复合材料单面补强含裂纹铝合金薄板的残余热应力及其影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料胶接修复是一种新型、高效、低成本的飞机损伤构件延寿技术,已成功地在多种军用和民用飞机上获得应用。其中,采用复合材料单面补强含裂纹损伤构件是该项技术的重要研究内容,主要用于修复难以或无法拆卸的飞机损伤金属构件(如机身或机翼蒙皮等部位)。经高温胶接修复后,复合材料单面补强构件在常温下会因复合材料补片与金属母体之间的热失配而产生显著的残余热应力。复合材料单面补强试件为不对称结构,在残余热应力或外加载荷的作用下试件会因中性轴的偏移而发生弯曲。在残余热应力和弯矩的共同作用下,复合材料单面补强构件的力学行为研究就变得非常复杂。
     本文采用实验研究和理论分析相结合的方法,开展了用高性能碳/环氧复合材料单面补强含裂纹铝合金薄板的相关研究。着重考察了复合材料单面补强铝合金薄板试件中的残余热应变,并采用解析法和数值计算分别预测了单面补强试件中的残余热应力/应变分布,最后考察了残余热应力与弯矩共同作用对复合材料单面补强试件准静态拉伸性能和疲劳行为的影响。本文的成果包括:
     (1)复合材料单面补强铝合金薄板残余热应力/应变的实验研究与理论分析
     考察了固化制度及加载历史对复合材料单面补强试件应力释放温度的影响,并在胶粘剂固化动力学分析与Maxwell粘弹性模型的基础上,建立了预测多步法固化制度下复合材料单面补强试件应力释放温度的模型。研究结果表明,随着固化温度的升高,应力释放温度与固化温度之差逐渐增加;加载历史对应力释放温度的影响较小,应力释放温度的降低主要集中在疲劳载荷作用的初始阶段;应力释放温度预测模型在预测两步法固化制度对应的应力释放温度时,能够将偏差控制在7.4%以内。
     通过实验和数值分析较全面、系统地考察了固化制度、补片设计、裂纹长度及界面脱粘等因素对复合材料单面补强试件热变形挠度和残余热应力/应变的影响。实验及三维有限元计算结果均表明,复合材料胶接修复在被修复构件和补片中引入显著的残余热应力/应变;采用两步法固化制度可以有效降低残余热应力/应变;铝合金板中残余热应力/应变集中现象会随着补片宽度的增加而得到改善;补片铺层设计能够有效减小试件中的残余热应力/应变;除裂纹及其尖端附近外,裂纹对复合材料单面补强试件中的残余应力/应变场影响较小;界面脱粘可显著减小铝合金板胶接界面在脱粘区域内的残余热应力。有限元分析还发现,增加胶层厚度或补片与铝合金板的刚度比能够降低铝合金板胶接界面上的残余热应力。
     改进了Hart-Smith双面搭接接头模型,引入了弯矩的影响,使之适用于复合材料单面补强构件的分析。在计算残余热应力时,双金属片模型和改进的Hart-Smith模型计算结果与实验值出现一定偏差,但解析模型能够有效预测不同固化制度下,复合材料单面补强试件中残余热应力及其分布的变化趋势。
     (2)残余热应力与弯矩共同作用对复合材料单面补强含裂纹铝合金薄板力学性能的影响
     采用Rose模型和Wang-Rose模型考察复合材料单面补强半无限板和有限宽板时均发现,复合材料单面补强能够有效降低裂纹尖端的应力强度因子。
     修正了Wang-Rose模型,使应力强度因子K包括了残余热应力和弯矩的影响。研究发现,当应力释放温度为36.2℃时,残余热应力对应力强度因子没有贡献;当应力释放温度大于36.2℃时,残余热应力对应力强度因子的影响随着外加载荷的增加而减小。
     经过单向碳/环氧复合材料单面补强后,含裂纹铝合金板的准静态拉伸断裂载荷可恢复到完好铝合金板的90%以上,残余热应力的存在降低了复合材料单面补强试件的承载能力,但降低幅度较小。
     提出了等效模量的概念,并采用其表征复合材料单面补强试件的刚度恢复效果,完善了复合材料修复构件的评价标准。在拉伸初始阶段,复合材料单面补强试件的弯曲变形逐渐回复,补强区域铝合金板表面应变随着应力的增加而快速增加;随着载荷的增加,未修复的含裂纹铝合金板的等效弹性模量不断减小,而复合材料单面补强试件补强区域的等效模量逐渐增加。采用等效模量还可以表征不同固化制度对修复结构刚度特性的影响规律。
     确定了含裂纹铝合金板的Paris公式的材料常数,材料常数C和m分别为2.55×10~(-10)及2.85。
     复合材料单面补强能够显著提高含裂纹铝合金板的疲劳性能,残余热应力显著缩短了复合材料单面补强试件的疲劳寿命。实验结果表明,单向碳/环氧复合材料单面补强能够使含裂纹铝合金板的疲劳寿命延长11倍以上。采用修正的Wang-Rose模型及Paris公式对复合材料单面补强含裂纹试件的疲劳寿命进行预测,理论计算值与实验测量值吻合较好。还发现,在疲劳应力比较低时,残余热应力使试件的疲劳寿命显著缩短;在疲劳应力比较高时,残余热应力对试件疲劳寿命的影响较小。
Adhesively bonded composite repair, a novel, efficient and cost-effective method to extend the service life of the damaged aircraft component, has been widely used in the military and commercial aircrafts. Reinforcing the cracked component by single-sided composite patching technology is gaining more and more concern when it is difficult or not possible to access both sides of a component, such as the aircraft fuselage or wing skin. Composite repair method has been shown to be very promising owing to the light weight, high strength and stiffness of the composites. While significant thermal residual stresses, resulting from the mismatch in the thermal expansion coefficients between the composite patch and the metallic substrate, arise in the single-sided composite patched components after cured at an elevated temperature. The single-sided composite patched specimen (SSCPS) may experience a considerable out-of-plane bending induced from thermal residual stresses or external loadings due to the load-path eccentricity. Therefore, thermal residual stress and bending are key features for the design of single-sided composite patching. Interactions between thermal residual stress and bending present a great challenge in the study of the mechanical behaviors of the SSCPS.
     In this paper, studies on the properties of the cracked thin aluminum alloy plate with a single-sided repair by high-performance carbon/epoxy composite patch is carried out experimentally and theoretically. Measurement of the thermal residual strains in the SSCPS is focused on, and the thermal residual stresses/strains in the SSCPS are predicted by analytical and numerical methods, respectively. Effects of the interactions between thermal residual stress and bending on the quasi-static tensile properties and fatigue behaviors of the SSCPS are also discussed.
     (1) Experimental and theoretical studies on the thermal residual stress/strain in the SSCPS
     Effects of cure cycle and loading history on the stress free temperature (SFT) of the SSCPS is discussed, and a prediction model for the SFT of the SSCPS after multi-step cure cycle, based on the adhesive cure kinetics and Maxwell viscoelastic model, is developed. The results show that the difference between the stress free temperature and the cure temperature rises as the cure temperature increases, and loading history slightly affects the SFT. The contributions of the loading history to the decrease of the SFT are mainly within the early stage of the fatigue loading. When predicting the SFT of the SSCPS prepared under the two-step cure cycle, the SFT prediction model can control the error within 7.4%, compared with the experimental data.
     Effects of some important parameters, including cure cycle, patch design, crack length and interface disbond, on the specimen deflcction and the thermal residual stress/strain are comprehensively investigated, experimentally and numerically. Experimental data and three-dimensional finite element calculation results indicate that significant thermal residual stresses/strains are introduced into the SSCPS by the temperature difference between the SFT and ambient temperature. Two-step cure cycle and patch design are efficient ways to decrease the thermal residual stress/strain. Thermal residual stress/strain concentration can be reduced with the increase of patch width, therefore a full-width composite repair is recommended. Crack in the aluminum substrate greatly affects the stress/strain field around the crack and its tip, while the stress/strain field in the other region of the SSCPS is less sensitive to the crack. Interface disbond can remarkably decrease the thermal residual stress/strain in the aluminum substrate near the adhesion interface within the disbond region. It is also found that the thermal residual stress can be decreased with the increase of the adhesive layer thickness or the patch to substrate stiffness ratio.
     Hart-Smith double-lap joint model is improved to describe the thermal residual stress distribution in the SSCPS, and the improved Hart-Smith model and the bi-metallic strip model are used to predict the thermal residual stress in the SSCPS. The comparison between the predicted results and the experimental data shows a relatively large difference. While the analytical models are efficient to predict the variational tendency of thermal residual stress distributions at various cure cycles.
     (2) Effects of the interactions between thermal residual stress and bending on the mechanical properties of the SSCPS
     Rose model and Wang-Rose model are adopted to investigate the stress intensity factors (SIF) in the single-sided composite patched semi-infinite and finite-width aluminum plate. The calculated results show that single-sided composite patching can significantly reduce the SIF at the crack tip.
     Wang-Rose model is modified to involve the effects of thermal residual stress and bending on the SIF. It's found that thermal residual stress makes no contributions to the SIF when the SFT reaches 36.2℃, however the effect of thermal residual stress on the SIF diminishes with the increasing external loadings when the SFT exceeds 36.2℃. The quasi-static tensile strength of the cracked aluminum plate can recover over 90% of the fracture strength of the perfect aluminum plate after the single-sided reinforcement by unidirectional carbon/epoxy composite patch. The tensile strength of the repaired specimen was decreased by the thermal residual stress.
     Equivalent modulus, which perfects the evaluation criteria for the composite repaired components, is defined to characterise the stiffness-recovery capability of the SSCPS. During the early stage of the tensile loading, the strains on the aluminum plate surface within the bonded region increase rapidly with the increase of the loading due to the recovery of the specimen warpage. With the further increase of external loading, the equivalent modulus of the unpatched cracked aluminum decreases, however the equivalent modulus of the composite patch reinforced region increases. It is also found that equivalent modulus is efficient to describe the effects of cure cycle on the stiffness of the SSCPS.
     The material constants of Paris law, C and m, are determined, and they are 2.55×10~(-10) and 2.85, respectively.
     Single-sided composite patching can significantly improve the fatigue properties of the cracked aluminum plate, and the thermal-mechanical coupling shows adverse influence on the fatigue life of the SSCPS. The experimental results indicate that single-sided composite patching can extend the fatigue life of the cracked aluminum plate over 11 times. Modified Wang-Rose model and the Paris law are efficient to investigate the effects of thermal residual stress on the fatigue life. It is found that the theoretical predictions of the fatigue life agree well with the experimental measurement results. The fatigue life can be significantly shortened due to the thermal residual stress when the stress ratio is low. Effects of the thermal residual stress on the fatigue life of the SSCPS become small when the stress ratio is high.
引文
[1]刘文埏,李玉海.飞机结构日历寿命体系评定技术.北京:航空工业出版社,2004,pp.1-8.
    [2]Bureau of accident investigation.Aircraft accident report:Aloha airlines' flight 243,Boeing 737-200,N73711,near Maul,Hawaii,28 April 1988.NTSB/AA-89/03,1989.
    [3]C S Shin,C M Wang,P S Wong.Fatigue damage repair:comparison of possible methods.International Journal of Fatigue,1996,18:535-546.
    [4]徐建新.复合材料胶接修理损伤金属结构的研究现状.力学进展,2000,30(3):415-423.
    [5]R S Fredell.Damage tolerant repair techniques for pressurized aircraft fuselages.Ph.D.thesis,the Netherlands:Delft University of Technology,1994.
    [6]R P Caruso.Boron/epoxy composites for aircraft structural repair.Composite Polymers,1991,4(4):242-250.
    [7]徐建新.复合材料补片胶接修理技术的研究进展.航空学报,1999,20(4):381-383.
    [8]A A Baker.A summary of work on application of advanced fiber components at the Aeronautical Research Lab.Journal of Composites,1987,9:11-16.
    [9]B J Sutherland.Boron doubler reinforcement modification F-111 wing pivot fittings,status report,1993.
    [10]A A Baker.Repair efficiency in fatigue-cracked aluminum components reinforced with boron/epoxy patches.Fatigue & Fracture of Engineering Materials and Structures,1993,16(7):753-765.
    [11]A A Baker,R J Callinan,M J Davis,et al.Repair of Mirage III aircraft using BFRP crack patching technology.Theoretical and Applied Fracture Mechanics,1984,2:1-16.
    [12]A A Baker,M J Chester,M J Davis.Reinforcement of the F-111 wing pivot fitting with a boron/epoxy doubler system:materials engineering aspects.Composites,1993,24(6):511-521.
    [13]A A Baker.Repair of cracked or defective metallic components with advanced fiber composites:an overview of Australian work.Composite Structures,1984,2:153-181.
    [14]A A Baker.Crack patching:experimental studies,pratical applications.In:Bonded repair of aircraft structures.A.A.Baker,R.Jones,editors,the Netherlands: Martinus Nijhoff Publishers, 1988, pp. 107-174.
    [15] C T Sun, J Klug, C Arendt. Analysis of cracked aluminum plates repaired with bonded composite patches. AIAA Journal, 1996, 34(2):369-374.
    [16] A A Baker, H G A, E J Lumley. Fibre composite reinforcement of cracked aircraft structures, thermal stress and thermal fatigue studies. Proceedings of the 2nd International Conference on Composite Materials, Toronto, 1978: 649-668.
    [17] A A Baker. Fibre composite repair of cracked metallic aircraft components- practical and basic aspects. Composites, 1987, 18(4):293-308.
    [18]L Molent, R J Callinan, R Jones. Desigen of an all boron/epoxy doubler reinforcement for the F-111C wing fitting structrual aspects. Composite Structures,1989,11:57-83.
    [19] A C Okafor, N Singh, U E Enemuoh, et al. Design, analysis and performance of adhesively bonded composite patch of cracked aluminum aircraft panels.Composite Structures, 2005, 71:258-270.
    [20] A A Baker, R J Chester. Recent advances in bonded composite repair technology for metallic aircraft components. Proceedings of the International Conference on Advanced Composite Materials, 1993: 45-49.
    [21] J B Avram. Fatigue response of thin stiffened aluminum cracked panels repaired with bonded composite patches. MS thesis, Ohio: Air Force Institute of Technology,2001.
    [22] A A Baker. Bonded composite repair of fatigue-cracked primary aircraft structure.Composite Structures, 1999, 47:431-443.
    [23] H Alawi, I E Saleh. Fatigue crack growth retardation by bonding patches.Engineering Fracture Mechanics, 1992, 42(5):861-868.
    [24] R C Chu, T C Ko. Isoparametric shear spring element applied to crack patching and instability. Theoretical and Applied Fracture Mechanics, 1989, 11:93-102.
    [25] C H Chue, S C Wang. Application of bonded patch and sleeve to cracked hole repair under biaxial load. Engineerng Fracture Mechanics, 1994, 48(4):515-522.
    [26] M Ekstrom. Bonded repair of aircraft structures. Materials Evaluation, 1992,50(3):340-342.
    [27] R Sethuraman, S K Maiti. Finite element analysis of doubly bonded crack-stiffened panels under mode I or mode II loading. Engineering Fracture Mechanics, 1989,34(2):465-475.
    [28] J Q Tarn, K L Shek. Analysis of cracked plates with a bonded patch. Engineering Fracture Mechanics, 1991, 40(6):1055-1065.
    [29] K H Chung, W H Yang. Mixed mode fatigue crack growth in aluminum plates with composite patches. International Journal of Fatigue, 2003, 25:325-333.
    [30] W Y Lee, J J Lee. Successive 3D FE analysis technique for characterization of fatigue crack growth behavior in composite-repaired aluminum plate.Composite Structures,2004,66:513-520.
    [31]T V R S Umamaheswar,S Ripudamam.Modeling of a patch repair to a thin cracked sheet.Engineering Fracture Mechanics,1999,62:267-269.
    [32]陈绍杰.用复合材料技术修理金属飞机结构的修理纪实.航空工程与维修,2000(1):21-22.
    [33]徐建新.双向受载裂纹板的胶接修补效果分析.航空学报,1999,20(4):351-354.
    [34]徐建新.损伤金属结构的复合材料胶接修补技术研究.博士论文,南京:南京航天航空大学,1996.
    [35]Q Y Wang,R M Pidaparti.Static characteristics and fatigue behavior of composite-repaired aluminum plates.Composite Structures,2002,56:151-155.
    [36]邢素丽,曾竞成,王遵等.新型潜伏性M-DDM微胶囊固化剂的制备及表征.高分子材料与工程,2006,22(4):196-199.
    [37]邢素丽,曾竟成,杨孚标等.复合材料修复铝合金构件的刚度分析和试验验证.机械工程材料,2005,29(1):13-15.
    [38]杨孚标,肖加余,曾竞成等.双向受载裂纹板的碳纤维复合材料补片的胶接修复分析.国防科学技术大学学报,2005,27(6):21-25.
    [39]童谷生,孙良新,刘英卫.飞机结构损伤的复合材料胶接修补技术研究进展.宇航材料工艺,2002(5):20-24.
    [40]J J Denny.Fatigue response of cracked aluminum panel with partially bonded composite patch.MS thesis,Ohio:Air Force Institute of Technology,1995.
    [41]D S Conley.Fatigue response of repaired thick aluminum panels with bondline flaws.MS thesis,Ohio:Air Force Institute of Technology,1999.
    [42]G Ipenburg.Analysis of stresses in the periphery of bonded GLARE repair patches.MS thesis,the Netherlands:Delft University of Technology,1997.
    [43]D R C Siwpersad.Bonded GLARE patches for the repair of cracked aluminum fuselages.MS thesis,the Netherlands:Delft University of Technology,1996.
    [44]A Vlot,M Krull.Impact damage resistance of various fibre metal laminates.Journal de Physique Ⅳ,1997,7(3):1045-1050.
    [45]A Vlot,S Verhoeven,G Ipenburg,et al.Stress concentrations around bonded repairs.Fatigue & Fracture of Engineering Materials and Structures,2000,23:263-276.
    [46]R Chester.Materials selection and engineering.In:Advances in the bonded composite repair of metallic aircraft structures.A.A.Baker,L.R.F.Rose,R.Jones,editors.Oxford:Elsevier,2002,pp.19-40.
    [47]P Chalkley,A A Baker.Development of a generic repair joint for certification of bonded composite repairs. International Journal of Adhesion and Adhesives, 1999,19(2-3):121-132.
    [48] J C Klug, S Maley, C T Sun. Characterization of fatigue behavior of bonded composite repairs. Journal of Aircraft, 1999, 36(6): 1016-1022.
    [49] C L Ong, S B Shen. Some results on metal and composite patch reinforcement of aluminum honeycomb panel. Theoretical and Applied Fracture Mechanics, 1991,16(2):145-153.
    [50] J J Schubbe, S Mall. Investigaiton of a cracked thick aluminum panel repaired with a bonded composite patch. Engineering Fracture Mechanics, 1999, 63(3):305-323.
    [51] G J Tsamasphyros, G N Kanderakis, Z P Marioli-RiGa. Thermal analysis by numerical Methods of debonding effects near the crack tip under composite repairs.Applied Composite Materials, 2003, 10:149-158.
    [52] F Findik, N Mrad, A Johnston. Strain monitoring in composite patched structures.Composite Structures, 2000, 49:331-338.
    [53] S Naboulsi, S Mall. Nonlinear analysis of bonded composite patch repair of cracked aluminum panels. Composite Structures, 1998, 41:303-313.
    [54] S Naboulsi, S Mall. Characterization of fatigue crack growth in aluminum panels with a bonded composite patch. Composite Structures, 1997, 37(3-4):321-334.
    [55] S Naboulsi, S Mall. Fatigue crack growth analysis of adhesively repaired panel using perfectly and imperfectly composite patches. Theoretical and Applied Fracture Mechanics, 1997, 28:13-28.
    [56] R Jones, L Molent, A A Baker, et al. Bonded repair of metallic components: thick sections. Theoretical and Applied Fracture Mechanics, 1988, 9:61-70.
    [57] D Arnott, A Rider, J Mazza. Surface treatment and repair bonding. In: Advances in the bonded composite repair of metallic aircraft structure. A.A. Baker, L.R.F. Rose,R. Jones, editors. Oxford: Elsevier, 2002, pp. 41-86.
    [58] D B McCray, J J Mazza. Optimization of sol-gel surface preparations for repair bonding of aluminum alloys. Proceedings of the 45th International SAMPE Symposium and Exhibition, Long Beach, 2000: 53-54.
    [59] C Chu, H Zheng. Sol-gel deposition of active alumina coatings on aluminum alloys.WL-TR-97-4114, 1997.
    [60] J Mazza, G Gaskin, W DePiero. Faster durable bonded repairs using sol-gel surface treatment. Proceedings of the 4th Joint DOD/FAA/NASA Conference on Aging Aircraft, St. Louis, 2000.
    [61] J J Schubbe. Thickness effects on a cracked aluminum plate with composite patch repair. Ph. D., Ohio: Air Force Institute of Technology, 1997.
    [62] F A Sandow, R K Cannon. Composite repair of cracked aluminum alloy aircraft structure. AD-A190514.
    [63] J H Gieske. Evaluation of scanners for C-scan imaging in nondestructive inspective inspection of aircraft. SAND94-0945, 1994.
    [64] C M Scala, P A Doyle. Ultrasonic leaky interface waves for composite-metal adhesive bond characterization. Journal of Nondestructive Evaluation, 1995,14(2):49-59.
    [65] J Krautkramer, H Krautkramer. Ultrasonic testing of materials. New York:Springer-Verlag, 1983, pp. 174-179.
    [66] A A Baker. Introduction and Review. In: Advances in the bonded composite repair of metallic aircraft structure. A.A. Baker, L.R.F. Rose, R. Jones, editors. Oxford:Elsevier, 2002, pp. 1-18.
    [67] A A Baker. On the certification of bonded composite repairs to primary aircraft structures. Proceedings of the 11th International Conference on Composite Materials, Australia, 1997: 1-24.
    [68] F Erdogan, K Arin. A sandwich plate with a part-through and debonding crack.Engineering Fracture Mechanics, 1972, 4(2):449-458.
    [69] K Arin. A plate with a crack, stiffened by a partially debonded stringer Engineering Fracture Mechanics, 1974, 6(1): 133-140.
    [70] L M Keer, C T Lin, T Mura. Fracture analysis of adhesively bonded sheets. Journal of Applied Mechanics, 1976, 43:652-656.
    [71] M M Ratwani. Analysis of cracked, adhesively bonded laminated structures. AIAA Journal, 1979, 17(9):988-994.
    [72] J Paul, R A Bartholomeusz, R Jones. Bonded composite repair of cracked load-bearing holes. Engineering Fracture Mechanics, 1994, 48:455-461.
    [73] R Jones, M Davis, R J Callinan, et al. Cracking patching: analysis and design.Journal of Structural Mechanics, 1982, 10(2): 177-190.
    [74] R Jones, R J Callinan, K C Aggarwal. Analysis of bonded repairs to damaged fiber composite structures. Engineering Fracture Mechanics, 1983, 17:37-46.
    [75] R Jones, R J Callinan. Bonded repair to surface flaws. Theoretical and Applied Fracture Mechanics, 1984, 2:17-25.
    [76] R Jones, R J Callinan. Thermal consideration in the patching of metal sheets with composite overlays. Journal of Structural Mechanics, 1980, 8(2):143-149.
    [77] R Jones, R J Callinan. Finite element analysis of patched cracks. Journal of Structural Mechanics, 1979, 7(2): 107-130.
    [78] M Heller, R Jones. Numerical analysis of bonded repairs for fastener holes with three-dimensional cracks. Engineering Fracture Mechanics, 1989, 33:81-90.
    [79] M Heller, T G Hill, J F Williams, et al. Increasing the fatigue life of cracked fastener holes using bonded repairs. Theoretical and Applied Fracture Mechanics,1989,11:1-8.
    [80] L R F Rose. A cracked plate repaired by bonded reinforcements. International Journal of Fracture, 1982, 18:135-144.
    [81]L R F Rose. An application of the inclusion analogy for bonded reinforcements. International Journal of Fracture, 1981,18:827-838.
    [82] Muki, Rokuro, E Steinberg. On the stress analysis of overlapped bonded elastic sheets. International Journal of Solids and Structures, 1968:75-94.
    [83] L R F Rose. Basic concepts in assessing the efficiency of bonded repairs.Proceedings of the International Conference on Aircraft Damage Assessment and Repair, Australia, 1991: 202-208.
    [84] L R F Rose. Crack reinforcement by distributed springs. Journal of the Mechanics and physics of solids, 1987, 35(4):383-405.
    [85] C N Duong, J Yu. Thermal stresses in one-sided bond repair: geometrically nonlinear analysis. Theoretical and Applied Fracture Mechanics, 2003, 40:197-209.
    [86] C N Duong, J Yu. An analytical estimate of thermal effects in a composite bonded repair: plane stress analysis. International Journal of Solids and Structures, 2002,39:1003-1014.
    [87] C N Duong, J J Wang, J Yu. An approximate algorithmic solution for the elastic fields in bonded patched sheets. International Journal of Solids and Structures, 2001,38:4685-4699.
    [88] C N Duong. An engineering approach to geometrically nonlinear analyses of a one-sided composite repair under thermo-mechanical loading. Composite Structures, 2004, 64:13-21.
    [89] C N Duong, J Yu. The stress intensity factor for a cracked stiffened sheet repaired with an adhesively bonded composite patch. International Journal of Fracture, 1997,84:37-60.
    [90] M Belhouari, B B Bouiadjra, A Megueni, et al. Comparison of double and single bonded repairs to symmetric composite structures: a numerical analysis. Composite Structures, 2004, 65:47-53.
    [91] A Megueni, B B Bouiadjra, M Belhouari. Disbond effect on the stress intensity factor for repairing cracks with bonded composite patch. Computional Materials Science, 2004, 29:407-413.
    [92] A Megueni, B B Bouiadjra, B Boutabout. Computation of the stress intensity factor for patched crack with bonded composite repair in pure mode II. Composite Structures, 2003, 59:415-418.
    [93] R A Mitchell, R M Woolley, D J Chwrirut. Analysis of composite reinforced cut-outs and cracks. AIAA Journal, 1975, 13:774-779.
    [94] M Heller. Stress intensity factors for patched structures with no out of plane bending restraint. minute paper 8/4/93, 1993.
    [95]C S Zhu,M Heller,Y C Lam.Analytical formula for calculating stresses in unidirectional/cross-ply unbanlanced laminates.Composite Structures,1993,24:333-343.
    [96]C R Saff,K B Sanger.Part-through flaw stress intensity factors developed by a slice synthesis technique.Proceedings of the 15th National Symposium on Fracture Mechanics,Maryland:American Society for Testing and Materials,1982:24-43.
    [97]C Arendt,C T Sun.Bending effects of unsymmetric adhesively bonded composite repairs on cracked aluminum panels.NASA CP 3274,1994.
    [98]E F Rybicki,M F Kanninen.A finite element calculation of stress intensity factors by a modified crack closure integral.Engineering Fracture Mechanics,1977,9:931-938.
    [99]S Naboulsi,S Mall.Three layer technique for bonded composite patch.Proceedings of the 9th International Conference on Fracture,1997:167-174.
    [100]R Chandra.Numerical estimation of stress intensity factors in patched cracked plates.Engineering Fracture Mechanics,1987,27:559-569.
    [101]A S Kuo.A two-dimensional shear spring element.AIAA Journal,1984,22(10):1460-1464.
    [102]W H Chen,S H Yang.Multilayer hybrid-stress finite element analysis of a patched crack.Engineering Fracture Mechanics,1994,49(4):547-558.
    [103]S Naboulsi,S Mall.Thermal effects on adhesively bonded composite repair of cracked aluminum panels.Theoretical and Applied Fracture Mechanics,1997,26:1-12.
    [104]W T Chow,S N Atluri.Composite patch repairs of metal structures:adhesive nonlinearity,thermal cycling,and debonding.AIAA Journal,1997,35(9):1528-1535.
    [105]A Young,D P Rooke,D J Cartwright.Analysis of patched and stiffened cracked panels using the boundary element method.International Journal of Solids and Structures,1992,29(17):2201-2216.
    [106]J H Park,T Ogiso,S N Atluri.Analysis of cracks in aging aircraft structures,with and without composite patch repairs.Computional Mechanics,1992,10:169-201.
    [107]杨孚标.复合材料修复含中心裂纹铝合金板的静态与疲劳特性研究.博士论文,长沙:国防科学技术大学,2006.
    [108]H P Kan,M M Ratwani.Composite patch repair of thick aluminum structures.NADC-82139-60,1983.
    [109]J D Labor,M M Ratwani.Development of bonded composite patch repairs for cracked metal structures.NADC-79066-60,1980.
    [110]E B Belason.Fatigue and static ultimate stress of boron/epoxy doublers bonded to 7075-T6 aluminum with simulated crack. Proceedings of the 18th Symposium of the International Conference on Aeronautical Fatigue, Australia, 1995.
    [111] D Roach. Performance analysis of bonded composite doublers on aircraft structures. Proceedings of the 10th Composite Repair of Aircraft structures-Vancouver Conference, Canada, 1995.
    [112] R Fredell, W V Barneveld, L B Vogelesang. Design and testing of bonded GLARE patches in the repair of fuselage fatigue cracks in large transport aircraft. Proceedings of the 39th International SAMPE Symposium, California, 1994.
    [113] R Fredell, R Muller, L Butkus. Bonded repair of multiple site damage with GLARE fiber metal laminate patches. Proceedings of the Aircraft Structural Integrity Program Conference, Texas, 1994.
    [114] R Fredell, D I J Schijve, A Lizza. Damage-tolerant repairs to pressurized fuselages: 'soft-patching' with GLARE fiber metal laminates. Proceedings of the 18th ICAF Symposium, Australia, 1995.
    [115] J C Klug, C T Sun. Large deflection effects of cracked aluminum plates repaired with bonded composite patches. Composite Structures, 1998, 42:291-296.
    [116] C H Wang, L R F Rose, R J Callinan. Thermal stresses in a plate with a circular reinforcement. International Journal of Solids and Structures, 2000,37(33):4577-4599.
    [117] D R Daverschot, A Vlot, H J M Woerden. Thermal residual stresses in bonded repairs. Applied Composite Materials, 2002, 9:179-197.
    [118] A M Albat. Thermal residual stresses in bonded composite repairs on cracked metal structures. Ph. D. thesis, Canada: the University of British Columbia, 1998.
    [119] F Findik, H Unal. Development of thermal residual strains in a single sided composite patch. Composites: Part B, 2001, 32:379-383.
    [120] D Djokic, A Johnston, A Rogers. Residual stress development during the composite patch bonding process: measurement and modeling. Composites: Part A, 2002, 33:277-288.
    [121] J Cho, C T Sun. Lowering thermal residual stresses in composite patch repairs in metallic aircraft structures. AIAA Journal, 2001, 39(10):2013-2017.
    [122] J Cho, C T Sun. Modeling thermal residual stresses in composite patch repairs during multitemperature bonding cycles. AIAA Journal, 2003, 40(6): 1200-1205.
    [123] C T Sun, J M Caruthers. Modeling and lowering residual stresses in bonded composite patch repairs of metallic aircraft structures. AFRL-SR-BL-TR-01-0502,2001.
    [124] L R F Rose. Theoretical analysis of crack patching. In: Bonded Repair of Aircraft Structures. A.A. Baker, R. Jones, editors, the Netherlands: Martinus Nijhoff Publishers, 1988, pp. 77-105.
    [125]C H Wang,R J Callinan,L R F Rose.Analysis of out-of-plane bending of one-sided repair.International Journal of Solids and Structures,1998,35(14):1653-1675.
    [126]C H Wang,L R F Rose.A crack bridging model for bonded plates subjected to tension and bending.International Journal of Solids.and Structures,1999,36:1985-2014.
    [127]S R White,H T Hahn.Cure cycle optimization for the residual of processing-induced residual stresses in composite materials.Journal of Composite Materials,1993,27(14):1352-1379.
    [128]B Francis,G V Poel,F Posada.Cure kinetics and morphology of blends of epoxy resin with poly(ether ether ketone) containing pendant tertiary butyl groups.Polymer,2003,44:3687-3699.
    [129]W Jenninger,J E K Schawe,I Alig.Calorimetric studies of isothermal curing of phase separating epoxy networks.Polymer,2000,41:1577-1588.
    [130]C C Su,E M Woo.Cure kinetics and morphology of amine-cured tetraglycidyl-4,4' -diaminodiphenylmethane epoxy blends with poly(ether imide).Polymer,1995,36(15):2883-2894.
    [131]王遵,邢素丽,曾竟成等.热固性树脂固化反应动力学模型研究进展.高分子材料与工程,2007,23(4):11-14.
    [132]A Yousefi,P G Lafleur.Kinetic studies of thermoset cure reactions:A review.Polymer Composites,1997,18(2):157-168.
    [133]J E K Schawe.A description of chemical and diffusion control in isothermal kinetics of cure kinetics.Thermochimica Acta,2002,388:299-312.
    [134]M R Keenan.Autocatalytic cure kinetics from DSC measurements:zero initial cure rate.Journal of Applied Polymer Science,1987,33:1725-1734.
    [135]M P Pellin,L N Regueira,A L Quintela.Epoxy-resins based on trimethylolpropane:kinetic and thermodynamic parameters of cure with M-Xda.Journal of Applied Polymer Science,1995,55:1507-1516.
    [136]J D Sewry,M E Brown."Model-free" kinetic analysis? Thermochimica Acta,2002,390:217-225.
    [137]J R Opfermann,E Kaisersberger,H J Flammersheim.Model-free analysis of thermoanalytical data-advantages and limitations.Thermochimica Acta,2002,391:119-127.
    [138]H L Friedman.Kinetics of thremal degradation of charforming plastics from thermogravimetry:applicationsto a phenolic plastic.Journal of Polymer Science:Part C,1964(6):183-195.
    [139]T Ozawa.A New Method of Analysis of Thermogravimetric Data.Bulletin of the Chemical Society of Japan,1965,38:1881-1886.
    [140]J R Opfermann,H J Flammersheim.Some comments to the paper of JD Sewry and ME Brown:"Model-free" kinetic analysis? Thermochimica Acta,2003,397:1-3.
    [141]S Vyazovkin.Alternative description of process kinetics.Thermochimica Acta,1992,211:181-187.
    [142]S Vyazovkin,C A Wight.Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data.Thermochimica Acta,1999,340-341:53-68.
    [143]N Sbirrazzuoli,S Vyazovkin.Learning about epoxy cure mechanisms from isoconversional analysis of DSC data.Thermochimica Acta,2002,338(1-2):289-298.
    [144]杨挺青,罗文波,徐平等.黏弹性理论与应用.北京:科学出版社,2004,pp.1-48.
    [145]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1990,pp.343-367.
    [146]I M Ward,D W Hadley.An introduction to the mechanical properties of solid polymers.New York:Wiley,1993,pp.46-67.
    [147]S Timoshenko.Strength of materials.Berkshire:Van Nostrand Reinhold Company,1958,pp.219-221.
    [148]L J Hart-Smith.Adhesive-bonded double-lap joints.NASA Report CR-112235,1973.
    [149]J H Gere.Mechanics of materials.Canada:Brooks/Cole Publishing Company,2001,pp.407-417.
    [150]R Kaye,M Heller.Finite element-based three-dimensional stress analysis of composite bonded repairs to metallic aircraft structure.International Journal of Adhesion and Adhesive,2006,26:261-273.
    [151]T Achour,B B Bouiadjra,B Serier.Numerical analysis of the performances of the bonded composite patch for reducing stress concentration and repairing cracks at notch.Computional Materials Science,2003,28:41-48.
    [152]Y L Koh,W K Chiu.Numerical study of detection of disbond growth under a composite repair patch.Smart Materials and Structures,2003,12:633-641.
    [153]赵建生.断裂力学及断裂物理.武汉:华中科技大学出版社,2003,pp.106-150.
    [154]L J Hart-Smith.Recent expansions in the capabilities of Rose's closed-form analyses for bonded crack patching.In:Advances in the bonded repairs of metallic aircraft structures.A.A.Baker,L.R.F.Rose,R.Jones,editors.Oxford: Elsevier,2002,pp.177-206.
    [155]J R Rice,N Levy.The part through surface crack in an elastic plate.Journal of Applied Mechanics,1972,39:185-194.
    [156]邢素丽,王遵,肖加余等.铝合金及复合材料板开孔损伤分析.机械工程材料,2005,29(6):67-69.
    [157]D C Seo,J J Lee.Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch.Composite Structures,2002,57:323-330.
    [158]H Hosseini-Toudeshky,G Sadeghi,H R Daghyani.Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminum panels with glass/epoxy composite patches.Composite Structures,2005,71:401-406.
    [159]C N Duong,C H Wang.On the characterization of fatigue crack growth in a plate with a single-sided repair.Journal of Engineering Materials and Technology,2004,126:192-198.
    [160]J Pan,S H Lin.Fracture mechanics and fatigue crack propagation.In:Fatigue testing and analysis.Y.L.Lee,J.Pan,R.B.Hathaway,M.E.Barkey,editors.Oxford:Elsevier,2005,pp.237-284.
    [161]P C Pairs,M P Gomez,W P Anderson.A rational analytic theory of fatigue.The Trend of Engineering,1961,13:9-14.
    [162]P C Pairs,F Erdogan.A critical analysis of crack propagation laws.Journal of Basic Engineering,1963,85:528-534.
    [163]R Jones,K Krishnapillai,S Pitt.Crack patching:predicting fatigue crack growth.Theoretical and Applied Fracture Mechanics,2006,45:79-91.
    [164]C H Wang.Fatigue crack growth analysis of repaired structures.In:Advances in the bonded composite repair of metallic aircraft structure.A.A.Baker,L.R.F.Rose,R.Jones,editors.Oxford:Elsevier,2002,pp.353-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700