.W. Tang, C.B. Wang, S.H. Chien. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS[J], Thermochimica Acta 2008,473:68-73.
    [125]L. Jalowiecki-Duhamel, J. Carpentier, A. Ponchel. Catalytic hydrogen storage in cerium nickel and zirconium (or aluminium) mixed oxides[J], Int. J. Hydrogen Energ.2007,32: 2439-2444.
    [126]X. Zhang, L.Y. Ji, S.C. Zhang, W.S. Yang. Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor[J], J. Power Sources 2007,173:1017-1023.
    [127]M. Romeo, K. Bak, J.E. Fallah, F.L. Normand, L. Hilaire. XPS study of the reduction of cerium dioxide[J], Surf. Interface Anal.1993,20:508-512.
    [128]M. Kang, E.D. Park, J.M. Kim, J.E. Yie. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J], Appl. Catal. A 2007,327:261-269.
    [129]S.X. Yang, W.P. Zhu, Z.P. Jiang, Z.X. Chen, J.B. Wang. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J], Appl. Surf. Sci.2006, 252:8499-8505.
    [130]Z.Y. Yuan, T.Z. Ren, G.H. Du, B.L. Su. A facile preparation of single-crystalline-Mn2O3 nanorods by ammonia-hydrothermal treatment of MnO2[J], Chem. Phys. Lett.2004,389: 83-86.
    [131]M. Machida, M. Uto, D. Kurogi, T. Kijima. MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. sorptive removal of NOx[J], Chem. Mater.2000,12: 3158-3164.
    [132]V. Vishwanathan, K.-W. Jun, J.-W. Kim, H.-S. Roh. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts[J], Appl. Catal. A 2004, 276:251-255.
    [133]G. Martra. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour[J], Appl. Catal. A 2000, 200:275-285.
    [134]C.K. Costello, J.H. Yang, H.Y. Law, Y. Wang, J.N. Lin, L.D. Marks, M.C. Kung MC, H.H. Kung. On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3[J], Appl. Catal. A 2003,243:15-24.
    [135]赵波,韩文峰,霍超,刘化章.作为催化剂载体的活性炭[J],化学通报,2004,67:1-6.
    [136]R. Lopez-Fonseca, J.I. Gutierrez-Ortiz, M.A. Gutierrez-Ortiz. Catalytic combustion of chlorinated volatile organic compounds[J], Recent Res. Dev. Catal.2003,2:51-57.
    [137]L.V. Duong, B.J. Wood, J.T. Kloprogge. XPS study of basic aluminum sulphate and basic aluminium nitrate[J], Mater. Lett.2005,59:1932-1936.
    [138]W.R. Thompson, J.E. Pemberton. Characterization of octadecylsilane and stearic-acid layers on A12O3 surfaces by raman-spectroscopy[J], Langmuir 1995,11:1720-1725.
    [139]T. Mishra, P. Mohapatra, K.M. Parida. Synthesis, characterisation and catalytic evaluation of iron-manganese mixed oxide pillared clay for VOC decomposition reaction[J], Appl. Catal.B 2008,79:279-285.
    [140]L. Chmielarz, P. Kustrowski, M. Zbroja, B. Gil-Knap, J. Datka, R. Dziembaj. SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co:Part Ⅱ. Temperature programmed studies[J], Appl. Catal. B 2004,53:47-61.
    [141]M. Mhamdi, S. Khaddar-Zine, A. Ghorbel. Influence of the cobalt salt precursors on the cobalt speciation and catalytic properties of H-ZSM-5 modified with cobalt by solid-state ion exchange reaction[J], Appl. Catal. A 2009,357:42-50.
    [142]M.A. Centeno, I. Carrizosa, J.A. Odriozola. NO-NH3 coadsorption on vanadia/titania catalysts:determination of the reduction degree of vanadium [J], Appl. Catal. B 2001,29: 307-314.
    [143]M. Amblard, R. Burch, B.W.L. Southward. A study of the mechanism of selective conversion of ammonia to nitrogen on Ni/γ-Al2O3 under strongly oxidising conditions[J], Catal. Today 2000,59:365-371.
    [144]K. Hadjiivanov, H. Knozinger. Species formed after NO adsorption and NO+O2 co-adsorption on TiO2:An FTIR spectroscopic study[J], Phys. Chem. Chem. Phys.2000,12: 2803-2806.
    [145]J. Eng, C.H. Bartholomew. Kinetic and mechanistic study of NOx reduction by NH3 over H-form Zeolites[J], J. Catal.1997,171:27-44.
    [146]R.Q. Long, R.T. Yang. Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 Catalyst[J], J. Catal.2002,207:224-231.
    [147]A.M. Venezia, G. Di. Carlo, G. Pantaleo, L.F. Liotta, G. Melaet, N. Kruse. Oxidation of CH4 over Pd supported on TiO2-doped SiO2:Effect of Ti(Ⅳ) loading and influence of SO2[J], Appl. Catal. B 2009,88:430-437.
    [148]B.M. Reddy, P.M. Sreekanth, Y. Yamada, Q. Xu, T. Kobayashi. Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques[J],Appl. Catal. A 2002,228:269-278.
    [149]B.M. Reddy, K.N. Rao, G.K. Reddy, P. Bharali. Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole[J], J. Mol. Catal. A 2006,253: 44-51.
    [150]E.J. Romano, K.H. Schulz. A XPS investigation of SO2 adsorption on ceria-zirconia mixed-metal oxides[J], Appl. Surf. Sci.2005,246:262-270.
    [151]B.L. Zhang, B.S. Chen, K.Y. Shi, S.J. He, X.D. Liu, Z.J. Du, K.L. Yang. Preparation and characterization of nanocrystal grain TiO2 porous microspheres[J], Appl. Catal. B 2003,40: 253-258.
    [152]H. Abdulhamid, E. Fridell, J. Dawody, M. Skoglundh. In situ FTIR study of SO2 interaction with Pt/BaCO3/Al2O3 NOx storage catalysts under lean and rich conditions[J], J. Catal. 2006,241:200-210.
    [153]H. Mahzoul, L. Limousy, J. F. Brilhac, P. Gilot. Experimental study of SO2 adsorption on barium-based NOx adsorbers[J], Anal. Appl. Pyrolysis 2000,56:179-193.
    [154]J.M. Watson, U.S. Ozkan. Spectroscopic characterization of surface species in deactivation of sol-gel Gd-Pd catalysts in NO reduction with CH4 in the presence of SO2[J], J. Catal. 2003,217:1-11.
    [155]R.T. Yang, W.B. Li, N. Chen. Reversible chemisorption of nitric oxide in the presence of oxygen on titania and titania modified with surface sulfate[J], Appl. Catal. A 1998,169: 215-225.
    [156]L. Lietti, G. Ramis, F. Berti, G. Toledo, D. Robba, G. Busca, P. Forzatti. Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts[J], Catal. Today 1998,42:101-116.
    [157]H.K. Matralis, M. Ciardelli, M. Ruwet, P. Grange. Vanadia Catalysts Supported on Mixed TiO2-Al2O3 Supports:Effect of composition on the structure and acidity[J], J. Catal.1995, 157:368-379.
    [158]M. Kantcheva. Identification, Stability, and reactivity of NOX species adsorbed on titania-supported manganese catalysts[J], J. Catal.2001,204:479-494.
    [159]S. Xie, J. Wang, H. He. Poisoning effect of sulphate on the selective catalytic reduction of NOX by C3H6 over Ag-Pd/Al2O3[J], J. Mol. Catal., A.2006,266:166-172.
    [160]R.Q. Long, R.T. Yang. FTIR and kinetic studies of the mechanism of Fe3+-exchanged TiO2-pillared clay catalyst for selective catalytic reduction of NO with ammonia[J], J. Catal. 2000,190:22-31.
    [161]W.Q. Xu, H. He, Y.B. Yu. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J], J. Phys. Chem. C 2009,113:4426-4432.
    [162]V. Tufano, M. Turco. Kinetic modeling of nitric oxide reduction over a high surface area V2O5-TiO2 catalyst[J],Appl. Catal. B:Environ.1993,2:9-26.
    [163]C.U.I, Odenbrand, P.L.T, Gabrielsson, J.G.M. Brandin, L.A.H. Andersson. Effect of water vapor on the selectivity in the reduction of nitric oxide with ammonia over vanadia supported on silica-titania[J], Appl. Catal.1991,78:109-122.
    [164]N. Macleod, R. Cropley, R.M. Lambert. Efficient reduction of NOx by H2 under oxygen-rich conditions over Pd/TiO2 catalysts:an in situ DRIFTS study[J], Catal. Lett. 2003,86:69-75.
    [165]S. Kameoka, Y. Ukisu, T. Miyadera. Selective catalytic reduction of NOx with CH3OH, C2H5OH and C3H6 in the presence of O2 over Ag/Al2O3 catalyst:Role of surface nitrate species[J], Phys. Chem. Chem. Phys.2000,2:367-372.
    [166]W. Gopel, G. Rocker. Intrinsic defects of TiO2(110)-interaction with chemisorbed O2, H2, CO, and CO2[J], Phys. Rev. B 1983,28:3427-3438.
    [167]G. Lu, A. Linsebigler, J.T.Jr. Yates, CO photooxidation on TiO2(110)[J], Phys. Chem.1994, 98:11733-11738.
    [168]张力,刘伟.活性炭吸附烟气脱硫的展望[J],辽宁化工,1996,145:16-16.
    [169]R. Khodayari, C.U.I. Odenbrand. Regeneration of commercial SCR catalysts by washing and sulphation:effect of sulphate groups on the activity[J], Appl. Catal. B 2001,33: 277-291.
    [170]G.Y. Xie, Z.Y. Liu, Z.P. Zhu, Q.Y. Liu, J.R. Ma. Reductive regeneration of sulfated CuO/Al2O3 catalyst-sorbent in ammonia[J], Appl. Catal. B 2003,45:213-221.
    [171]J.R. Ma, Z.Y. Liu, S.J. Liu, Z.P. Zhu. A regenerable Fe/AC desulfurizer for SO2 adsorption at low temperatures[J], Appl. Catal. B 2003,45:301-309.
    [172]E. Richter. Carbon catalysts for pollution control[J], Catal. Today 1990,7:93-112.
    [173]马建蓉,黄张根,刘振宇,郭士杰.再生方法对V2O5/AC催化剂同时脱硫脱硝活性的影响[J],催化学报,2005,26:463-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700