pAd-bFGF-GFP转染兔骨髓间充质干细胞与脱细胞支架体外构建组织工程韧带的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     非常严重的韧带损伤无法自行修复,往往需要韧带的重建。但无论自体或异体的韧带移植物及合成材料均不能取得满意结果。组织工程学的兴起为韧带重建提供了一条新的途径。组织工程学韧带构建包括建立韧带形态的支架结构,培养种子细胞并在支架上生长和产生细胞外基质,对原来的支架进行改建,最终形成具有自我更新和修复能力的韧带组织。脱细胞韧带支架通过脱去细胞成分,基本消除了免疫源性,同时保留天然韧带的形态和结构,生物力学性能未受影响。作为一种天然支架材料受到广泛关注。骨髓间充质干细胞(bone marrow mesenchymal cells,BMSCs)是目前比较热门的种子细胞,体外能快速扩增。有实验表明碱性成纤维细胞生长因子(bFGF)可促进骨髓间充质干细胞生长和分泌韧带特异性细胞外基质。通过转基因治疗基因转导入生长因子基因并在体内改良种子细胞及改变体内微环境来促进器官组织的形成,是目前组织工程中研究的热点。本研究利用腺病毒载体将碱性成纤维细胞生长基因转入骨髓间充质干细与脱细胞韧带支架复合培养共同构建组织工程韧带。
     方法
     1.分离、培养兔BMSCs和韧带成纤维细胞(ligament fibroblast,LF)。并对BMSCs细胞进行鉴定
     分别通过骨髓穿刺Ficoll密度梯度离心法和组织块培养法分离兔骨髓间充质干细胞和髌韧带成纤维细胞。MTT法检测两种细胞的增殖活性。通过成骨,成软骨,成脂肪细胞多向分化能力的测定来鉴定BMSCs。
     2.Gateway技术构建携带人bFGF基因的重组腺病毒载体(pAd-bFGF-GFP)
     构建只需两步:BP反应构建入门克隆,LR反应创建表达克隆。表达克隆在293细胞包装成目标腺病毒。测定病毒滴度。扩增腺病毒载体转染293细胞后realtimeRT-PCR及westernblot检测bFGF的表达。
     3.pAd-bFGF-GFP转染兔骨髓间充质干细胞后测定培养液中bFGF的表达和对细胞增值及分泌细胞外基质的影响及与韧带成纤维细胞的比较
     携带bFGF基因的腺病毒用不同MOI值来转染兔骨髓间充质干细胞,通过流式细胞仪检测转染效率。 MTT法检测转染后骨髓间充质干细胞增殖来确定最佳MOI值。以最佳MOI值转染骨髓间充质干细胞,ELISA检测bFGF蛋白表达、分泌趋势。将携带bFGF目的基因腺病毒转染的BMSCs(pAd-bFGF-GFP.BMSCs)、LF,BMSCs,转染空病毒的BMSCs(pAd-GFP-BMSCs)进行MTT细胞增殖比较。Realtime RT-PCR检测bFGF对BMSCs表达Collagen Ⅰ和Collagen Ⅲ、波形蛋白(Vimentin)在mRNA水平的影响。
     4.韧带脱细胞处理,并进行组织学及生物力学检测;
     1%DCA法进行韧带脱细胞处理。将pAd-bFGF-GFP.BMSCs,LF, BMSCs,pAd-GFP-BMSCs种植脱细胞韧带支架,MTT法检测种子细胞在脱细胞支架上的黏附、生长、增殖情况。Realtime RT-PCR检测种子细胞Collagen Ⅲ、Collagen Ⅰ和Vimentin蛋白mRNA水平的表达。组织学切片,冰冻切片和共聚焦显微镜观察pAd-bFGF-GFP.BMSCs在支架的生长分布情况。生物力学检测体外复合培养对韧带机械性能的影响。
     结果
     1.分离培养的BMSCs与LF在大体形态学上相似,均表现为长梭形、漩涡样生长。MTT检测结果显示BMSCs的增殖活性明显优于LF。BMSCs具有向成骨,成脂肪,成软骨多向分化能力。
     2.成功构建了携带人bFGF基因的质粒,对重组质粒进行PCR鉴定和基因测序表明成功合成和整合了人bFGF基因。用重组质粒腺病毒载体系统成功构建了重组腺病毒pAd.bFGF-GFP。通过在293细胞内的扩增,我们得到了高滴度的病毒,滴度测定为(4.85×109ifu/ml)。realtime RT-PCR及Western-blot证实目的基因bFGF在基因水平和蛋白水平高效表达。
     3.腺病毒对BMSCs细胞有很高的转染效率,MTT结果显示MOI值为200时,BMSCs细胞具有最强的增值能力。ELISA检测显示:转染后48h bFGF就已经显著表达,分泌高峰出现在第7天,此后逐渐下降,2周时仍检测到。pAd-bFGF-GFP转染BMSCs与其他细胞相比具有更强的细胞增值能力。培养2周后Realtime RT-PCR检测显示Collagen Ⅰ、Collagen ⅢmRNA表达均显著高于其他组。VimentinmRNA表达与LF相当。
     4. MTT法检测显示种子细胞与脱细胞支架复合培养后bFGF基因转染骨髓间充质干细胞后能明显促进细胞生长。Realtime PCR显示pAd-bFGF-GFP转染BMSCs的Collagen Ⅲ、Collagen Ⅰ表达均显著高于其他组。Vimentin mRNA表达与成纤维细胞相当。HE染色和冰冻切片共聚焦显微镜观察pAd-bFGF-GFP-BMSCs在脱细胞韧带纤维间生长良好,呈梭形生长。生物力学检测显示复合培养脱细胞韧带与未培养韧带相比最大应力没有差别,弹性模量降低。
     结论
     1.成功分离培养获得兔骨髓间充质干细胞和韧带成纤维细胞,并通过分化培养鉴定确认获得具有多向分化能力的BMSCs。成纤维细胞的获取创伤较大。
     2.成功构建了携带人bFGF基因的高滴度缺陷型重组腺病毒。
     3.转染bFGF基因的BMSCs细胞能持续分泌bFGF至少两周,具有很强的增值能力和表达韧带特异性细胞外基质蛋白mRNA能力,优于韧带成纤维细胞和BMSCs细胞和转染空病毒的BMSCs细胞,
     4.体外转基因BMSCs能在脱细胞韧带上良好生长,并能大量表达韧带特异性的基质蛋白mRNA,优于韧带成纤维细胞和BMSCs细胞和转染空病毒的BMSCs细胞,生物力学性能基本保留。
Objective
     Natural healing fails to take effect in severe injury of ligaments.Replacement grafts are usually required. However,Synthetic replacements orautografts and allografts can’t achieve satisfactory results. Tissueengineering ligament construct including the establishment of the supportstructure of the ligament,introduction of seed cells to grow and produceextracellular matrix on the stent to carry out alterations to the originalstent and ultimately the formation of self-renewal ligament tissue. Nowadays,with the rapid development of biotechnology, tissue-engineered ligaments(TELs) have provided a new strategy for injured ligaments replacement.Acellular ligament was deprived of cellular components and eliminated off theimmunogenity while retaining the natural shape and property of the ligamentbiomechanical properties.It, as a natural scaffold material, has receivedwidespread attention. Bone marrow mesenchymal stem cells (BMSCs) arecurrently popular seed cells. Experiments show that the basic fibroblastgrowth factor (bFGF) can promote bone marrow mesenchymal stem cell growth andsecretion of ligament-specific extracellular matrix. Introducing growthfactor into cell to improve seed cell capacity and make change in vivomicroenvironment to promote the formation of organs and tissues, as a meanof gene therapy, is the hot topic. In this study, the adenovirus vector wasused to introduce basic fibroblast growth gene into bone marrow mesenchymalstem cells.Then tansfected BMSCs were cultured with acellular ligament tobuild TELs.
     Methods
     1. Isolatation and culture of the BMSCs and Ligament Fibroblast (LF).
     Isolation and culture of the BMSCs and LF was through femoral punctureand Ficoll density gradient centrifugation,tissue culture method separately.Proliferation activity of the two cells was assessed by MTT assay.BMSCs wereconfirmed by multiple lineage differentiation capacity.
     2. Construction of the recombinant adenovirus vectors containing the bFGFgenes by Gateway technique.
     We constructed recombinant adenovector by gateway technique with onlytwo main steps:BP reaction to construct entry Clone and LR reaction toconstruct expression clone.Then expression clone were packaged in293cellsto form the tareget virus.We amplified the recombinant adenovirus and detectedvirus titer. We detect the expression of bFGF through RT-PCR and western-blotafter293cells were transfected.
     3.To investigate the expression of bFGF in culture medium after BMSCs weretransfected and the effect of bFGF on cell proliferation and production ofextracellular matrix proteins specific to ligaments in cells compared amongpAd-GFP-BMSCs,BMSCs,pAd.bFGF-GFP.BMSCs, LF.
     A. Transfection efficiency of adenovirus vector to BMSCs was dected byflow-cytometry analysis with different MOI valure.
     B.The most appropriate MOI was determined by MTT after BMSCs weretransfected with pAd-bFGF-GFP with different MOI
     C The secrection of bFGF was dected by ELLISA.
     D The effect of bFGF on cell proliferation was assessed by MTT.Productionof extracellular matrix proteins (collagen Ⅰ, collagen Ⅲ, andvimentin)specific to ligaments in cells was determined by mRNA expression ofRT-PCR compared among BMSCs, LF,BMSCs,pAd-GFP-BMSCs.
     4. Construction of tissure engineering ligaments by decellularizedligament scaffolds and seeded cells
     Rabbit patellar tendons were decellularized with1%DCA as perfomed in ourearly experiment.Then decelluarized ligament scaffolds were seeded in vitrowith pAdbFGF-GFP-BMSCs, pAd-GFP-BMSCs, BMSCs and LF to fabricate tissureengineering ligaments. The growth and proliferation of seeded cells on thescaffolds was estimated by MTT. Production of extracellular matrix proteins(collagen Ⅰ, collagen Ⅲ, and vimentin)specific to ligaments in cells wasdetermined by mRNA expression of RT-PCR compared among BMSCs, LF,BMSCs, pAd-GFP-BMSCs. In pAdbFGF-GFP-BMSCs seeded scaffolds histological analysisthrough confocal microscope and HE staining was conducted to observe cellsgrowth and distribution. Biomechanical measure was made to valuae theinfluence of coculture in vitro to decellularized ligaments.
     Results
     1.We successfully isolated and obtained the BMSCs and LF. BMSCs and LFwere similar in the general cell morphology such as both of them had spindleshape with whirlpool-like growth pattern.There were significant highproliferation in BMSCs compared to LF after MTT assay.BMSCs candifferentiate into bone cell,fat cell and chondrocyte.
     2.Recombinant adenovirus plasmid was constructed successfully determinedby electrophoresis after PCR amplification.The result of gene sequencing wascorrect. Recombinant adenovirus titer was4.85×109pfu/ml. bFGF was expressedafter293cells were transfected by pAd-bFGF-GFP vectors dected by real timeRT-PCR and western-blot
     3.BMSCs were effectively transfected in vitro. Cell proliferation wasgreatest when BMSCs were transfected at MOI200. bFGF protein was detected48h after transfection by ELISA.Expression level reached peak at7d, thendecreased gradually but bFGF was still detectable at14days after transfection.Proliferation of pAd-bFGF-GFP-BMSCs was significantly high than othergroups by MTT assay.Realtime RT-PCR showed that expression of collagen typeⅠ, collagen type Ⅲ, was higher significantly in pAd-bFGF-GFP-BMSCs than theother groups at two week. There was no significant difference in vimentinexpression between pAd-bFGF-GFP-BMSCs and LF.
     4. Proliferation of pAd-bFGF-GFP-BMSCs was significantly high thanother groups by MTT assay. Realtime RT-PCR showed that expression of collagentype Ⅰ, collagen type Ⅲ, was higher significantly in pAd-bFGF-GFP-BMSCsthan the other groups. There was no significant difference in vimentinexpression between pAd-bFGF-GFP-BMSCs and LF.HE stain and confocalmicroscopy showed that pAdbFGF-GFP-BMSCs infiltrated excellently intodecellularized scaffolds. Biomechanical measure showed that the maximum load of the decellularized ligament scaffolds with and without cell culture hadno significant difference. Stiffness was significantly low in cell culturegroups than decellularized ligaments scaffolds alone.
     Conclusions
     1. BMSCs were achieved easily, expanded massively to reach the demandfor tissure engineering ligaments in vitro after culture for2weeks. LF wasobtained successfully though by much more traumatic approach. BMSCs wasdetermined by multiple lineage differentiaon capacity
     2. pAd-bFGF-GFP vectors with high titer and purity were constructed,which can be used safely in vitro.
     3BMSCs were effectively transfected by pAd.bFGF-eGFP. Secrection of bFGFwas detected for at least14days. Proliferation of pAd-bFGF-GFP-BMSCs wassignificantly higher than other groups. Expression of matrix prorein wassignificantly higher in pAd-bFGF-GFP-BMSCs group than the other groups.
     4.Proliferation and infiltration of pAd-bFGF-GFP-BMSCs was excellent indecullarized ligaments. Expression of matrix prorein was highersignificantly in pAd-bFGF-GFP-BMSCs group than the other groups.Biomechanical property of the decellularized ligament scaffolds with cellculture was basically retained. Creating TEL by seeded transgenetic BMSCson decellularized rabbit ligament scaffolds was viable.
引文
[1]Frank C, Bray RC, Hart DA. Soft Tissue Healing. In Knee Surgery, Baltimore, MD: Williams&Wilkins,1994, pp.189-229.
    [2]Frank CB, Amiel D, LY Woo S, et al. Joints: Clinical and experimental aspects. In Biomechanicsof Trauma, edited by A. M. Nahum, and J. Melvin, Norwalk, CT: Appleton-Century-Crofts,1985, p.369-397
    [3]Lin TW, Cardenas L, Soslowsky LJ. Biomechanics of tendon injury and repair. J Biomech,2004,37:865-877.
    [4]Woo SL, Gomez MA, Sites TJ, et al. The biomechanical and morphological changes in the MCLof the rabbit after immobilization and remobilization. J Bone Joint Surg,1987,69A:1200-1211.
    [5]Harwood FL, Amiel D. Differential metabolic responses of periarticular ligaments and tendon tojoint immobilization. J Appl Physiol,1992,72(5):1687-1691.
    [6]Van Eijk F, Saris DB, Riesle J, et al. Tissue engineering of ligaments: A comparison of bone marrowstromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng.2004,10:893-903.
    [7]Scherping Jr SC, Schmidt CC, Georgescu HI, et al. Effect of growth factors on the proliferation ofligament fibroblasts from skeletally mature rabbits. Connect Tissue Res,1997,36:1-8.
    [8]Beresford JN. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop RelatRes,1989,240:270-280.
    [9]Ge Z, Goh JC, Lee EH. Selection of cell source for ligament tissue engineering. Cell Transplant,2005,14(8):573-583.
    [10]Awad HA, Boivin GP, Dressler MR,et al. Repair of patellar tendon injuries using a cell-collagencomposite. J Orthop Res,2003,21(3):420-431.
    [11]Wtirgler.Hauri C C,Douse I M,Baradet T C et a1. Temporal expression of8growth FActors intendon to-bone healing in a rat supraspinatus model.J Shoulder Elbow Surg,2007,16(5):S198-203.
    [12]Greenhalgh DG, Spruge KH, Murray MJ, et al. PDGF and FGF stimulate wound healing in thegenetically diabetic mouce. Am J Pathol,1990,136:1235-1246.
    [13]Hankemeier S, Keus M, Zeichen J, et al. Modulation of proliferation and differentiation of humanbone marrow stromal cells by fibroblast growth factor2: potential implications for tissue engineeringof tendons and ligaments. Tissue Eng,2005,11(1-2):41-49.
    [14]Kurane A, Simionescu DT, Vyavahare NR. In vivo cellular repopulation oftubular elastinscaffolds mediated by basic fibroblast growth factor. Biomaterials,2007Jun,28(18):2830-2838.
    [15]Nauman EA, Sakata T, Keaveny TM et al.bFGF administration lowers the phosphate threshold formineralization in bone marrow stromal cells. Calcif Tissue Int,2003,73(2):147-152.
    [16]Hartley JL, Temple GF, Brasch MA. DNA cloning using in vitro site-specific recombination.Genome Res,2000Nov,10(11):1788-1795.
    [17]Dunn MG, LieschJB, Tiku ML,et al. Development of fibroblast-seeded ligament analogs for ACLreconstruction. J Biomed Mater Res,1995,29:1363-1371.
    [18] Dunn MG, Tria AJ, Kato YP, et al. Anterior cruciate ligament reconstruction using a compositecollagenous prosthesis. A biomechanical and histologic study in rabbits. Am J Sports Med,1992,20:507-515
    [19]Good L, Odensten M, Pettersson L,et al. Failure of a bovine xenograft for reconstruction of theanterior cruciate ligament. Acta Orthop Scand,1989,60:8-12.
    [20]Lu HH, Cooper Jr. JA, Manuel S,et al. Anterior cruciate ligament regeneration using braidedbiodegradable scaffolds: in vitro optimization studies.Biomaterials,2005,26:4805-4816.
    [21]Cooper JA, Lu HH, Ko FK, et al. Fiberbased tissue-engineered scaffold for ligament replacement:design considerations and in vitro evaluation. Biomaterials,2005,26:1523-1532.
    [22]Yang SF, L eong KF, Du ZH, et al. The design of scaffolds for use in tissue engineering. Part I, Traditional factors.T issue Eng,2001,7(6)∶679
    [23]Hokugo A, Takamoto T, Tabata Y. Preparation of hybrid scaffold from fibrin and biodegradablepolymer fiber. Biomaterials,2006,27:61–67.
    [24]Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue engi neered anterior cruciate ligaments.Biomaterials,2002,23:4131-4141.
    [25]Greenwald D, Shumway S, Albear P, et al. Mechanical comparison of10suture materials beforeand after in vivo incubation. J Surg Res,1994,56:372–377.
    [26]Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials,2003,24:401–16.
    [27]Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Seminars inImmunology,2008,20:109–116.
    [28]Allaire E, Guettier C, Bruneval P.Cell-free arterial grafts: morphologic characteristics of aorticisografts,allografts, and xenografts in rats. J Vasc Surg,1994,19:446–456
    [29]周盛源,韧带脱细胞支架构建的实验研究[硕士学位论文].上海,第二军医大学,2010
    [1]Patrick Jr. C, Mikos A, McIntire L. Frontiers in tissue engineering. New York: Elsevier ScienceLtd,1998,p.413-442.
    [2]Van Eijk F, Saris DB, Riesle J, et al. Tissue engineering of ligaments: A comparison of bonemarrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. TissueEng,2004,10:893-903.
    [3]Scherping Jr SC, Schmidt CC, Georgescu HI, et al. Effect of growth factors on the proliferation ofligament fibroblasts from skeletally mature rabbits. Connect Tissue Res,1997;36:1-8.
    [4]Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures ofplastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A,2000,28;97(7):3213-8.
    [5]Zhou HP, Jin ZX, Liu JC, et al. Mesenchymal stem cells might be used to induce tolerance in hearttransplantation. Medical Hypotheses,2008,70:785-787.
    [6]Moreau JE, Chen J, Bramono DS, et al. Growth factor induced fibroblast differentiation from humanbone marrow stromal cells in vitro. J Orthop Res,2005,23:164-174.
    [7]Hankemeier S, Keus M, Zeichen J, et al. Modulation of proliferation and differentiation of humanbone marrow stromal cells by fibroblast growth factor2: Potential implications for tissue engineering oftendons and ligaments. Tissue Eng,2005,11:41-49.
    [8]Wang J. Mechanobiology of tendon. J Biomech,2006,39:1563-1582.
    [9]Doroski DM, Brink KS, Temenoff JS. Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials,2007,28:187-202.
    [10]Gesink DS, Pacheco HO, Kuiper SD, et al. Immunohistochemcial localization of β1-integrins inanterior cruciate and medial collateral ligaments of human and rabbit. J Orthop Res,1992,10(4):596-599.
    [11]Frank C, Bray RC, Hart DA. Soft Tissue Healing. In Knee Surgery, Baltimore, MD: Williams&Wilkins,1994, pp.189-229.
    [12]Frank CB, Amiel D, LY Woo S, et al. Joints: Clinical and experimental aspects. In Biomechanicsof Trauma, edited by A. M. Nahum, and J. Melvin, Norwalk, CT: Appleton-Century-Crofts,1985,p369-397
    [13]Lin TW, Cardenas L, Soslowsky LJ. Biomechanics of tendon injury and repair. J Biomech,2004,37:865-877.
    [14]Woo SL, Gomez MA, Sites TJ, et al. The biomechanical and morphological changes in the MCLof the rabbit after immobilization and remobilization. J Bone Joint Surg,1987,69A:1200-1211.
    [15]Harwood FL, Amiel D. Differential metabolic responses of periarticular ligaments and tendon tojoint immobilization. J Appl Physiol,1992,72(5):1687-1691.
    [16]Van Eijk F, Saris DB, Riesle J, et al. Tissue engineering of ligaments: A comparison of bonemarrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng,2004,10:893-903.
    [17]Scherping Jr SC, Schmidt CC, Georgescu HI, et al. Effect of growth factors on the proliferation ofligament fibroblasts from skeletally mature rabbits. Connect Tissue Res,1997,36:1-8.
    [18]Friedenstein AJ, Chailakhyan RK, Latsinik NV,et al. Stromal cells responsible for transferring themicroenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation,1974,17:331–340.
    [19]Beresford JN. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop RelatRes,1989,240:270–280.
    [20]Ge Z, Goh JC, Lee EH. Selection of cell source for ligament tissue engineering. Cell Transplant,2005,14(8):573-583.
    [21]Stidwill RP, Christen M. Alteration of fibronectin affinity during differentiation modulates the invitro migration velocities of hydra nematocytes. Cell Motil Cytoskel,1998,41:68-73.
    [22]Roy V, Verfaillie CM. Expression and function of cell adhesion molecules on fetal liver, cordblood and bone marrow hematopoietic progenitors: implications for anatomical localization anddevelopmental stage specific regulation of hematopoiesis. Exp Hematol,1999,27:302-312.
    [23]Friedenstein, A. J. Precursor cells of mechanocytes. Int. Rev.Cytol,1976,47:327–359,.
    [24]E a LP, Ramalho RB, Oliveira IS, et al.Comparative study of technique to obtain stem cells frombone marrow collection between the iliac crest and the femoral epiphysis in rabbits. Acta Cir Bras,2009,24(5):400-4.
    [25]Chang Y, Hsieh PH, Chao CC. The efficiency of Percoll and Ficoll density gradient media in theisolation of marrow derived human mesenchymal stem cells with osteogenic potential. Chang GungMed J,2009,32(3):264-75.
    [26]Owen M, Friedenstein A. J. Stromal stem cells: Marrowderived osteogenic precursors. Ciba Found.Symp,1988,136:42–60.
    [27]Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest,2000,105:1663-8.
    [28]M uraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrowdifferentiate in vitro according to a hierarchical model. J. Cell Sci,2000,113:1161–1166.
    [29]Kraemer PM, Ray FA, Brothman, AR, et al.Spontaneous immortalization rate of cultured Chinesehamster cells. J. Natl.Cancer Inst.1986,76,703–709.
    [30]Hauser H, Fussenegger M. Tissue engineering,Humana Press Inc, second edition,2007,p92.
    [31]Banfi A, Bianchi G, Notaro R, et al. Replicative aging and gene expression in long-term culturesof human bone marrow stromal cells. Tissue Eng,2002,8(6):901-10.
    [32]Bianchi G, Muraglia A, Daga A, et al. Microenvironment and stem properties of bonemarrow-derived mesenchymal cells. Wound Repair Regen,2001,9(6):460-6.
    [33]Prockop D J,Phinney DG,Bunnel BA.Mesenchymal Stem Cells:Methods and Protocols. HumanaPress,2008,p110.
    [1]Hankemeier S, Keus M, Zeichen J, et al. Modulation of proliferation and differentiation of humanbone marrow stromal cells by fibroblast growth factor2: Potential implications for tissue engineering oftendons and ligaments. Tissue Eng,2005,11:41-49.
    [2]Ghosh SS, Gopinath P, Ramesh A. Adenoviral vectors: a promising tool for gene therapy. ApplBiochem Biotechnol,2006,133:9-29.
    [3]Zhang X, Godbey WT. Viral vectors for gene delivery in tissue engineering. Adv Drug DelivRev,2006Jul7,58(4):515-534.
    [4]Coffin JM, Hughes SH, Varmus HE.Retroviruses, Cold Spring Harbor Laboratory Press,1997.
    [5]Kurian KM, Watson CJ, Wylli AH.Retroviral vectors.J Clin Pathol Mol Pathol,2000,53:173–176.
    [6]Barquinero J, Eixarch H, Perez-Melgosa M. Retroviral vectors: new applications for an old tool.Gene Ther,2004,11(Suppl1):S3–9.
    [7]Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possible solutions. Curr GeneTher,2005,5:25–35.
    [8]Ferrari, F. K., Samulski, T., Shenk, T. and Samulski, R. J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J.Virol,1996,70:3227–3234.
    [9]赵世巧,冯文莉.基因治疗的病毒载体研究进展.国外医学临床生物化学与检验学分册,2005,26(10):709-711.
    [10]Shenk T. Adenoviridae: The viruses and their replication. In B.N. Fields, et al.(Eds.). Fieldsvirology,1996,2111~2148.Philadelphia, PA, State: Lipp incott-Raven Publishers.
    [11]Kovesdi I, Brough DE, Bruder JT, Wickham TJ. Adenoviral vectors for gene transfer. Curr OpinBiotechnol,1997,8:583–589.
    [12]Bergelson JM. Receptors mediating adenovirus attachment and internalization. Biochem Pharmacol,1999,57:975–979.
    [13] Russell WC. Update on adenovirus and its vectors.J Gen Virol,2000,81:2573–2604.
    [14] Bett AJ, Haddara W, Prevec L, et al. An efficient and flexible system for construction ofadenovirus vectors with insertions or deletions in early regions1and3, Proc. Natl. Acad. Sci. USA1994,91:8802–8806.
    [15]Lochmüller H, Jani A, Huard J,et al. Emergence of early region1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1+delta E3)during multiple passages in293cells. Hum Gene Ther,1994,5(12):1485-91.
    [16]王素华.腺病毒载体及其在基因治疗中的应用.中国畜牧兽医,2009,36(9):119-121.
    [17]Lieber A,He CY,Kirillova I,et al. Recombinant adenoviruses with large deletions generated by cremediated excision exhibit different biological properties compared with first generationvectors in vitro and in vivo. J Virol,1996,70:8944-8960.
    [18] Hartley JL, Temple GF, Brasch MA. DNA cloning using in vitro site-specific recombination.Genome Res,2000Nov,10(11):1788-1795.
    [19]顾洪生,程志安,李振宇.利用Gateway技术构建重组腺病毒载体pAd-LMP-1.中国组织工程研究与临床康复,2010,14(24):4425-4429.
    [20]段小军,杨柳,周跃,等.不同荧光蛋白标记技术对兔骨髓基质干细胞体外增殖的影响.中华创伤骨科杂志,2004,6(7):731~734.
    [21]Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression.Science,1994,263(5148):802-805.
    [22]J ensen P H,Weilguny D. Combination primer polymerase chain reaction for multi-sitemutagenesis of close proximity sites. J Biomol Tech,2005,16:336-340.
    [23]严飞,赵新宇,邓洪新,魏于全.一种新的双元表达质粒Pcmv-Myc-IRES-EGFP的构建及其表达.生物工程学报,2007,23:423-428.
    [1]Petrigliano FA,McallisterDR,Wu BM. Tissue engineering for anterior cruciate ligamentreconstruction: a review of current strategies. Arthroscopy,2006,22(4):441-51.
    [2]Ge ZG, Goh JCH, Lee EH. Selection of cell source for ligament tissue engineering. Cell Transplant,2005,14:573-583.
    [3]Sorensen V,Nilsen T,W iedlocha A.Functional diversity of FGF-2isoforms by intracellularsorting.Bioessays,2006,28:504-514.
    [4] Relou IA,Damen CA, van der Schaft DW, et al. Effect of culture conditions on endo thelial cellgrow th and responsiveness. T issue Cell,1998,30(5):525-530.
    [5]郝鹏,项舟,杨志明.碱性成纤维细胞生长因子在肌腱组织工程中的应用.中国修复重建外科杂志,2005,19(11):915-918.
    [6]Hankemeier S, Keus M, Zeichen J, et al. Modulation of proliferation and differentiation of humanbone marrow stromal cells by fibroblast growth factor2: potential implications for tissue engineeringof tendons and ligaments. Tissue Eng,2005,11(1-2):41-49.
    [7]Wang J. Mechanobiology of tendon. J Biomech,2006,39:1563-1582.
    [8]Doroski DM, Brink KS, Temenoff JS. Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials,2007,28:187-202.
    [9]Riley GP: Gene expression and matrix turnover in overused and damaged tendons. Exp Rev MolMed,2005,15:241-251.
    [10]Frank CB: Ligament structure, physiology and function. J Musculoskelet Neuronal Interact,2004,4:199-201.
    [11] Liu SH, Yang RS, Al-Shaikh R, et al.Collagen in tendon, ligament, and bone healing: a currentreview. Clin Orthop Rel Res,1995,318:265-278.
    [12]Frank CB.Ligament structure, physiology and function. J Musculoskelet Neuronal Interact,2004,4:199-201.
    [13]Mackie EJ, Ramsey S. Expression of tenascin in joint-associated tissues during development andpostnatal growth. J Anat,1996,188:157-165.
    [14]Vunjak-Novakovic G, Altman G, Horan R, et al. Tissue engineering of ligaments. Annu RevBiomed Eng,2004,6:131-156.
    [15]Funakoshi T, Majima T, Iwasaki N, et al. Novel chitosan-based hyaluronan hybrid polymer fibersas a scaffold in ligament tissue engineering. J Biomed Mater Res A,2005,74:338-346.
    [16]Toivola DM, Tao GZ, Habtezion A, et al. Cellular integrity plus: organelle-related andprotein-targeting functions of intermediate filaments. Trends Cell Biol,2005,15:608-617.
    [17]Greiling D, Clark RA. Fibronectin provides a conduit for fibroblost transmigration fromcollagenous stroma into fibrin clot provisional matrix. J Cell Sci,1997,110:861-870.
    [18] Dahlgren LA, Mohammed HO, Nixon AJ.Temporal expression of growth factors and matrixmolecules in healing tendon lesions. J Orthop Res,2005,23:84-92.
    [19] Hyman J, Rodeo SA. Injury and repair of tendons and ligaments. Phys Med Rehabil Clin N Am2000,11(2):267-288
    [20]Lo IKY, Randle JA, M ajima T. N ew directions in understanding and optimizing ligament andtendon healing. Curr Op in O rthop,2000,11:421-428.
    [21]Ge Z, Goh JC, Lee EH. Selection of cell source for ligament tissue engineering. Cell Transplant,2005,14(8):573-583.
    [22]Awad HA, Boivin GP, Dressler MR,et al. Repair of patellar tendon injuries using a cell-collagencomposite. J Orthop Res,2003,21(3):420-431.
    [23]Wtirgler.Hauri C C,Douse I M,Baradet T C et a1. Temporal expression of8growth FActors intendon to-bone healing in a rat supraspinatus model.J Shoulder Elbow Surg,2007,16(5):S198—203.
    [24]郭伶俐,邢新,刘刊等.人碱性成纤维细胞生长因子腺病毒表达载体的构建及其在人脐静脉内皮细胞中的表达,第二军医大学学报,2007,28(4):408-411.
    [25]Greenhalgh DG, Spruge KH, Murray MJ, et al. PDGF and FGF stimulate wound healing in thegenetically diabetic mouce. Am J Pathol,1990,136:1235-1246.
    [26] Chen C H,Cao Y,wu Y F,et a1.Tendon healing in vivo:gene expression and production ofmultiple growth factors in early tendon healing period.J Hand Surg Am,2008,33(10):1834-1842
    [27]Chang J, Most D, Thunder R et al. Molecular studies in flexor tendon wound healing: the role ofbasic fibroblast growth factor gene expression. J Hand Surg Am,1998,23(6):1052-1058.
    [28]Chan BP, Fu S, Qin L, et al. Effects of basic fibroblast growth factor (bFGF) on early stages oftendon healing: a rat patellar tendon model. Acta Orthop Scand,2000,71(5):513-518.
    [29]Chan BP, Chan KM, Maffulli N, et al. Effect of basic fibroblast growth factor. An in vitro studyof tendon healing. Clin Orthop Relat Res,1997,342:239-247.
    [30]Kurane A, Simionescu DT, Vyavahare NR. In vivo cellular repopulation oftubular elastinscaffolds mediated by basic fibroblast growth factor. Biomaterials,2007,28(18):2830-2838.
    [31]Nauman EA, Sakata T, Keaveny TM et al.bFGF administration lowers the phosphate threshold formineralization in bone marrow stromal cells. Calcif Tissue Int,2003,73(2):147–152.
    [32]Shimko DA, Burks CA, Dee KC,et al. Comparison of in vitro mineralization by murineembryonic and adult stem cells cultured in an osteogenic medium. Tissue Eng,2004,10(9-10):1386-98.
    [33]Shiba H, Nakamura S, Shirakawa M, et al. Effects of basic fibroblast growth factor onproliferation, the expression of osteonectin (SPARC) and alkaline phosphatase, and calcification incultures of human pulp cells. Dev Biol,1995,170(2):457–466.
    [34] Varkey M, Kucharski C, Haque T,et al. In vitro osteogenic response of rat bone marrow cells tobFGF and BMP-2treatments. Clin Orthop Relat Res,2006,443:113–23.
    [35].张丽君,郭勇.bFGF在骨组织工程学中的研究进展.国外医学生物医学工程分册,2002,25(5):223-226.
    [36] Song G, Ju Y, Soyama H.Growth and proliferation of bone marrow mesenchymal stem cellsaffected by type I collagen, fibronectin and Bfgf.Materials Science and Engineering C,2008,1467-1471
    [37].谢宏明,倪江东,宋德业.体外培养肌腱细胞增殖与碱性成纤维细胞生长因子(BFGF)的关系探讨.实用预防医学,2007,14(6):1720-1723
    [38]Takahashi JC, Saiki M, Miyatake S, et al. Adenovirus-mediated gene transfer of basic fibroblastgrowth factor induces in vitro angiogenesis. Atherosclerosis,1997,132(2):199-205.
    [1].Durselen L, Claes L, Ignatius A,et al.Comparative animal study of three ligament prostheses for thereplacement of the anterior cruciate and medial collateral ligament. Biomaterials,1996(17):977–982
    [2].Muren O, Dahlstedt L, Brosjo E, et al. Gross osteolytic tibia tunnel widening with the use ofGore-Tex anterior cruciate ligament prosthesis: a radiological, arthrometric and clinical evaluation of17patients13–15years after surgery.Acta Orthop,2005(76):270–274
    [3]. Jackson DW, Grood ES, Arnoczky SP,et al.Freeze dried anterior cruciate ligament allografts.Preliminary studies in a goat model. Am J Sports Med,1987,15:295–303
    [4]. Zimmerman MC, Contiliano JH, Parsons JR, et al.The biomechanics and histopathology ofchemically processed patellar tendon allografts for anterior cruciate ligament replacement. Am J SportsMed,1994,22:378–386
    [5].周盛源,韧带脱细胞支架构建的实验研究[硕士学位论文].上海,第二军医大学,2010
    [6].Dunn MG, LieschJB, Tiku ML,et al. Development of fibroblast-seeded ligament analogs for ACLreconstruction. J Biomed Mater Res,1995,29:1363–1371.
    [7] Dunn MG, Tria AJ, Kato YP, et al. Anterior cruciate ligament reconstruction using a compositecollagenous prosthesis. A biomechanical and histologic study in rabbits. Am J Sports Med,1992,20:507–515
    [8].Good L, Odensten M, Pettersson L,et al. Failure of a bovine xenograft for reconstruction of theanterior cruciate ligament. Acta Orthop Scand,1989,60:8–12.
    [9].Lu HH, Cooper Jr. JA, Manuel S,et al. Anterior cruciate ligament regeneration using braidedbiodegradable scaffolds: in vitro optimization studies.Biomaterials,2005,26:4805–4816.
    [10].Cooper JA, Lu HH, Ko FK, et al. Fiberbased tissue-engineered scaffold for ligament replacement:design considerations and in vitro evaluation. Biomaterials,2005,26:1523–1532.
    [11].Yang SF, L eong KF, Du ZH, et al. The design of scaffolds for use in tissue engineering. Part I, Traditional factors.T issue Eng,2001,7(6)∶679
    [12].Hokugo A, Takamoto T, Tabata Y. Preparation of hybrid scaffold from fibrin and biodegradablepolymer fiber. Biomaterials,2006,27:61–67.
    [13].Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue engi neered anterior cruciateligaments[J]. Biomaterials,2002,23:4131-4141.
    [14]. Greenwald D, Shumway S, Albear P, et al. Mechanical comparison of10suture materials beforeand after in vivo incubation. J Surg Res,1994,56:372–377.
    [15].Altman GH, Diaz F, Jakuba C,et al. Silk-based biomaterials. Biomaterials2003;24:401–416.
    [16].Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Seminars inImmunology,2008,20:109–116.
    [17].Allaire E, Guettier C, Bruneval P.Cell-free arterial grafts: morphologic characteristics of aorticisografts,allografts, and xenografts in rats. J Vasc Surg,1994,19:446–456
    [18].Patrick CW, Mikos AG, McIntire LV. Frontiers in tissue engineering. New York: Pergamon;1998.p.412–442.
    [19]. Tischer T, Vogt S, Aryee S, Steinhauser E, Adamczyk C, Milz S, Martinek V. Tissue engineeringof the anterior cruciate ligament: a new method using acellularized tendon allografts and autologousfibroblasts. Arch Orthop Trauma Surg,2007,127:735–741.
    [20].Altman GH, Horan R, Martin I, et al. Cell differentiation by mechanical stress. FASEB J,2001,16:270-272.
    [21]. Toyoda T, Matsumoto H, Fujikawa K, et al. Tensile load and the metabolism of anterior cruciateligament cells. Clin. Orthop. Relat. Res,1998,353:247-255.
    [22]Ikema Y, Tohyama H, Yamamoto E, et al. Ex vivo infiltration offibroblasts into the tendondeteriorates the mechanical properties of tendon fascicles but not those of tendon bundles. ClinBiomech (Bristol, Avon),2007,22(1):120-126.
    [23]Yamamoto, E., Hayashi, K., Yamamoto, N., Effects of stress shielding on the transverse mechanicalproperties of rabbit patellar tendons. J. Biomech.Eng,2000,122(6):608–661.
    [1]M.P. Lutolf, J.A. Hubbell. Synthetic biomaterials as instructive. extracellular microenvironments formorphogenesis in tissue engineering. Nat. Biotechnol,2005,23:47–55.
    [2]Phillips JE, Gersbach CA, García AJ. Virus-based gene therapy strategies for bone regeneration.Biomaterials,2007,28(2):211-229.
    [3]Hartigan O,Connor D,Barjot,et al. Efficient rescue of gutted adenovirus genmes allows rapidproduetion of coneentrated stoeks without negative selection.Hum Gene Ther,2002,13(4):519-531.
    [4] Kovesdi I, Brough DE, Bruder JT, et al. Adenoviral vectors for gene transfer. Curr Opin Biotechnol,1997,8:583–589.
    [5]Bergelson JM. Receptors mediating adenovirus attachment and internalization. Biochem Pharmacol,1999,57:975–979.
    [6]Russell WC. Update on adenovirus and its vectors. J Gen Virol,2000,81(Pt11):2573-2604.
    [7]Kovesdi I,Brough D E,Bruder J T,et al. Adenoviral vectors for gene transfer. Currrent Opinion inBiotechnology,1997,8:583-589.
    [8]A Bett AJ, Haddara W, Prevec L, et al. An efficient and flexible system for construction ofadenovirus vectors with insertions or deletions in early regions1and3. Proc Natl Acad Sci U S A.1994,91(19):8802-8806.
    [9] Lochmüller H, Jani A, Huard J, et al. Emergence of early region1-containing replication competentadenovirusin stocks of replication-defective adenovirus recombinants (delta E1+delta E3) duringmultiple passages in293cells. Hum Gene Ther,1994,5(12):1485-1491.
    [10]Fisher KJ, Choi H, Burda J, et al. Recombinant adenovirus deleted of all viral genes for genetherapy of cystic fibrosis. Virology,1996,217(1):11-22.
    [11]Wickham TJ. Targeting adenovirus. Gene Ther,2000,7:110–114.
    [12]Mack CA, Song WR, Carpenter H, et al. Circumvention of anti-adenovirus neutralizing immunityby administration of an adenoviral vector of an alternate serotype. Hum Gene Ther,1997,8(1):99-109.
    [13] Bett AJ, Haddara W, Prevec L, et al. An efficient and flexible system for construction ofadenovirus vectors with insertions or deletions in early regions1and3. Proc Natl Acad Sci U S A.1994,91(19):8802-8806.
    [14] He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses.Proc Natl Acad Sci U S A.1998,95(5):2509-2514.
    [15]Benihoud K,Yeh P,Perricaudet M. Adenovirus vectors for gene delivery. Current OpinionBiotechnol,1999,10:440-447
    [16]Lieber A,He CY,Kirillova I,et al. Recombinant adenoviruses with large deletions generated bycremediated excision exhibit different biological properties compared with first generation vectors invitro and in vivo. J Virol,1996,70:8944-8960
    [17]Ghosh SS, Gopinath P, Ramesh A. Adenoviral vectors: a promising tool for gene therapy. ApplBiochem Biotechnol,2006,133:9–29.
    [18]Kurian KM, Watson CJ,. Wylli AH. Retroviral vectors.J. Clin. Pathol. Mol. Pathol,2000,53:173–176.
    [19] G.L. Buchschacher Jr., Introduction to retroviruses and retroviral vectors, Somat. Cell. Mol.Genet,2001,26:1–11.
    [20] Yu SS, Han E, Hong Y,et al. Construction of a retroviral vector production system with theminimum possibility of a homologous recombination. Gene Ther,2003,10:706–711.
    [21] Yu SS, Kim JM, Kim S. High efficiency retroviral vectors that contain no viral coding sequences.Gene Ther,2000,7:797–804.
    [22] Yee JK, Friedmann T, Burns JC. Generation of high-titer pseudotyped retroviral vectors with verybroad host range. Meth Cell Biol,1994,43(Part A):99–112.
    [23]Barquinero J, Eixarch H, Perez-Melgosa M. Retroviral vectors: new applications for an old tool.Gene Ther,2004,11(Suppl1):S3–9.
    [24]Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possible solutions. Curr GeneTher,2005,5:25–35.
    [25]Bushman FD. Integration site selection by lentiviruses: biology and possible control. Curr TopMicrobiol Immunol,2002,261:165–177.
    [26]Sugiyama O, An DS, Kung SP, et al. Lentivirus-mediated gene transfer induces long-term transgeneexpression of BMP-2in vitro and new bone formation in vivo. Mol Ther,2005,11(3):390-398.
    [27]Mason JM, Grande DA, Barcia M,et al.Expression of human bone morphogenic protein7inprimary rabbit periosteal cells: potential utility in gene therapy for osteochondral repair. GeneTher,1998,5(8):1098-1104.
    [28]Wright V, Peng H, Usas A, et al.BMP4-expressing muscle-derived stem cells differentiate intoosteogenic lineageand improve bone healing in immunocompetent mice. Mol Ther,2002,6(2):169-178.
    [29] Gelse K, Aigner T, Stove J, et al. Gene therapy approaches for cartilage injury and osteoarthritis,Curr. Med.Chem. Anti-Inflamm. Anti-Allerg. Agents,2005,4:265–279.
    [30] Angele P, Mandel I, Yoo J, et al.Retroviral gene transduction of mesenchymalprogenitor cells forimproved tissue engineering, Cells Tissues Organs,2000,166:55–140.
    [31] K Lee KH, Song SU, Hwang TS, et al.Regeneration of hyaline cartilage by cell-mediated genetherapy using transforming growth factor beta1-producing fibroblasts. Hum Gene Ther,2001,12(14):1805-1813.
    [32] Gon alves MA. Adeno-associated virus: from defective virus to effective vector. Virol J,2005,6;2:43.
    [33]Liu XL, Clark KR, Johnson PR. Production of recombinant adenoassociated virus vectors using apackaging cell line and a hybrid recombinant adenovirus. Gene Ther,1999,6:293–299.
    [34] Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors inthe absence of helper adenovirus. J Virol,1998,72:2224–2232.
    [35]Matsushita T, Elliger S, Elliger C, et al. Adeno-associated virus vectors can be efficiently producedwithout helper virus. Gene Ther,1998,5(7):938-945
    [36]Ferrari FK, Samulski T, Shenk T,et al. Second-strand synthesis is a rate-limiting step for efficienttransduction by recombinant adeno-associated virus vectors. J Virol,1996,70(5):3227-3234.
    [37] Chen Y, Luk KD, Cheung KM, et al. Gene therapy for new bone formation using adeno-associatedviral bone morphogenetic protein-2vectors. Gene Ther,2003,10(16):1345-1353.
    [38] Luk KD, Chen Y, Cheung KM, et al. Adeno-associated virus-mediated bone morphogeneticprotein-4gene therapy for in vivo bone formation. Biochem Biophys Res Commun,2003,29;308(3):636-645.
    [39] Ito H, Koefoed M, Tiyapatanaputi P, et al. Remodeling of cortical bone allografts mediatedby adherent rAAV-RANKL and VEGF gene therapy. Nat Med,2005,11:291–297.
    [40] Maguire-Zeiss KA, Bowers WJ, Federoff HJ. HSV vector-mediated gene delivery tothe central nervous system. Curr Opin Mol Ther,2001,3(5):482-490.
    [41]Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clin Pharmacokinet,2002,41(12):9012-911
    [42] Casper D, Engstrom SJ, Mirchandani GR, et al. Enhanced vascularization and survival of neuraltransplants with ex vivo angiogenic gene transfer. Cell Transplant,2002,11(4):331-349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700