C/SiC复合材料及其空气舵防热套的低温制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气舵是高超音速导弹的重要部件,空气舵防热套的气动外形直接影响弹头命中精度,耐高温、抗烧蚀防热套是保证弹头再入过程空气舵气动外形的关键。本文根据高超音速导弹空气舵防热套对材料及其制备工艺要求,通过先驱体浸渍裂解工艺(PIP)低温900℃制备了C/SiC复合材料,进行了力学、热物理、氧化和烧蚀等性能考核。在此基础上,整体成型并制备出全尺寸的C/SiC复合材料防热套构件。
     考察了先驱体PCS的低温裂解特性。先驱体PCS裂解过程中,温度对PCS裂解转化有很大的影响,PCS在750℃发生无机化转变,产物为无定形SiC;880~1050℃裂解SiC开始结晶。随裂解温度升高,PCS裂解产物的高温稳定性增加,700℃裂解产物在后续1200℃高温处理后失重达4.02%;900℃裂解产物陶瓷化程度较高,1200℃高温处理后失重仅0.24%,高温稳定性较好。
     研究了制备温度对C/SiC复合材料界面、结构及力学性能的影响。随着复合材料制备温度升高,纤维.基体界面化学反应及元素扩散加重,复合材料界面结合增强,抑制了纤维—基体界面解离、纤维脱粘、纤维拔出等增韧效果的发挥,复合材料力学性能降低。700℃制备复合材料断口纤维拔出较多,复合材料呈韧性断裂,弯曲强度为256.58MPa,断裂韧性5.63MPa·m~(1/2);900℃制备复合材料呈脆性断裂,弯曲强度仅54.58MPa,断裂韧性2.25MPa·m~(1/2)。
     探讨了纤维类型对复合材料的影响。与JC-1#纤维相比,JC-2#纤维表面反应活性较低,表面沟纹缺陷较少,所制备复合材料界面结合较弱,断口纤维拔出较多,力学性能较高,复合材料弯曲强度为249.84MPa,断裂韧性9.08MPa·m~(1/2)。
     开展了碳纤维热处理及其复合材料界面优化研究。热处理温度对碳纤维的结构、性能影响很大,在600~1200℃温度范围,热处理温度越高,纤维强度保留率越低,当热处理温度为1200℃时,纤维的强度保留率为79.57%。1400℃热处理有助于纤维微观结构规整化,减少纤维表面缺陷和裂纹,纤维强度保留率提高为88.17%。采用1400℃热处理碳纤维增强的复合材料界面结合适中,力学性能高,弯曲强度达58 1.04MPa,断裂韧性22.43 MPa·m~(1/2)。
     研究了PCS裂解工艺对C/SiC复合材料界面及其性能的影响。PIP工艺第一周期是复合材料界面形成的主要过程,对复合材料界面及微观结构影响很大。PCS裂解过程体积先膨胀后收缩,体积收缩易造成复合材料界面物理结合过强。采用首周期700℃裂解,后续900℃裂解工艺,制备了界面结合适中、力学性能优异的C/SiC复合材料,弯曲强度达600.28MPa,断裂韧性24.52MPa.m~(1/2)。
     确定了低温制备C/SiC复合材料的最佳工艺,并考察了复合材料的力学及热物理性能。首先,碳纤维经1400℃真空处理→上胶→编织→去胶工艺,将1400℃高温热处理引入C/SiC复合材料的低温制备,为复合材料界面改善、力学性能提高奠定基础;其次,首周期700℃裂解;最后,PIP工艺900℃裂解致密化。采用优化工艺制备的C/SiC复合材料,室温弯曲强度和拉伸强度分别为643.12MPa和299.83MPa;1600℃高温弯曲强度411.01MPa。复合材料的轴向热膨胀系数为0.180×10~(-6)/K(25~800℃),径向热膨胀系数2.729×10~(-6)/K(25~800℃),比热容0.98J/g·K,热导率1.26W/m·K。
     研究了C/SiC复合材料的氧化和烧蚀特性。复合材料氧化过程表明,基体裂纹和碳纤维裸露是复合材料氧化、性能降低的主要原因。随氧化温度升高(400~1300℃),复合材料的质量保留率从99.76%降低到81.83%;在400~800℃温度区间,复合材料氧化后强度升高,氧化产物SiO_2玻璃体弥合基体裂纹及表面孔隙是复合材料氧化后强度升高的主要原因;当氧化温度高于800℃时,氧化温度越高,复合材料的强度保留率越低。C/SiC复合材料的氧乙炔焰烧蚀质量烧蚀率为0.0158g/s,线烧蚀率0.0279mm/s,试样表面温度2005℃。复合材料等离子体电弧烧蚀线烧蚀率为0.33mm/s,烧蚀表面热流密度约35000kW/m~2,热流焓值10000kJ/kg,热流压力2.8MPa。
     通过平面编织、穿刺缝合实现了防热套纤维预制件的整体成型,满足防热套构件主方向(迎风面)的结构完整,保证了防热套的气动外形。采用小型火箭发动机考核了空气舵防热套1:2构件的结构安全性,结果表明,C/SiC复合材料防热套在高热流冲击下结构完整、可靠。在此基础上,优化了防热套构件成型、制备工艺,制备出全尺寸C/SiC复合材料防热套构件。
As an important warhead part of new generation hypersonic missiles, aerodynamic rudder must possess thermal-insulation cover, with good ablation and high temperature resistance, to ensure the aerodynamic shape for shooting straight. In this dissertation, C/SiC composites was prepared by precursor impregnation and pyrolysis process, based on the manufacture of thermal-insulation cover for new generation missiles, and the performance, such as mechanical properties, thermal-physical properties, oxidation and ablation properties etc., was tested. Finally, integral formation of complex shaped fabric was realized, and full sized thermal-insulation cover was fabricated.
     The pyrolysis characteristics of precursor PCS were investigated. When pyrolyzed in inert atmosphere, PCS will transform into ceramic at 750℃, and then crystallize between 880~1050℃. With the temperature rising, the stability of pyrolyzate is enhanced. The pyrolyzate of PCS pyrolyzed at 900℃keeps stabilization at higher temperature as 1200℃, with mass residue just about 0.24%, whereas the pyrolyzate at 700℃is farther decomposed, with mass residue about 4.02%.
     The effect of pyrolysis temperature on the fiber-matrix interface, microstructure and properties of C/SiC composites was studied. With the pyrolysis temperature rising, the interfacial chemical reaction and element diffusion are aggravated, therefore the interfacial bonding is enhanced, restraining the interface debonding and fiber pulling out, and that degrade the mechanical properties of C/SiC composites. The flexural strength and fracture toughness of C/SiC composites prepared at 700℃is 256.58MPa and 5.63MPa·m~(1/2) respectively, with lots of fiber pulling out, while the composite prepared at 900℃exhibits smooth fracture surface with flexural strength of 54.58MPa and fracture toughness 2.25MPa·m~(1/2)
     The effect of fiber type on the interface and mechanical properties of C/SiC composites was investigated. Compared with JC-1# carbon fiber, the JC-2# carbon fiber has inert surface and less surface defect, thus the C/SiC composites reinforced by JC-2# carbon fiber with moderate interface has better mechanical properties, with flexural strength 249.84MPa and fracture toughness 9.08MPa·m~(1/2).
     The heat treatment of carbon fiber was studied. The properties of carbon fiber decrease diversely during heat treatment. As the treatment temperature reaches 1200℃, the strength residue of fiber bundles reduces to 79.59%. The 1400℃heat treatment, devoted to lessen the fiber defects and enhance the high-temperature structural stability of carbon fiber, reduces the degradation of fiber strength during heat treatment. And thus the mechanical properties of C/SiC composites reinforced by carbon fiber treated at 1400℃are improved largely, with flexural strength 581.04MPa, and fracture toughness 22.43MPa·m~(1/2).
     The first cycle of the PIP process is the most important for that it is the critical process for interface formation, and influences the interface and microstructure of C/SiC composites remarkably. PCS will expand firstly and then shrink during pyrolysis, and the bulk shrinking will lead to stronger interfacial bonding. After the optimization of PCS pyrolysis process, the high-performance C/SiC composites, pyrolyzed at 700℃in the first cycle and 900℃in the others, was obtained, with flexural strength 600.28MPa and fracture toughness 24.52 MPa·m~(1/2).
     The optimum process of C/SiC composites was determined. Firstly, the fiber is treated in vacuum at 1400℃, and then glued, weaved and unglued. Thus the 1400℃heat treatment is introduced into the process of low-temperature preparation of C/SiC composites, weakening the fiber-matrix interface bonding. Secondly, the sample is prolyzed at 700℃in the first cycle of PIP. Finally, the sample is densified at 900℃in the residual PIP cycles. The room-temperature flexural strength and tensile strength of C/SiC composites, prepared by optimum process, is 643.12MPa and 299.83MPa respectively, and 1600℃flexural strength is 411.01MPa. The axial coefficient of thermal expansion is 0.180×10~(-6)/K (25~800℃), and the radial coefficient of thermal expansion 2.729×10~(-6)/K (25~800℃), specific heat 0.98J/g·K, coefficient of thermal conductivity 1.26W/m·K.
     The oxidation and ablation resistance were researched. The results show that the main reason for oxidation of C/SiC composites is matrix cracks and exposed fibers. With the elevation of oxidation temperature (400~1300℃), the mass residue reduces from 99.76% to 81.83%. In the course of 400~800℃, the strength residue of C/SiC composites are all elevated for the seal of matrix cracks and surface holes by SiO_2 film after oxidation. The mass loss rate and recession rate is 0.0158g/s and 0.0279mm/s respectively after oxyacetylene ablation, and the surface temperature is 2005℃. The ablative product is SiO_2 mostly, and presents two different conformation, keatite and tridymite, due to the dissimilar cooling rate. And the recession rate tested by plasma arc is 0.33mm/s, with heat flux density 35000kW/m~2, enthalpy 10000kJ/kg, and heat flow pressure 2.8MPa.
     The integral formation of complex shaped thermal-insulation cover was realized through plane weaving and stitching. After the 1:2 thermal-insulation cover was tested by rocket engine, the structure of cover keeps integrated, and safe and credible. Finally, after the optimization of preparation process, the full sized C/SiC composites thermal-insulation cover was fabricated successfully.
引文
[1]孙旭,何树才,孙快吉,等.导弹与战争[M].北京:国防工业出版社,1997
    [2]孙家栋.导弹武器与航天器装备[M].北京:兵器工业出版社,2003
    [3]李友年,贾晓洪,王海波,等.反作用射流控制导弹的自动驾驶仪H_∞设计方法[J].系统仿真学报,2005,17(7):1771-1773
    [4]彭望泽.防空导弹天线罩[M].北京:宇航工业出版社,1993
    [5]程养民,乐发仁.远程战术火箭控制方案研究[J].固体火箭技术,2003,26(4):1-6
    [6]Plotard,P.Labaste V.Entry system development for mars netlander mission[J].Acta Astronautica,2004,55:677-686
    [7]王龙,梁建波,牟建华.再入机动弹道气动环境仿真研究[J].弹箭与制导学报,2007,27(2):209-212
    [8]王希季,林华宝,李颐黎,等.航天器进入和返回技术[M].北京:宇航出版社,1991
    [9]李军,刘献伟.推力矢量发动机射流流场的数值分析[J].弹箭与制导学报,2005,25(4):80-82
    [10]刘志衍.固体火箭燃气舵气动设计研究[J].导弹与航天运载技术,1995,216(4):9-17
    [11]李友年,贾晓洪.一种直接力/气动力复合控制自动驾驶仪的设计方法[J].弹箭与制导学报,2005,25(2):1-3
    [12]王松.PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究[D].长沙:国防科技大学博士学位论文,2005
    [13]Papenburg,U.Optical and optomechanical ultra-light weight C/SiC components[C].The International Society for Optical Engineering(SPIE),Denver,USA,1999,3782:141-156
    [14]Bansal N P.Handbook of Ceramic Composites[M].Kluwer Academic Publishers,Boston,2005
    [15]Bursey R,Dickinson R,Flight Test Result of the F-15s/MTD Thrust vectoring/Thrust Reversing Exhaust Nozzle[R].AIAA-90-1906
    [16]王生朝.C_f/SiC复合材料的应用研究进展[J].材料科学与工程学报,2007,25(3):489-492
    [17]Evans A G.Design and life prediction issues for high-temperature engineering ceramics and their composites[J].Acta mater.,1997,45(1):23-40.
    [18]秦淑颖,闫联生,崔红,等.C_f/SiC陶瓷基复合材料在航空航天领域的研究与应用[J].材料导报,2007,21(5A):239-241
    [19]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005
    [20]谢成木.钛及钛合金铸造[M].北京:机械工业出版社,2004
    [21]赵树萍,吕双坤,郝文杰.钛合金及其表面处理[M].哈尔滨:哈尔滨工业大学出版社,2002
    [22]黄辉.高温形变热处理对TC4钛合金组织与性能的影响[J].光学精密工程,1996,(4):65-72
    [23]张立同,成来飞.连续纤维增韧碳化硅陶瓷基复合材料[C].全国第十二届复合材料学术会议论文集.天津:航空工业出版社,2002,10:1-14
    [24]简科,陈朝辉,马青松,等.浸渍工艺对先驱体转化制备C/SiC复合材料结构与性能的影响[J].航空材料学报,2005,25(5):38-41
    [25]Wei Li,Zhao-Hui Chen.Characterization of partially densified 3D Cf/SiC composites by using mercury intrusion porosimetry and nitrogen sorption[J].Cermics International,2008,34:531-535
    [26]Yunzhou Zhu,Zhengren Huang,Shaoming Dong,et al.The fabrication of 2D Cf/SiC composites by a modified PIP process using active Al powders as active filler[J].Materials Characterization,2008,59:975-978
    [27]Aveston J.In properties of fiber composite,national physical laboratory conference proceeding[M].Guildford,England:IPC Science and Technology Press,1971
    [28]Brian D.Garland,Irene J.Beyerlein,Linda S.Schadler.The development of compression damage zones in fibrous composites[J].Composites Science and Technology,2001,61:2461-2480
    [29]Prewo K.M.Method of optimally operating a graphite fiber feinforced galss matrix composites optical article[J].Carbon,1984,22(3):1-2
    [30]Igawa N.,Taguchi T.,Yamada R.,et al.Mechanical properties of SiC/SiC composites with magnesium-silicon oxide interphase[J].J.Nuc.Mater.,2007,367-370:725-729
    [31]Hui Mei,Laifei Cheng,Litong Zhang,et al.Effect of fiber architectures on thermal cycling damage of C/SiC composites in oxidizing atmosphere[J].Mater.Sci.Eng.A,2007,460-461:306-313
    [32]Schmidt W.R.,Sukumar V.Silicon nitride derived from organometallic polymeric precursor:preparation and characterization[J].J.Am.Ceram.Soc.,1990,73(8):2412-2418
    [33]Seyferth D.,Nathan B.,David P,et al.Preceramic polymer as "reagents" in the prepa -ration of ceramics[J].J.Am.Ceram.Soc.,1991,74(10):2687-2689
    [34]Ziegler G,Richter I,Suttor D.Fiber-reinforced composites with polymer-derived matrix:processing,matrix formation and properties[J].Composites Part A,1999,30:411-417
    [35]Tanaka T,Tamari N,Kondoh I,et al.Fabrication of three-dimensional tyranno fibre rein -forced SiC composite by the polymer precursor method[J].Ceram.International,1998,24:365-370
    [36]Herwood W.J.,Whitmarsh C.K.,Jacobs J.M.,et al.Low cost,near-net shape ceramic composites using resin transfer molding and pyrolysis[C].Ceramic Engineering and Science Proceedings,1996,17(4):174-183
    [37]马江,张长瑞,周新贵等.先驱体转化法制备陶瓷基复合材料异型构件研究[C].湖南宇航材料学会年会,1998,34-36
    [38]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[D].长沙:国防科技大学博士学位论文,2003
    [39]Henager Jr.C.H.,Shin Y.,Blum Y.,et al.Coatings and joining for SiC and SiC-composites for nuclear energy systems[J].J.Nuclear Mater.,2007,367-370:1139-1143
    [40]Oazwa K.,Nozawa T.,Katoh Y.,et al.Mechanical properties of advanced SiC/SiC compo -sites after neutron irradiation[J].J.Nuclear Mater.,2007,367-370:713-718
    [41]郭友军,聂景江,徐永东,等.三维针刺C/SiC复合材料的结构特征和力学性能[J].硅酸盐学报,2008,36(2):144-149
    [42]王毅强,张立同,成来飞.碳纤维束大小对2D-C/SiC复合材料力学性能的影响[J].航空精密制造技术,2007,43(3):42-45
    [43]王志毅,周新贵,羊建高,等.Cf/SiC复合材料力学性能对比研究[J].2007,36(z1):759-761
    [44]徐永东,张立同,成来飞,等.CVI法制备连续纤维增韧陶瓷基复合材料[J].硅酸盐学报,1995,23(3):319-325
    [45]宋麦丽,王涛,闫联生,等.高性能C/SiC复合材料的快速制备[J].新型炭材料,2001,16(2):57-60
    [46]Tai N H,Chen C F.Nanofiber formation in the fabrication of carbon/silicon carbide ceramic matrix nanocomposites by slurry impregnation and pulse chemical vapor infiltration[J].J.Am.Ceram.Soc.,2001,84(8):1683-88
    [47]Robert P C.Overlap model for chemical vapor infiltration of fibrous yarns[J].J.Am.Ceram.Soc.,1990,73(8):2274-2280
    [48]Naslain R.CVI composites.In:Warren Red.Ceramic Matrix Composites[R].London:Chapman and Hall.1992:199-243
    [49]Bansal N P.Handbook of Ceramic Composites[M].Kluwer Academic Publishers,Boston,2005
    [50]Naslain R,Pailler R,Bourrat X,et al.Synthesis of highly tailored ceramic matrix composites by pressure-pulsed CVI[J].Solid State Ionics,2001,141-142:541-548
    [51]Chung G Y,McCoy B J,Smith J M.Chemical vapor infiltration:Modeling solid matrix deposition for ceramic composites reinforced with layered woven fabrics[J].Chem.Eng.Sci, 1992,47(2):311-323
    [52]Stinton D P,Caputo A J,Richard A L.Synthesis of fiber-reinforced SiC composites by chemical vapor infiltration[J].Am.Ceram.Soc.Bull.,1986,65(2):347-50
    [53]Noda T,Araki H,Abe F,et al.Preparation of carbon fiber/SiC composite by chemical vapor infiltration[J].ISIJ International,1992,32(8):926-931
    [54]Grupta D.,Evans J.W.A methematerial model for chemical vapor infiltration with micro -wave heating and external cooling[J].J.Mater.Res.,1991,6(4):810-818
    [55]闫联生,王涛,邹武,等.碳/碳化硅复合材料快速成型工艺研究[J].宇航材料工艺,1999.29(3):38-41
    [56]Sheldon B W,Besmann T M.Reaction and diffusion kinetics during the initial stages of isothermal chemical vapor infiltration[J].J.Am.Ceram.Soc.,1991,74(12):3046-3053
    [57]Bertrand S,Lavaud J F,Hadi R E,et al.The thermal gradient-pulse flow CVI process:a new chemical vapor infiltration technique for the densification of fibre preforms[J].J.Eur.Ceram.Soc.,1998,18:857-870
    [58]袁明,黄政仁,董绍明,等.温度脉冲方法制备碳/碳复合材料界面的微观性能与性能研究[J].无机材料学报,2007,22(2):305-310
    [59]杨雪,戴永耀,赵广文,等.碳纤维增强碳化硅陶瓷基复合材料的研究[J].材料工程,1999,2:109-114
    [60]蔡新民,武七德,刘伟安.反应烧结碳化硅过程的数学模拟[J].武汉理工大学学报,2002,24(4):48-50
    [61]郝寅雷,赵文兴.反应烧结碳化硅陶瓷的制备及烧结机理[J].耐火材料,2000,6:314-316
    [62]Hamisch.B,Kunkel.B,Papenburg.U,et al.Ultralight weight C/SiC mirrors and structures [J].ESA Bulletin,I998,95(8):148-152
    [63]Zbigniew S.Rak,A process for C/SiC composites using liquid polymer infiltration[J].J.Am.Ceram.Soc.,2001,84(10):2235-2239
    [64]Simmer S,Derby B.The processing of novel reaction bonded SiC ceramics using alloyed silicon infiltrates[C].Fourth Euro-Ceramics(Ed:A.Bellosi),1995,4:393-400
    [65]王林山,熊翔,肖鹏,等.反应熔渗法制备C/C-SiC复合材料及其影响因素的研究进展[J].粉末冶金技术,2003,21(1):37-41
    [66]简科,陈朝辉,马青松.先驱体转化法制备2D/Cf/SiC材料的力学性能[J].稀有金属材料与工程,2005,34(suppl.1):319-321
    [67]肖长发.纤维复合材料[M].北京:中国石化出版社,1995
    [68]简科.先驱体转化2D C/SiC材料工艺优化及构件制备技术研究[D].长沙:国防科技大学博士学位论文,2006
    [69]何新波,张长瑞,周新贵,等.先驱体转化-热压烧结碳纤维增韧碳化硅复合材料的显微 结构[J].航空材料学报,1999,19(3):43-50
    [70]Ke Jian,Chen Zhao-hui,Ma qing-song,et al.Processing and properties of 2D C/SiC composites incorporating fillers[J].Material science and engineering A,2005,408(1-2):330-335
    [71]邹武,陈长乐,肖志超,等.聚碳硅烷浸渍裂解法制备的C/SiC材料研究[J].炭素,1997(2):19-23
    [72]王建方,陈朝辉,郑文伟,等.热压工艺在C/SiC复合材料制备中的应用[J].航空材料学报,2002,22(3):22-25
    [73]Suzuki K,Kume S,Nakano K.Fabrication and characterization of 3D C/SiC composites via slurry and PCVI joint process[J].Key Engineering Materials,1999,164-165:113-116
    [74]Zheng G B,Sano H,Uchiyama Y,et al.The properties of carbon fibre/SiC composites fabricated through impregnation and pyrolysis of polycarbosilane[J].J.Mater.Sci.,1999,34:827-834
    [75]余惠琴,陈长乐,邹武,等.C/C-SiC复合材料的制备与性能[J].宇航材料工艺,2001,2:28-32
    [76]Choury J.J.Thermostructural composites materials in aeronautics and space applications[R].French Aerospace,1989
    [77]张长瑞,郝元恺.陶瓷基复合材料.原理、工艺、性能与设计[M].长沙:国防科技大学出版社,2001
    [78]石力开,干福熹,吴人洁,等.复合材料[M].天津:天津大学额出版社,2002
    [79]Cooper G.A.Kelly A.Tensile properties of fibre-reinforced metals:fracture mechanics[J].J.Mecha.Phy.Solids.1967,15(4):279-297
    [80]黄海明.极端环境下碳基复合材料烧蚀性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2001
    [81]齐共金.先驱体合成及其转化制备石英织物增强氮化硅基天线罩材料研究[D].长沙:国防科技大学博士学位论文,2006
    [82]颜梅,江金强,施伟,等.有机硅耐烧蚀材料的研究进展[J].有机硅材料,2001,15(2):24-27
    [83]Laub B.Thermochemical ablation of tantalum carbide loaded carbon-carbons[R].AIAA -80-1476
    [84]贺福.碳纤维及其应用技术[M].北京:化学工艺出版社,2004
    [85]大谷杉朗,大毂朝男;吕健译.碳纤维入门[M].吉林:中国金属学会炭素材料学分会,1983
    [86]Choury J.J.Thermostructural composites materials in aeronautics and space applications[R].French Aerospace,1989
    [87]俞志高.探讨固体火箭燃气流特性解决底部防热问题[J].远方科技,1989,(6):25-27
    [88]姜贵庆,刘连元.告诉气流传热与烧蚀热防护[M].北京:国防工业出版社 2003
    [89]程开甲,李元正.高超声速气动热和热防护[M].北京:国防工业出版社,2003
    [90]李梦龙.化学数据手册[M].北京:化学工业出版社,2003
    [91]张玉龙,马建平.实用陶瓷材料手册[M].北京:化学工艺出版社,2006
    [92]王零森,黄培云.特种陶瓷[M].长沙:中南大学出版社,2005
    [93]Yamaguchi H.Nakamura T.,Murata H.Method for fabricating ceramic matrix composites [P].US Patent,6723382,2004
    [94]范真祥,程海峰,张长瑞,等.热防护材料的研究进展[J].材料导报,2005,19(1):13-16
    [95]Murata H.,Shioda M.,Nakamura T.Method and apparatus for manufacturing ceramic -based composite member[P].US Patent,6723381,2004
    [96]潘育松,徐永东,陈照峰,等.固体火箭发动机用C/SiC导流管烧蚀性能研究[J].宇航学报,2005,26(6):789-792
    [97]周星明,汤素芳,邓景屹,等.碳-高硅氧纤维增强C-SiC防热隔热一体化材料[J].材料研究学报,2006,20(2):148-152
    [98]张红波,尹健,熊翔.C/C复合材料烧蚀性能的研究进展[J].材料导报,2005,19(7):97-103
    [99]刘建军,苏君明,陈长乐.炭/炭复合材料烧蚀性能影响因素分析[J].炭素,2003,(2):15-19
    [100]Sanokawa Y,Ido Y,Sohda Y,et al.Application of continuous fiber reinforced silicon carbide matrix composites to a ceramic gas turbine model for automobiles[J].Ceram.Eng.Sci.Proc.,1997,18(4):221-228
    [101]Wulz H G,Trabandt U.Large integral hot CMC structures designed for future reusable launchers[R].AIAA 97-2485
    [102]Doug Freitag.The advanced ceramics industry "An Increasingly Strategic Material"[R].USACA report,2004
    [103]邹武.陶瓷基热结构复合材料应用研究“九五”国防预研项目论证报告,中国航体科技基团第四研究院第四十三所内部资料[C].1996
    [104]闫联生,王涛,邹武,等.国外复合材料推力室技术研究进展[J].固体火箭技术,2003,26(1):64-69
    [105]Jerry Lang,Uncooled C/SiC Composite Chamber Tested Successfully in Rocket Combustion Lab[R].NASA Glenn's Research & Technology reports,2003
    [106]Kishner S.J.Large stable mirrors:a comparison of glass,beryllium and silicon carbide[C].SPIE.1990,1335:127-139.
    [107]邓景屹,刘文川,魏永良,等.炭纤维增强C-SiC梯度基复合材料的结构与性能[J].炭素,1996,1:18-23
    [108]Chen D.,Sun C.Z.Intention preservation by object replication in cooperative graphics editing systems[J].J.Applied Systems Studies,2000,1(3):345-360
    [109]Rebelo Kommeier J.,Hofmann M.,Schmidt S.Non-destructive testing of satellite nozzles made of carbon fibre ceramic matrix composites,C/SiC[J].Materials Characterization,2007,58:922-927
    [110]Bouslog.S.A.,Moore.B,Sawyer.J.W.X-33 metallic TPS tests in NASA-LaRC high temperature tunnel,AIAA Paper 9921045.In:37~(th) AIAA aerospace sciences meeting and exhibit,1999,1-22
    [111]邹青,侯帅.再入太空船的全陶瓷体襟翼[J].飞航导弹,2004,10:61-63
    [112]Doug Freitag.The Advanced Ceramics Industry "An Increasingly Strategic Material"[R].USA CA report,2004
    [113]Imuta M,Gotob J.Development of high temperature materials including CMCs for space application[J].Key Eng.Mater.,1999,164-165:439-444.
    [114]Ueda S,Nishio S,Yamada R,et al.Maintenance and material aspects of DREAM reactor[J].Fusion Engineering and Design,2000,48:521-526.
    [115]Nakano J,Fujii K,Shindo M.Evaluation of cyclic oxidation behavior of SiC/C composi -tionally gradient graphite materials[J].J.Nuclear Mater.,1994,217:110-117.
    [116]闫联生,王涛,邹武,等.国外复合材料推力室技术研究进展[J].固体火箭技术,2003,26(1):64-66
    [117]王思青,张长瑞,周新贵.重复使用运载器陶瓷热防护系统[J].导弹与航天运载技术,2004,(3):37-41
    [118]杨炳渊.超高速防空导弹结构防热技术[J].上海航天,2002,(4):41-45
    [119]Changqing Tong,Laifei Cheng,Xiaowei Yin,et al.Oxidation behavior of 2D C/SiC composites modified by SiB_4 particles in inter-bundle pores[J].Composites Science and Technology,2008,68:602-607
    [120]葛明龙,田昌义,孙纪国.碳纤维增强复合材料在国外液体火箭发动机上的应用[J].导弹与航天运载技术,2003,264(4):22-26
    [121]D.D.L.Chung.Thermal analysis of carbon fiber polymer-matrix composites by electrical resistance measurement[J].Thermochimica Acta,2000,364:121-132
    [122]韩鸿硕.国外航天运输系统防热系统、结构和材料的总体分析研究[J].宇航材料工艺,1997,(4):1-4
    [123]Ecke.A.Thermal Shock Fiber Reinforced Ceramic Matrix Composites[J],Ceram.Eng.Sci.Proc.,1991,73(7-8):1500-1508
    [124]Kaya H.The application of ceramic-matrix composites to the automotive ceramic gas turbine[J].Composit.Sci.Tech.,1999,59:861-872.
    [125]Trabandt U,Wulz H G,Schmid T.CMC for hot structures and control surfaces of future launchers[J].Key Eng.Mater.,1999,164-165:445-450.
    [126]Hald H,Weihs H,Benitsch B.Development of a nose cap system for X-38[C].In Proceedings of International Symposium Atmospheric Reentry Vehicles and System,Arcachon,France,1999.
    [127]张玉娣.C/SiC复合材料反射镜坯体及过渡层的研究[D].长沙:国防科技大学博士学位论文,2005
    [128]潘育松,徐永东,陈照峰,等.固体火箭发动机用C/SiC导流管烧蚀性能研究[J].宇航学报,2005,26(6):789-792
    [129]周星明,汤素芳,邓景屹,等.碳-高硅氧纤维增强C-SiC防热隔热一体化材料[J].材料研究学报,2006,20(2):148-152
    [130]Henager Jr.C.H.,Shin Y.,Blum Y.,et al.Coatings and joining for SiC and SiC-composites for nuclear energy systems[J].J.Nuclear Mater.,2007,(367-370):1139-1143
    [131]Minthorn M.Advanced carbon fiber reinforced silicon carbide technology for SM3 divert and attitude control systems[C].Fiber material Inc.,Final Report,N96-284,2002
    [132]Schmidt S.,Beyer S.,Knabe H.,et al.Advanced ceramic matrix composites materials for current and future propulsion technology applications[R].Germany,IAC-03-S.3,2003
    [133]Birot M.,Pillot J.P.,Dunogues J.Comprehensive chemistry of polysilanes,polysilazanes,and polycarbosilanes as precursors of ceramics[J].Chem.Rev.,1995,95(5):1443-1477
    [134]Verbeek W,Winter G.Ger.Often.,1974,2,236,078
    [135]Yajima S.,Hasegawa Y.,Hayashi J.Synthesis of continuous silicon carbide fibre with high tensile strength and high young's modulus[J].J.Mater.Sci.,1978,13:2569-2576
    [136]冯春祥,黄凯兵,张长瑞,等.聚碳硅烷化学转化法制备SiC_W/SiC复合材料的研究[J].高技术通讯,1994,(6):29-33
    [137]Katsuki Kusakabe,ZhongYan Li,Hideaki Maeda,et al.Preparation of supported composites membrane by pyrolysis of polycarbosilane for gas separation at high temperature[J].J.Membrane Sci.,1995,103:175-180
    [138]Bouillon E.,Laffon C.,Flank A.M.Study of the polymer to ceramic evolution induced by pyrolysis of organic precursor[J],physica B:Condensed Matter,1989,158(1-3):229-230
    [139]Yoshio Hasegawa.Synthesis of continuous silicon carbide fibre,part 6 Pyrolysis process of cured polycarbosilane fibre and structure of SiC fibre[J].J.Mater.Sci.,1989,24:1177-1190
    [140]Yajima S.,Hasegawa,Y.,Hayashi,J.,et al.Synthesis of continuous silicon carbide fibre with high tensile strength and high young's modulus[J].J.Mater.Sci.,1978,13:2569-2576
    [141]Hasegawa,Y.,Iimura,M.,Yajima,S.Synthesis of continuous silicon carbide fibre[J].J.Mater.Sci.,1980,15:720-728
    [142]陈朝辉.先驱体结构陶瓷[M].长沙:国防科技大学出版社,2003
    [143]Soraru G.D.,Babonneau F.,Mackenzie J.D.Structural evolutions from polycarbosilane to SiC ceramic[J].J.Mater.Sci.1990,25:3886-3893
    [144]冯春祥,宋永才,谭自烈.元素有机化合物及其聚合物[M].长沙:国防科学技术大学出版社,1997
    [145]杜善义,沃丁柱,章怡宁,等.复合材料及其结构的力学、设计、应用和评价[M].哈尔滨:哈尔滨工业大学出版社,2000
    [146]李永清,陈朝辉,张长瑞,等.先驱体转化法制备致密SiC/Si_3N_4复相陶瓷异形件烧结工艺研究[J].宇航材料工艺,1997,27(3):21-25
    [147]李永清,陈朝辉,张长瑞,等.先驱体转化法制备致密SiC/Si3N4复相陶瓷异型件烧成工艺研究[J].宇航材料工艺,1997,27(1):19-22
    [148]Lee J.I.,Hetcht N.L.,Tai-Il.M.In situ processing and properties of SiC/MoSi_2 nano -composites[J].J.Am.Ceram.Soc.,1998,81(2):421-424
    [149]邓炬,罗国珍,丁文周.美国连续SiC纤维增强复合材料的发展[J].稀有金属材料与工程,1991,20(6):10-18
    [150]赵稼祥.航天先进复合材料的现况与展望[J].飞航导弹,2000,(1):58-63
    [151]Beyer S.,Knabe H.,Strobel F.Development and testing of C/SiC composites for liquid rocket propulsion applications[R].AIAA-99-2896
    [152]戴永耀.高温陶瓷基复合材料的发展引人注目-国际高温陶瓷基复合材料会议(HT-CMC)简介[J].材料工程,1994,(3):12-15
    [1]祝桂洪.陶瓷工艺实验[M].北京:中国建筑工业出版社,1987
    [2]Erik C.M.,Zrolfgang G.Precise nondestructive determination of density of porous ceramics [J].J.Am.Ceram.Soc.,1989,72(2):1269-1270
    [3]仇沱,马眷荣.工程陶瓷弯曲强度试验方法[S].北京:中国建筑材料科学研究院,1986
    [4]仇沱,郭德生,胡云林,等.工程陶瓷高温弯曲强度试验方法[S].北京:中国建筑材料科学研究院,1993
    [5]GB75-70-03.高温结构陶瓷平面应变断裂韧性试验方法[S].北京:中国建筑材料科学研究院,1988
    [6]李艳华,邬友英,胡中永,等.纤维增强塑料拉伸性能试验方法[S].GB/T 1447-2005
    [7]曹英斌.先驱体转化-热压工艺制备C/SiC复合材料工艺、结构、性能研究[D].长沙:国防科技大学博士学位论文,2001
    [8]GB/T3362-1982,碳纤维复丝拉伸性能检验方法[S].北京:中国国家标准局,1982
    [9]王丽云,李书文,李昕.金属材料热膨胀特征参数的测定[S].北京:冶金信息标准研究院,1999
    [10]张玉娣.C/SiC复合材料反射镜坯体及过渡层的研究[D].长沙:国防科技大学博士学位论文,2005
    [11]薛健,张立.硬制合金热扩散率的测定方法[S].长沙:中南大学粉末冶金研究院,1989
    [12]胡明轩,王俊,李阿凤,等.烧蚀材料烧蚀实验方法[S].西安:中国航天工业总公司四院四十三所,1996
    [1]G D Soraru,F Babonneau,J D Mackenzie.Structural evolutions from polycarbosilane to SiC ceramic[J].J.Mater.Sci.,1990,25:3886-3893
    [2]E.Bouillon,F.Langlais,R Pailler,et al.Conversion mechanisms of a polycarbosilane precursor into a SiC-based ceramic material[J].J.Mater.Sci.,1991,26:1333-1345
    [3]S.Yajima,Y.Hasegawa,J.Hayashi.Synthesis of continuous silicon carbide fibre with high tensile strength and high young's modulus[J].J.Mater.Sci.,1978,13:2569-2576
    [4]E.Bouillon,C.Laffon,A.M.Flank.Study of the polymer to ceramic evolution induced by pyrolysis of organic precursor[J],physica B:Condensed Matter,1989,158(1-3):229-230
    [5]Katsuki Kusakabe,Zhong Yan Li,Hideaki Maeda,et al.Preparation of supported composites membrane by pyrolysis of polycarbosilane for gas separation at high temperature[J].J.Mem.Sci.,1995,103:175-180
    [6]Y.Hasegawa.Synthesis of continuous silicon carbide fibre,Part 6,Pyrolysis process of cured polycarbosilane fibre and structure of SiC fibre[J].J.Mater.Sci.,1989,24:1177-1190
    [7]Y.Hasegawa,M.Iimura,S.Yajima.Synthesis of continuous silicon carbide fibre,Part 2,Conversion of polycarbosilane fibre into silicon carbide fibres[J].J.Mater.Sci.,1980,24:720-728
    [8]王松.PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究[D].长沙:国防科技大学博士学位论文,2005
    [9]罗青.碳纤维增强碳化硅单向复合材料及其界面研究[D].国防科技大学硕士学位论文,1995
    [10]张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙:国防科技大学出版社,2001
    [11]R.Ostertag,T.Haug,J.Woltersdorf,et al.Structure and properties of interlayers in polymerderived C/SiC composites[J].J.Eur.Ceram.Soc.,1994,14(5):427-439
    [12]黄玉东,曹海琳,邵路,等.碳纤维复合材料界面性能研究[J].宇航材料工艺,2002,(1):19-24
    [13]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[D].长沙:国防科技大学博士学位论文,2003
    [14]解胜利.浸渍对炭石墨材料孔隙孔径的影响[J].炭素技术,2000,(3):41-43
    [15]R.Marissen,L.Th.Van der Drift,J.Sterk.Technology for rapid impregnation of fiber bundles with a molten thermoplastic polymer[J].Composites science and technology,2000,60:2029-2034
    [16]何新波,张长瑞,周新贵,等.先驱体转化-热压烧结碳纤维增韧碳化硅复合材料的纤维结构[J].航空材料学报,1999;19(3):43-50
    [17]孙文训.C/C复合材料的界面演化规律[J].材料研究学报,2000,14(1):137-140
    [18]Ismail M K.碳纤维:沥青纤维或聚丙烯晴(PAN)纤维的物理特性[J].新型碳材料,1988,(1):54-56
    [19]郑国斌,佐野秀明,内山休男,等.Fracture mechanism and mechanical properties of C/SiC composites[J].J.Ceram.Soc.Japan,1998,106(2):1155-1161
    [20]马恒怡,黄玉东,张志谦.碳纤维γ-射线辐照处理对其复合材料界面性能的影响[J].材料工程,2000,(4):26-29
    [21]林宏云.碳纤维表面性能对复合材料力学性能的影响[J].炭,1986,(1):1-8
    [22]贺福.碳纤维的制造性质及其应用[M].北京:科学出版社,1984
    [23]沈钟.胶体与表面化学[M].北京:化学工业出版社,1991
    [24]G.B.Zheng,H.Sano,Y.Uchiyama,et al.The properties of carbon fiber/SiC composites fabricated through impregnation and pyrolysis of polycarbosilane[J].J.Mater.Sci.,1999,34(4):827-834
    [25]李光亮.有机硅高分子化学[M].北京,科学出版社,1999
    [26]江玉和.非金属材料化学[M].北京,科学技术文献出版社,1992
    [27]简科,陈朝辉,马青松,等.浸渍工艺对先驱体转化制备C/SiC复合材料结构与性能的影响[J].航空材料学报,2005,25(5):38-41
    [28]闫联生,王涛,邹武,等.碳/碳化硅复合材料快速成型工艺研究[J].宇航材料工艺,1999,29(3):38-41
    [1]贺福.碳纤维的制造性质及其应用[M].北京:科学出版社,1984
    [2]沈钟.胶体与表面化学[M].北京:化学工业出版社,1991
    [3]张秀莲,徐志淮,李贺军.碳纤维表面处理对2D碳/碳复合材料弯曲性能的影响[J].材料工程,2005,22(9):3-6
    [4]吴庆,陈惠芳,潘鼎.碳纤维表面处理与上浆综述[J].材料导报,2000,14(6):41-42
    [5]R.Fletcher,C.R.Thomas,E.J.Walker.Proceedings of 6th International Conference on Carbon and Graphite[C].Society of Chemical Industry,London,1982:237-245
    [6]Yu-Qing Wang,Hema Viswanathan,Ahmad Audi,et al.X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces[j].Chem.Mater.,2000,12:1100-1107
    [7]闫联生,宋麦丽,邹武.高温处理对碳纤维及其复合材料性能的影响[J].宇航材料工艺,1998,(1):18-21
    [8]王松.PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究[D].长沙:国防科技大学博士学位论文,2005
    [9]岛田章.PAN碳纤维随高温热处理的结构变化[J].新型碳材料,1993,8(2):30-31
    [10]周新贵.PIP法制备三维编织涂层碳纤维增强碳化硅复合材料的结构与性能[D].长沙:中南大学博士学位论文,2006
    [11]新·炭材料入门[M].曰本炭素材料学会主编:中国金属学会炭素材料专业委员会编译.1999
    [12]王茂章,贺福.碳纤维的制造、性质及其应用[M].北京,科学出版社,1984
    [13]孙文训.C/C复合材料的界面演化规律[J].材料研究学报,2000,14(增刊):137-140
    [14]Chun Hway Hsueh.Thermal expansion coefficient of unidirectional fiber reinforced ceramics [J].J.Am.Ceram.Soc.,1988,71(10):438-441
    [15]简科,陈朝辉,马青松,等.浸渍工艺对先驱体转化制备Cf/SiC复合材料结构与性能的影响[J].航空材料学报,2005,25(5):38-41
    [16]王建方,陈朝辉,郑文伟等.热压工艺在Cf/SiC复合材料制备中的应用[J].航空材料学报,2002,22(3):22-25
    [17]简科.先驱体转化2D C/SiC材料工艺优化及构件制备技术研究[D].长沙:国防科技大学博士学位论文,2006
    [18]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[D].长沙:国防科技大学博士学位论文,2003
    [1]G..B.Zhang,H.Sano,Y.Uchiyama,et al.The properties of carbon fiber/SiC composites fabricated through impregnation and pyrolysis of polycarbosilane[J].J.Mat.Sci.,1999,(34):827-834
    [2]Paul S.Steif,Andrzej Trojnacki.Bend Strength versus Tensile Strength of Fiber-Reinforced Ceramics[J].J.Am.Ceram.Soc.,1994,77(1):221-229.
    [3]王丽云,李书文,李昕.金属材料热膨胀特征参数的测定[S].北京:冶金信息标准研究院,1999
    [4]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004
    [5]吴其胜,蔡安兰,杨亚群.材料物理性能[M].上海:华东理工大学,2006
    [6]简科.先驱体转化2D C/SiC材料工艺优化及构件制备技术研究[D].长沙:国防科技大学博士学位论文,2006
    [7]薛健,张立.硬质合金热扩散率的测定方法[S].长沙:中南工业大学粉末冶金研究院,1990
    [8]邹世钦.C/SiC复合材料及其矢量喷管调节密封片的制备与性能研究[D].长沙:国防科技大学博士学位论文,2005
    [9]Lamouroux F,Naslain R,Jouin J M.Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites:Ⅱ,Theoretical Approach[J].J.Am.Ceram.Soc.,1994,77(8):2058-2068
    [10]王零森.特种陶瓷[M].长沙:中南大学出版社,2005
    [11]陈朝辉.先驱体结构陶瓷[M].长沙:国防科技大学出版社,2003
    [12]张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙:国防科技大学出版社,2001
    [13]吴人洁.复合材料[M].天津:天津大学出版社,2002
    [14]胡明轩,王俊,李阿凤,等.烧蚀材料烧蚀试验方法[S].北京:国防科学技术委员会,1997
    [15]李梦龙.化学数据手册[M].北京:化学工业出版社,2003
    [1]刘志衍.固体火箭燃气舵气动设计研究[J].导弹与航天运载技术,1995,216(4):9-17
    [2]马丽滨,何洪庆.燃气舵外围流场计算[J].推进技术,1993,(1):28-33
    [3]高硅氧/酚醛斜缠防热层制品[S].北京:航天工业部七○三所,1990
    [4]Goujard S,Vandenbulcke L,Tawil H.The oxidation behaviour of two-and three-dimensional Cf/SiC thermostructural materials protected by chemical-vapour-deposition polylayers coatings[J].J.Mater.Sci.,1994,29:6212-6220.
    [5]Lamouroux F,Naslain R,Jouin J M.Kinetics and Mechanisms of Oxidation of 2D Woven Cf/SiC Composites:Ⅱ,Theoretical Approach[J].J.Am.Ceram.Soc.,1994,77(8):2058-2068
    [6]Rospars C,Dantec E L,Lecuyer F.A micromechanical model for thermostructural composites [J].Composit.Sci & Tech.,2000,60:1095-1102
    [7]邹世钦.C/SiC复合材料及其矢量喷管调节密封片的制备与性能研究[D].长沙:国防科技大学博士学位论文,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700