肝脏脱细胞生物支架的制备及诱导骨髓间充质干细胞肝向分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝移植是目前针对终末期肝病的有效治疗方式。然而,供肝短缺、手术并发症、慢性排斥反应和医疗成本高等限制因素迫使研究者开始寻求新的替代治疗,并诞生了肝脏组织工程和再生医学这一新兴研究领域。在过去的数十年中,尽管研究人员在仿生三维动态培养方面取得了较大进展,但仍难于完全模仿肝脏细胞外基质(ECM)的复杂微环境。目前,全器官脱细胞支架正逐渐受到研究者的关注。脱细胞是指去除脏器中细胞成分,并且最大程度地保留脏器的大体形态、ECM成分和超微结构。一些研究成功地将功能性实质细胞或特定干/祖细胞种植于脱细胞ECM,为组织工程和再生医学研究提供新的研究平台。
     脱细胞支架研究的一个难题是脱细胞方案的选择和优化。近年来,研究人员已通过比较研究对心脏、肾脏、肺和膀胱等器官的脱细胞方案进行了改进。目前,文献中已报道了多种方案制备脱细胞肝支架(DLB),但尚无研究对上述方案制备DLB的理化性质、细胞相容性和免疫原性进行比较。该研究领域的另一难题是如何获取足够数量且功能完备的肝细胞。由于自体肝组织获取和体外维持肝细胞特性等方面存在困难,从干/祖细胞获取肝细胞成为目前该领域关注的研究热点。其中,间充质干细胞(MSCs)被认为是最具治疗潜力的细胞类型之一。目前已有多项研究证实了MSCs在特定培养条件下可诱导分化为类肝细胞。但诱导成功率较低,并且诱导的类肝细胞只具有成熟肝细胞的部分标志物和功能。因此,对MSCs肝向分化诱导方案和培养条件还需要进一步研究。近期一些研究证实组织特异性ECM可促进干/祖细胞定向分化。本研究将探讨DLB是否能够体外诱导MSCs向肝系细胞分化。
     本研究利用三种文献报道的洗脱方案(CHAPS、SDS和Triton X-100方案)和一种新建立的方案(NP-40方案)制备大鼠DLB,全面评估DLB的结构特点和生化特性及其细胞相容性和免疫原性,为DLB制备方案的改进提供依据;本课题还利用大鼠DLB制成的三维支架,为小鼠MSCs提供体外培养和诱导分化微环境,为体外高效诱导MSCs向肝系细胞分化寻找新的方法;最后,将体外预分化的MSCs移植给CCl4致肝纤维化小鼠,进一步观察DLB体外诱导分化MSCs的在体功能,并对其治疗作用机制进行探讨。
     主要研究成果如下:
     1.除CHAPS方案外,SDS、Triton X-100和NP-40方案均成功制备出符合脱细胞标准的大鼠DLB,但不同方案制备的DLB在超微结构、ECM成分、细胞相容性和免疫原性存在明显差异;与SDS和Triton X-100方案相比,NP-40方案制备的DLB具有更好的细胞支持作用和体内重塑结局;另外,统计学分析发现DLB体内重塑结局与DNA残留量、M2巨噬细胞数量和M2:M1细胞比值具有显著相关性。
     2.从GFP基因敲入C57BL/6小鼠体内成功分离和培养出骨髓干细胞,表达MSCs的细胞形态和表面标志物;NP-40制备的DLB为种植的MSCs提供了三维生长微环境;与DLB和培养瓶(TCF)静止培养相比,动态培养的DLB显著提高MSCs的细胞存活率和增殖速度。
     3.动态培养肝支架(DCS)本身或联合肝细胞诱导生长因子(GF),均能体外诱导MSCs向肝系细胞分化;与TCF培养相比,DCS培养的细胞表达更高水平的肝细胞标志物(AFP、ALB、CK7、CK8、CK9、CK19、肝细胞转录因子和肝细胞代谢酶等),并具有更强的肝细胞相关合成和代谢功能(分泌AFP和ALB、代谢尿素、合成糖原、摄取吲哚氰绿和低密度脂蛋白),以及具有成熟肝细胞超微结构特点。
     4.与未分化MSCs相比,体外利用GF预处理或DCS联合GF预处理的MSCs在移植给CCl4致肝纤维化小鼠后显著改善小鼠生存率、肝脏功能和纤维化程度;其中DCS联合GF预处理MSCs的归巢效率最高。定植到肝脏的预分化MSCs主要通过旁分泌作用抑制肝星状细胞活化、刺激内源性肝细胞增殖,达到修复肝损伤的目的。
     上述结果表明,本研究建立了一种新的肝脏脱细胞方案,制备的DLB具有良好的细胞相容性和较低的免疫原性;这种DLB在动态培养条件下可以高效地诱导MSCs向类肝细胞分化、表达更加稳定和丰富的肝细胞功能,并在移植体内后对慢性肝损伤具有较好的治疗作用。总之,这种肝脏脱细胞支架为肝脏组织工程和再生医学提供了一个全新的研究平台,有望为临床治疗终末期肝病提供新的治疗手段。
Liver transplantation remains the definitive treatment option for end-stage liver dis-eases. However, the surgical complications, chronic rejections, critical shortage of donororgans and high cost of this procedure have sparked tremendous interest in finding newtreatments. Liver tissue engineering and regenative medicine have emerged as alternativetherapies. Within the past decade, most of the major achievements in these fields have in-volved the production of mimic biological microenvironment that provides appropriatesignals for regulating cellular behavior, which however remains exceedingly difficult toachieve using currently available synthetic or natural materials. There has been an in-creasing emphasis on the use of acellular whole-organ matrices, which can be prepared byremoving the cellular components from donor organs in a process referred to as decellula-rization. Decellularization largely preserves the native composition, ultrastructure and macroscopic three-dimensional architecture of the native extracellular matrix (ECM).Numerous studies have shown that an acellular ECM can be seeded with either functionalparenchymal cells or a specific stem/progenitor cell population, providing initial steps inthe development of new approaches.
     One of the many challenges in this strategy is the optimization of donor organ decel-lularization. Recently, improved decellularization protocols have been established for exvivo organs, such as the heart, kidney, lung and bladder. A comparison of both the struc-tural and biochemical properties of the ECM scaffold as well as the cell-supporting poten-tial provides relatively ideal scaffolds for further investigation. Currently, decellularizedliver bioscaffold (DLB) is obtained using several different strategies. However, the optim-al technique for liver decellularization has not yet been determined.
     Another challenge is the supply of functional hepatocytes due to the difficulties asso-ciated with obtaining autologous hepatic tissue and maintaining the phenotype of the pri-mary hepatocytes in culture. Increasing evidence suggests that the differentiation of me-senchymal stem cells (MSCs) into hepatocytes is achieved in the appropriate microenvi-ronment. However, the several traditional protocols used to date have had limited success,and these hepatocyte-like cells exhibit only a portion of the markers and functions of pri-mary hepatocytes. Therefore, further investigations are needed to optimize the direct dif-ferentiation protocol and the culture conditions for MSCs to yield mature hepatocyte-likecells that are fully functional. Recently, studies have emphasized that the differentiation ofstem/progenitor cells is lineage restricted by the tissue-specific biomatrix scaffold. Thisstudy investigates whether DLB promotes the hepatic differentiation of MSCs.
     In the present study, we comprehensively assessed the structural and biochemicalproperties of rat DLB resulting from four different protocols, with the aim to determine arelatively optimized method for the derivation of DLB with the most positive host re-modeling response and cytocompatibility. We hypothesized that the optimized DLB pro-motes the hepatic differentiation of murine MSCs into high yields of mature hepatocytesin vitro. Furthermore, the therapeutic potential and cell derivation of the pre-differentiatedcells in vitro was investigated in vivo following the intravenous administration of the cellsin a model of chronic liver injury.
     The main finds are as follows:
     1. We characterized DLBs treated using four different decellularization methods todetermine the most effective strategy for the derivation of rat DLB. Althought3-[(3-Cholamidopropyl) dimethylammonio] propanesulfonate (CHAPS) proved inefficientfor the decellularization of rat livers, the other three methods, which are primarily basedon sodium dodecyl sulfate, Triton X-100and nonyl phenoxylpolyethoxylethanol (NP-40)combined with enzymes, successfully yielded DLBs with distinct ultrastructure, ECMcomposition, cell-supporting potential in vitro, and remodeling results as well as patternsof macrophage polarization in vivo. The NP-40-based strategy resulted in a relatively op-timized DLB with enhanced cytotoxicity and host remodeling results. Furthermore, thehost remodeling results statistically correlated with the residual DNA, the number of M2macrophages and the M2:M1cell ratio
     2. For hepatocyte differentiation, bone marrow derived MSCs isolated fromGFP-transgenic C57BL/6mice possessed the basic features of MSCs as demonstrated bycell morphology and flow cytometry. Results of biocompatibility indicated that DLBtreated with NP-40-based protocol promoted significantly better MSCs cell viability andproliferation in dynamic culture with optimal flow rate during a3-week differentiation pe-riod, when compared to the biomatrix scaffold cultured in static or the monolayer staticculture system.
     3. The dynamic cultured bioscaffold (DCS), either on its own or in combination withhepatic growth factors (GF), induced the lineage-specific differentiation of MSCs into he-patocyte-like cells expressed hepatocyte-specific markers [eg, α-fetoprotein (AFP), albu-min (ALB), cytoketatins (CK7, CK8, CK18, CK19), hepatic-enriched transcription factors,hepatic functional marker genes and metabolic enzymes] at mRNA and protein levels.Most markers were expressed in DCS group earlier than in the control group. The signifi-cantly higher synthetic and metabolic functions [AFP and ALB secretion, Urea production,glycogen storage, the uptake of indocyaine green and low-density lipoprotein] and the ul-trastructural characteristics of the hepatocyte-like cells in the DCS group further demon-strated the important role of the bioscaffold.
     4. After the systemic transplantation into a mouse model of CCl4-induced liver fibro-sis, when compared with undifferentiated MSCs or MSCs differentiated using GF alone,the pre-differentiated MSCs produced using the bioscaffold method combined with GF in vitro facilitated the survival of the mice, liver restoration and the long-term functional he-patic integration in vivo. Cell engraftment was significantly improved using thepre-differentiated MSCs by the DCS compared to cells induced in the TCF and the undif-ferentiated MSCs. The inactivation of hepatic stellate cells and the repopulation the resi-dential hepatocytes were promoted by the transplantation of MSCs that were wellpre-differentiated in vitro.
     In summary, we developed a novel NP-40-based decellularization strategy for thesuccessful derivation of rat DLB, which resulted in the improved cytotoxicity in vitro andhost remodeling results in vivo. In addition, we demonstrated that MSCs could be con-verted into functional hepatocyte-like cells through induction using DLB. As comparedwith the2D conventional induction, these hepatocyte-like cells exhibited higher level andmore stable functions that are potentially useful for the treatment of chronic liver damage.The present study indicates that the3D liver biomatrix might have considerable potentialfor cell-based therapy and tissue engineering.
引文
[1] Starzl T E, Marchioro T L, Vonkaulla K N, et al. HOMOTRANSPLANTATION OFTHE LIVER IN HUMANS[J]. Surg Gynecol Obstet,1963,117:659-676.
    [2] Calne R Y, Williams R. Liver transplantation in man. I. Observations on techniqueand organization in five cases[J]. Br Med J,1968,4(5630):535-540.
    [3] Chistiakov D A. Liver regenerative medicine: advances and challenges[J]. CellsTis-sues Organs,2012,196(4):291-312.
    [4] Langer R, Vacanti J P. Tissue engineering[J]. Science,1993,260(5110):920-926.
    [5] Yannas I V, Burke J F. Design of an artificial skin. I. Basic design principles[J]. JBiomed Mater Res,1980,14(1):65-81.
    [6] Green H. Howard Green. Interview by Darren Burgess[J]. Nat Rev Ge-net,2012,13(7):453.
    [7] Langer R S, Vacanti J P. Tissue engineering: the challenges ahead[J]. SciAm,1999,280(4):86-89.
    [8] Hasetine W. A brave new medicine. A conversation with William Haseltine.. Inter-view by Joe Flower[J]. Health Forum J,1999,42(4):28-30,61-65.
    [9] Chalmers A D, Slack J M. The Xenopus tadpole gut: fate maps and morphogeneticmovements[J]. Development,2000,127(2):381-392.
    [10] Tremblay K D, Zaret K S. Distinct populations of endoderm cells converge to gener-ate the embryonic liver bud and ventral foregut tissues[J]. Dev Bi-ol,2005,280(1):87-99.
    [11] Shin D, Shin C H, Tucker J, et al. Bmp and Fgf signaling are essential for liver speci-fication in zebrafish[J]. Development,2007,134(11):2041-2050.
    [12] Ober E A, Verkade H, Field H A, et al. Mesodermal Wnt2b signalling positively re-gulates liver specification[J]. Nature,2006,442(7103):688-691.
    [13] Mclin V A, Rankin S A, Zorn A M. Repression of Wnt/beta-catenin signaling in theanterior endoderm is essential for liver and pancreas development[J]. Develop-ment,2007,134(12):2207-2217.
    [14] Bort R, Signore M, Tremblay K, et al. Hex homeobox gene controls the transition ofthe endoderm to a pseudostratified, cell emergent epithelium for liver bud develop-ment[J]. Dev Biol,2006,290(1):44-56.
    [15] Lemaigre F P. Mechanisms of liver development: concepts for understanding liverdisorders and design of novel therapies[J]. Gastroenterology,2009,137(1):62-79.
    [16] Tanimizu N, Miyajima A. Molecular mechanism of liver development and regenera-tion[J]. Int Rev Cytol,2007,259:1-48.
    [17] Matsumoto K, Mizumoto H, Nakazawa K, et al. Hepatic differentiation of mouseembryonic stem cells in a three-dimensional culture system using polyurethanefoam[J]. J Biosci Bioeng,2008,105(4):350-354.
    [18] Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation byaltering the expression of liver-enriched transcription factors[J]. J CellSci,2004,117(Pt15):3165-3174.
    [19] Fausto N. Liver regeneration[J]. J Hepatol,2000,32(1Suppl):19-31.
    [20] Grossman M, Raper S E, Kozarsky K, et al. Successful ex vivo gene therapy directedto liver in a patient with familial hypercholesterolaemia[J]. Nat Genet,1994,6(4):335-341.
    [21] Botha J F, Campos B D, Grant W J, et al. Portosystemic shunts in children: a15-yearexperience[J]. J Am Coll Surg,2004,199(2):179-185.
    [22] Smets F, Najimi M, Sokal E M. Cell transplantation in the treatment of liver diseas-es[J]. Pediatr Transplant,2008,12(1):6-13.
    [23] Azuma H, Paulk N, Ranade A, et al. Robust expansion of human hepatocytes inFah-/-/Rag2-/-/Il2rg-/-mice[J]. Nat Biotechnol,2007,25(8):903-910.
    [24]夏焱,俞继卫,姜波健.肝干细胞来源、定向分化及其转化机制[J].国际外科学杂志,2009,36(10).
    [25] Asahina K, Teramoto K, Teraoka H. Embryonic stem cells: hepatic differentiation andregenerative medicine for the treatment of liver disease[J]. Curr Stem Cell ResTher,2006,1(2):139-156.
    [26] Yamamoto H, Quinn G, Asari A, et al. Differentiation of embryonic stem cellsintohepatocytes: biological functions and therapeutic application[J]. Hepatology,2003,37(5):983-993.
    [27]张国尊,李春生,张晓岚. MSCs分化为功能性肝细胞的研究进展[J].世界华人消化杂志,2012(14).
    [28] Pournasr B, Mohamadnejad M, Bagheri M, et al. In vitro differentiation of humanbone marrow mesenchymal stem cells into hepatocyte-like cells[J]. Arch IranMed,2011,14(4):244-249.
    [29] Ju S, Teng G J, Lu H, et al. In vivo differentiation of magnetically labeled mesen-chymal stem cells into hepatocytes for cell therapy to repair damaged liver[J]. InvestRadiol,2010,45(10):625-633.
    [30] Piryaei A, Valojerdi M R, Shahsavani M, et al. Differentiation of bone mar-row-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers andtheir transplantation into a carbon tetrachloride-induced liver fibrosis model[J]. StemCell Rev,2011,7(1):103-118.
    [31] Mohsin S, Shams S, Ali N G, et al. Enhanced hepatic differentiation of mesenchymalstem cells after pretreatment with injured liver tissue[J]. Differentiation,2011,81(1):42-48.
    [32] Deng X, Chen Y X, Zhang X, et al. Hepatic stellate cells modulate the differentiationof bone marrow mesenchymal stem cells into hepatocyte-like cells[J]. J Cell Phy-siol,2008,217(1):138-144.
    [33] Ishii K, Yoshida Y, Akechi Y, et al. Hepatic differentiation of human bone mar-row-derived mesenchymal stem cells by tetracycline-regulated hepatocyte nuclearfactor3beta[J]. Hepatology,2008,48(2):597-606.
    [34] Chen M L, Lee K D, Huang H C, et al. HNF-4alpha determines hepatic differentiationof human mesenchymal stem cells from bone marrow[J]. World J Gastroenterol,2010,16(40):5092-5103.
    [35]胡祥.干细胞与肝脏病治疗研究进展[J].中国继续医学教育,2011,03(6).
    [36] Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cellscandifferentiate into hepatocytes in vivo[J]. Nat Med,2000,6(11):1229-1234.
    [37] Almeida-Porada G, Zanjani E D, Porada C D. Bone marrow stem cells and liver re-generation[J]. Exp Hematol,2010,38(7):574-580.
    [38] Yannaki E, Athanasiou E, Xagorari A, et al. G-CSF-primed hematopoietic stemcellsor G-CSF per se accelerate recovery and improve survival after liver injury, predomi-nantly by promoting endogenous repair programs[J]. Exp Hematol,2005,33(1):108-119.
    [39] Erices A, Conget P, Minguell J J. Mesenchymal progenitor cells in human umbilicalcord blood[J]. Br J Haematol,2000,109(1):235-242.
    [40]张金卷.肝组织工程种子细胞来源的研究进展[J].国际生物医学工程杂志,2009,32(1).
    [41] Hong S H, Gang E J, Jeong J A, et al. In vitro differentiation of human umbilical cordblood-derived mesenchymal stem cells into hepatocyte-like cells[J]. Biochem Bio-phys Res Commun,2005,330(4):1153-1161.
    [42] Kakinuma S, Tanaka Y, Chinzei R, et al. Human umbilical cord blood as a source oftransplantable hepatic progenitor cells[J]. Stem Cells,2003,21(2):217-227.
    [43] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonicand adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.
    [44]孙超,范建高. iPS细胞向肝系细胞诱导分化的研究进展[J].国际消化病杂志,2012(01).
    [45] Si-Tayeb K, Noto F K, Nagaoka M, et al. Highly efficient generation of human hepa-tocyte-like cells from induced pluripotent stem cells[J]. Hepatology,2010,51(1):297-305.
    [46] Song Z, Cai J, Liu Y, et al. Efficient generation of hepatocyte-like cells from humaninduced pluripotent stem cells[J]. Cell Res,2009,19(11):1233-1242.
    [47] Sullivan G J, Hay D C, Park I H, et al. Generation of functional human hepatic endo-derm from human induced pluripotent stem cells[J]. Hepatology,2010,51(1):329-335.
    [48] Carpentier B, Gautier A, Legallais C. Artificial and bioartificial liver devices: presentand future[J]. Gut,2009,58(12):1690-1702.
    [49] Kobayashi N. Life support of artificial liver: development of a bioartificial liver totreat liver failure[J]. J Hepatobiliary Pancreat Surg,2009,16(2):113-117.
    [50]余松林,韩宝三,张瑞,等.生物人工肝的研究与进展[J].中国组织工程研究与临床康复,2009(53).
    [51] Mckenzie T J, Lillegard J B, Nyberg S L. Artificial and bioartificial liver support[J].Semin Liver Dis,2008,28(2):210-217.
    [52] Soto-Gutierrez A, Navarro-Alvarez N, Zhao D, et al. Differentiation of mouse em-bryonic stem cells to hepatocyte-like cells by co-culture with human liver nonparen-chymal cell lines[J]. Nat Protoc,2007,2(2):347-356.
    [53] Yu Y, Fisher J E, Lillegard J B, et al. Cell therapies for liver diseases[J]. LiverTranspl,2012,18(1):9-21.
    [54] Pareja E, Cortes M, Bonora A, et al. New alternatives to the treatment of acute liverfailure[J]. Transplant Proc,2010,42(8):2959-2961.
    [55] Jin S Z, Meng X W, Sun X, et al. Hepatocyte growth factor promotes liver regenera-tion induced by transfusion of bone marrow mononuclear cells in a murine acute liverfailure model[J]. J Hepatobiliary Pancreat Sci,2011,18(3):397-405.
    [56] Parekkadan B, van Poll D, Suganuma K, et al. Mesenchymal stem cell-derived mole-cules reverse fulminant hepatic failure[J]. PLoS One,2007,2(9):e941.
    [57] Terai S, Ishikawa T, Omori K, et al. Improved liver function in patients with livercirrhosis after autologous bone marrow cell infusion therapy[J]. StemCells,2006,24(10):2292-2298.
    [58] Ismail A, Fouad O, Abdelnasser A, et al. Stem cell therapy improves the outcome ofliver resection in cirrhotics[J]. J Gastrointest Cancer,2010,41(1):17-23.
    [59] Jung K H, Uhm Y K, Lim Y J, et al. Human umbilical cord blood-derived mesen-chymal stem cells improve glucose homeostasis in rats with liver cirrhosis[J]. Int JOncol,2011,39(1):137-143.
    [60] Fernandez-Ruiz V, Kawa M, Berasain C, et al. Treatment of murine fulminant hepati-tis with genetically engineered endothelial progenitor cells[J]. J Hepatol,2011,55(4):828-837.
    [61] Farag M M, Hoyler B, Encke J, et al. Dendritic cells can effectively be pulsed byHBVsvp and induce specific immune reactions in mice[J]. Vaccine,2010,29(2):200-206.
    [62] Furst G, Schulte A E J, Poll L W, et al. Portal vein embolization and autologousCD133+bone marrow stem cells for liver regeneration: initial experience[J]. Radiol-ogy,2007,243(1):171-179.
    [63] Shi M, Liu Z W, Wang F S. Immunomodulatory properties and therapeutic applica-tion of mesenchymal stem cells[J]. Clin Exp Immunol,2011,164(1):1-8.
    [64] Zhou Y, Yuan J, Zhou B, et al. The therapeutic efficacy of human adipose tis-sue-derived mesenchymal stem cells on experimental autoimmune hearing loss inmice[J]. Immunology,2011,133(1):133-140.
    [65] Ghannam S, Pene J, Torcy-Moquet G, et al. Mesenchymal stem cells inhibit humanTh17cell differentiation and function and induce a T regulatory cell phenotype[J]. JImmunol,2010,185(1):302-312.
    [66] Kuo T K,Hung S P, Chuang C H, et al. Stem cell therapy for liver disease: parametersgoverning the success of using bone marrow mesenchymal stem cells [J]. Gastroen-terology,2008,134(7):2111-2121,2121.
    [67] Kazemnejad S. Hepatic tissue engineering using scaffolds: state of the art[J]. Avicen-na J Med Biotechnol,2009,1(3):135-145.
    [68] Li Y S, Harn H J, Hsieh D K, et al. Cells and Materials for Liver Tissue Engineer-ing[J]. Cell Transplant,2012.
    [69] Kinasiewicz A, Gautier A, Lewinska D, et al. Culture of C3A cells in alginate beadsfor fluidized bed bioartificial liver[J]. Transplant Proc,2007,39(9):2911-2913.
    [70] Li J, Tao R, Wu W, et al.3D PLGA scaffolds improve differentiation and function ofbone marrow mesenchymal stem cell-derived hepatocytes[J]. Stem CellsDev,2010,19(9):1427-1436.
    [71] Hanada S, Kojima N, Sakai Y. Soluble factor-dependent in vitro growth and matura-tion of rat fetal liver cells in a three-dimensional culture system[J]. Tissue Eng PartA,2008,14(1):149-160.
    [72] Provin C, Takano K, Yoshida T, et al. Low O2metabolism of HepG2cells cultured athigh density in a3D microstructured scaffold[J]. Biomed Microdevices,2009,11(2):485-494.
    [73] Provin C, Takano K,Sakai Y, et al. A method for the design of3D scaffolds forhigh-density cell attachment and determination of optimum perfusion culturecondi-tions[J]. J Biomech,2008,41(7):1436-1449.
    [74] Matsumoto K, Mizumoto H, Nakazawa K, et al. Hepatic differentiation of mouseembryonic stem cells in a bioreactor using polyurethane/spheroid culture[J]. Trans-plant Proc,2008,40(2):614-616.
    [75] Miskon A, Yamaoka T,Hyon S H, et al. Preservation of porcine hepatocytes inth-ree-dimensional bioreactor at room temperature using epigallocatechin-3-gallate[J].Tissue Eng Part C Methods,2009,15(3):345-353.
    [76] Miyoshi H, Ehashi T, Kawai H, et al. Three-dimensional perfusion cultures of mouseand pig fetal liver cells in a packed-bed reactor: effect of medium flow rate on cellnumbers and hepatic functions[J]. J Biotechnol,2010,148(4):226-232.
    [77] Lan S F, Safiejko-Mroczka B, Starly B. Long-term cultivation of HepG2liver cellsencapsulated in alginate hydrogels: a study of cell viability, morphology and drugmetabolism[J]. Toxicol In Vitro,2010,24(4):1314-1323.
    [78] Feng Z Q, Chu X, Huang N P, et al. The effect of nanofibrous galactosylatedchitosanscaffolds on the formation of rat primary hepatocyte aggregates and the maintenanceof liver function[J]. Biomaterials,2009,30(14):2753-2763.
    [79] Lee J, Lilly G D, Doty R C, et al. In vitro toxicity testing of nanoparticles in3D cellculture[J]. Small,2009,5(10):1213-1221.
    [80] Liu T V, Chen A A, Cho L M, et al. Fabrication of3D hepatic tissues by additivephotopatterning of cellular hydrogels[J]. FASEB J,2007,21(3):790-801.
    [81] Sellaro T L, Ranade A, Faulk D M, et al. Maintenance of human hepatocyte functionin vitro by liver-derived extracellular matrix gels[J]. Tissue Eng PartA,2010,16(3):1075-1082.
    [82] Semler E J, Ranucci C S, Moghe P V. Mechanochemical manipulation of hepatocyteaggregation can selectively induce or repress liver-specific function[J]. BiotechnolBioeng,2000,69(4):359-369.
    [83] Wen Y A, Liu D, Xiao Y Y, et al. Enhanced glucose synthesis in three-dimensionalhepatocyte collagen matrix[J]. Toxicol In Vitro,2009,23(4):744-747.
    [84] Zhang S, Tong W, Zheng B, et al. A robust high-throughput sandwich cell-based drugscreening platform[J]. Biomaterials,2011,32(4):1229-1241.
    [85] Bierwolf J, Lutgehetmann M, Feng K, et al. Primary rat hepatocyte culture on3D na-nofibrous polymer scaffolds for toxicology and pharmaceutical research[J]. Biotech-nol Bioeng,2011,108(1):141-150.
    [86] Kazemnejad S, Allameh A, Soleimani M, et al. Biochemical and molecular characte-rization of hepatocyte-like cells derived from human bone marrow mesenchymalstem cells on a novel three-dimensional biocompatible nanofibrous scaffold[J]. J Ga-stroenterol Hepatol,2009,24(2):278-287.
    [87] Arenas-Herrera J E, Ko I K, Atala A, et al. Decellularization for whole organ bioen-gineering[J]. Biomed Mater,2013,8(1):14106.
    [88] Ott H C, Matthiesen T S, Goh S K, et al. Perfusion-decellularized matrix: using na-ture's platform to engineer a bioartificial heart[J]. Nat Med,2008,14(2):213-221.
    [89] Petersen T H, Calle E A, Zhao L, et al. Tissue-engineered lungs for in vivo implanta-tion[J]. Science,2010,329(5991):538-541.
    [90] Ott H C, Clippinger B, Conrad C, et al. Regeneration and orthotopic transplantation ofa bioartificial lung[J]. Nat Med,2010,16(8):927-933.
    [91] Nakayama K H, Batchelder C A, Lee C I, et al. Decellularized rhesus monkey kidneyas a three-dimensional scaffold for renal tissue engineering[J]. Tissue Eng PartA,2010,16(7):2207-2216.
    [92] Sullivan D C, Mirmalek-Sani S H, Deegan D B, et al. Decellularization methods ofporcine kidneys for whole organ engineering using a high-throughput system[J].Biomaterials,2012,33(31):7756-7764.
    [93] Uygun B E, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through develop-ment of a transplantable recellularized liver graft using decellularized liver matrix[J].Nat Med,2010,16(7):814-820.
    [94] Sellaro T L, Ranade A, Faulk D M, et al. Maintenance of human hepatocyte functionin vitro by liver-derived extracellular matrix gels[J]. Tissue Eng PartA,2010,16(3):1075-1082.
    [95] Wang Y, Cui C B, Yamauchi M, et al. Lineage restriction of human hepatic stem cellsto mature fates is made efficient by tissue-specific biomatrix scaffolds[J]. Hepatolo-gy,2011,53(1):293-305.
    [96] Crapo P M, Gilbert T W, Badylak S F. An overview of tissue and whole organ decel-lularization processes[J]. Biomaterials,2011,32(12):3233-3243.
    [97] Badylak S F, Taylor D, Uygun K. Whole-organ tissue engineering: decellularizationand recellularization of three-dimensional matrix scaffolds[J]. Annu Rev BiomedEng,2011,13:27-53.
    [98] Qiu Q Q, Leamy P, Brittingham J, et al. Inactivation of bacterial spores and viruses inbiological material using supercritical carbon dioxide with sterilant[J]. J Biomed Ma-ter Res B Appl Biomater,2009,91(2):572-578.
    [99] Baptista P M, Siddiqui M M, Lozier G, et al. The use of whole organ decellularizationfor the generation of a vascularized liver organoid[J]. Hepatology,2011,53(2):604-617.
    [100]Almine J F, Bax D V, Mithieux S M, et al. Elastin-based materials[J]. Chem SocRev,2010,39(9):3371-3379.
    [101]Kanematsu A, Yamamoto S, Ozeki M, et al. Collagenous matrices as release carriersof exogenous growth factors[J]. Biomaterials,2004,25(18):4513-4520.
    [102]Brown A L, Srokowski E M, Shu X Z, et al. Development of a model bladder extra-cellular matrix combining disulfide cross-linked hyaluronan with decellularized blad-der tissue[J]. Macromol Biosci,2006,6(8):648-657.
    [103]Orlando G, Wood K J, Stratta R J, et al. Regenerative medicine and organ transplanta-tion: past, present, and future[J]. Transplantation,2011,91(12):1310-1317.
    [104]Orlando G, Baptista P, Birchall M, et al. Regenerative medicine as applied to solidorgan transplantation: current status and future challenges[J]. Transpl Int,2011,24(3):223-232.
    [105]Wainwright J M, Czajka C A, Patel U B, et al. Preparation of cardiac extracellularmatrix from an intact porcine heart[J]. Tissue Eng Part C Methods,2010,16(3):525-532.
    [106]Price A P, England K A, Matson A M, et al. Development of a decellularized lungbioreactor system for bioengineering the lung: the matrix reloaded[J]. Tissue Eng PartA,2010,16(8):2581-2591.
    [107]Ross E A, Williams M J, Hamazaki T, et al. Embryonic stem cells proliferate anddifferentiate when seeded into kidney scaffolds[J]. J Am Soc Nephrol,2009,20(11):2338-2347.
    [108]Liu C X, Liu S R, Xu A B, et al.[Preparation of whole-kidney acellular matrix in ratsby perfusion][J]. Nan Fang Yi Ke Da Xue Xue Bao,2009,29(5):979-982.
    [109]Baptista P M, Orlando G, Mirmalek-Sani S H, et al. Whole organ decellularization-atool for bioscaffold fabrication and organ bioengineering[J]. Conf Proc IEEE EngMed Biol Soc,2009,2009:6526-6529.
    [110]Shupe T, Williams M, Brown A, et al. Method for the decellularization of intact ratliver[J]. Organogenesis,2010,6(2):134-136.
    [111]Lee K D, Kuo T K, Whang-Peng J, et al. In vitro hepatic differentiation of humanmesenchymal stem cells[J]. Hepatology,2004,40(6):1275-1284.
    [112]Chivu M, Dima S O, Stancu C I, et al. In vitro hepatic differentiation of human bonemarrow mesenchymal stem cells under differential exposure to liver-specific fac-tors[J]. Transl Res,2009,154(3):122-132.
    [113]Dong X J, Zhang H, Pan R L, et al. Identification of cytokines involved in hepaticdifferentiation of mBM-MSCs under liver-injury conditions[J]. World J Gastroente-rol,2010,16(26):3267-3278.
    [114]王敏,裴海云,管利东,等.肝细胞条件培养液对人脂肪间充质干细胞向肝细胞分化和增殖的作用[J].中华肝脏病杂志,2009,17(7):544-548.
    [115]李方国,王磊,张鑫鑫,等.不同血清对成人骨髓基质干细胞成骨诱导分化的影响[J].中国矫形外科杂志,2011(05).
    [116]王莹,赵文静,叶冬霞,等.急性肝衰竭大鼠血清诱导骨髓间充质干细胞表达甲胎蛋白和白蛋白[J].中国组织工程研究与临床康复,2010(45).
    [117]Ehnert S, Seeliger C, Vester H, et al. Autologous serum improves yield and metaboliccapacity of monocyte-derived hepatocyte-like cells: possible implication for celltransplantation[J]. Cell Transplant,2011,20(9):1465-1477.
    [118]王楠,邹伟,刘鹏,等.肝脏干细胞研究及应用前景展望[J].中国组织工程研究,2012(06).
    [119]Tian H, Bharadwaj S, Liu Y, et al. Myogenic differentiation of human bone marrowmesenchymal stem cells on a3D nano fibrous scaffold for bladder tissue engineering[J]. Biomaterials,2010,31(5):870-877.
    [120]李德强,王人颢.干细胞诱导分化为肝细胞的鉴定方法[J].中国组织工程研究与临床康复,2011(14).
    [121]Okura H, Komoda H, Saga A, et al. Properties of hepatocyte-like cell clusters fromhuman adipose tissue-derived mesenchymal stem cells[J]. Tissue Eng PartC Me-thods,2010,16(4):761-770.
    [122]Baharvand H,Hashemi S M, Shahsavani M. Differentiation of human embryonicstemcells into functional hepatocyte-like cells in a serum-free adherent culture condition[J].Differentiation,2008,76(5):465-477.
    [123]Williams J M, Oh S H, Jorgensen M, et al. The role of the Wnt family of secretedproteins in rat oval "stem" cell-based liver regeneration: Wnt1drives differentiation[J].Am J Pathol,2010,176(6):2732-2742.
    [124]Wang T, You N, Tao K, et al. Notch is the key factor in the process of fetalliverstem/progenitor cells differentiation into hepatocytes[J]. Dev Growth Dif-fer,2012,54(5):605-617.
    [125]Fleig S V,Choi S S, Yang L, et al. Hepatic accumulation of Hedge-hog-reactiveprogenitors increases with severity of fatty liver damage in mice[J]. LabInvest,2007,87(12):1227-1239.
    [126]Booth C, Soker T, Baptista P, et al. Liver bioengineering: current status and futureperspectives[J]. World J Gastroenterol,2012,18(47):6926-6934.
    [127]Akhyari P, Aubin H, Gwanmesia P, et al. The quest for an optimized protocolforwhole-heart decellularization: a comparison of three popular and a novel decellulari-zation technique and their diverse effects on crucial extracellular matrixqualities[J].Tissue Eng Part C Methods,2011,17(9):915-926.
    [128]Nakayama K H, Batchelder C A,Lee C I, et al. Decellularized rhesus monkeykidneyas a three-dimensional scaffold for renal tissue engineering[J]. Tissue EngPartA,2010,16(7):2207-2216.
    [129]Yang B, Zhang Y, Zhou L, et al. Development of a porcine bladder acellular matrixwith well-preserved extracellular bioactive factors for tissue engineering[J]. TissueEng Part C Methods,2010,16(5):1201-1211.
    [130]Soto-Gutierrez A, Zhang L, Medberry C, et al. A whole-organ regenerative medicineapproach for liver replacement[J]. Tissue Eng Part C Methods,2011,17(6):677-686.
    [131]Franz S, Rammelt S, Scharnweber D, et al. Immune responses to implants-areviewof the implications for the design of immunomodulatory biomaterials[J]. Biomate-rials,2011,32(28):6692-6709.
    [132]Simon P, Kasimir M T, Seebacher G, et al. Early failure of the tissue engineered por-cine heart valve SYNERGRAFT in pediatric patients[J]. Eur J CardiothoracSurg,2003,23(6):1002-1006,1006.
    [133]Dahl S L, Koh J, Prabhakar V, et al. Decellularized native and engineered arterialscaffolds for transplantation[J]. Cell Transplant,2003,12(6):659-666.
    [134]Lumpkins S B, Pierre N, Mcfetridge P S. A mechanical evaluation of three decellula-rization methods in the design of a xenogeneic scaffold for tissue engineering thetemporomandibular joint disc[J]. Acta Biomater,2008,4(4):808-816.
    [135]Funamoto S, Nam K, Kimura T, et al. The use of high-hydrostatic pressure treatmentto decellularize blood vessels[J]. Biomaterials,2010,31(13):3590-3595.
    [136]Gilbert T W, Freund J M, Badylak S F. Quantification of DNA in biologic scaffoldmaterials[J]. J Surg Res,2009,152(1):135-139.
    [137]Zhou J, Fritze O,Schleicher M, et al. Impact of heart valve decellularization on3-Dultrastructure, immunogenicity and thrombogenicity[J]. Biomaterials,2010,31(9):2549-2554.
    [138]Brown B N, Londono R, Tottey S, et al. Macrophage phenotype as a predictor of con-structive remodeling following the implantation of biologically derived surgical meshmaterials[J]. Acta Biomater,2012,8(3):978-987.
    [139]Badylak S F, Valentin J E, Ravindra A K, et al. Macrophage phenotype as a determi-nant of biologic scaffold remodeling[J]. Tissue Eng Part A,2008,14(11):1835-1842.
    [140]Brown B N, Valentin J E, Stewart-Akers A M, et al. Macrophage phenotype and re-modeling outcomes in response to biologic scaffolds with and without a cellularcomponent[J]. Biomaterials,2009,30(8):1482-1491.
    [141]Nichols S P, Koh A, Brown N L, et al. The effect of nitric oxide surface flux on theforeign body response to subcutaneous implants[J]. Biomaterials,2012,33(27):6305-6312.
    [142]Badylak S F, Gilbert T W. Immune response to biologic scaffold materials[J]. SeminImmunol,2008,20(2):109-116.
    [143]Mantovani A, Sica A, Locati M. Macrophage polarization comes of age[J]. Immuni-ty,2005,23(4):344-346.
    [144]Mosser D M, Edwards J P. Exploring the full spectrum of macrophage activation[J].Nat Rev Immunol,2008,8(12):958-969.
    [145]Valentin J E, Stewart-Akers A M, Gilbert T W, et al. Macrophage participation in thedegradation and remodeling of extracellular matrix scaffolds[J]. Tissue Eng PartA,2009,15(7):1687-1694.
    [146]Yahyouche A, Zhidao X, Czernuszka J T, et al. Macrophage-mediated degradation ofcrosslinked collagen scaffolds[J]. Acta Biomater,2011,7(1):278-286.
    [147]Wang H. Small animal models of xenotransplantation[J]. Methods Mol Bi-ol,2012,885:125-153.
    [148]Zhang Z, Bedard E, Luo Y, et al. Animal models in xenotransplantation[J]. ExpertOpin Investig Drugs,2000,9(9):2051-2068.
    [149]Zamule S M, Coslo D M, Chen F, et al. Differentiation of human embryonic stemcells along a hepatic lineage[J]. Chem Biol Interact,2011,190(1):62-72.
    [150]Parekkadan B, Milwid J M. Mesenchymal stem cells as therapeutics[J]. Annu RevBiomed Eng,2010,12:87-117.
    [151]Zomorodian E, Baghaban E M. Mesenchymal stem cells as a potent cell source forbone regeneration[J]. Stem Cells Int,2012,2012:980353.
    [152]Peng L, Xie D Y, Lin B L, et al. Autologous bone marrow mesenchymal stem celltransplantation in liver failure patients caused by hepatitis B: short-term andlong-term outcomes[J]. Hepatology,2011,54(3):820-828.
    [153]Zhao D C, Lei J X, Chen R, et al. Bone marrow-derived mesenchymal stem cells pro-tect against experimental liver fibrosis in rats[J]. World J Gastroenterol,2005,11(22):3431-3440.
    [154]Bao J, Shi Y, Sun H, et al. Construction of a portal implantable functional tis-sue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats[J].Cell Transplant,2011,20(5):753-766.
    [155]Ng S L, Narayanan K, Gao S, et al. Lineage restricted progenitors for the repopulationof decellularized heart[J]. Biomaterials,2011,32(30):7571-7580.
    [156]Sun F, Zhou K, Mi W J, et al. Combined use of decellularized allogeneic artery con-duits with autologous transdifferentiated adipose-derived stem cells for facial nerveregeneration in rats[J]. Biomaterials,2011,32(32):8118-8128.
    [157]Burdick J A, Vunjak-Novakovic G. Engineered microenvironments for controlledstem cell differentiation[J]. Tissue Eng Part A,2009,15(2):205-219.
    [158]Hwang N S, Varghese S, Elisseeff J. Controlled differentiation of stem cells[J]. AdvDrug Deliv Rev,2008,60(2):199-214.
    [159]Yi W, Sun Y, Wei X, et al. Proteomic profiling of human bone marrow mesenchymalstem cells under shear stress[J]. Mol Cell Biochem,2010,341(1-2):9-16.
    [160]Cartmell S H, Porter B D, Garcia A J, et al. Effects of medium perfusion rate oncell-seeded three-dimensional bone constructs in vitro[J]. Tissue Eng,2003,9(6):1197-1203.
    [161]Holtorf H L, Jansen J A, Mikos A G. Flow perfusion culture induces the osteoblasticdifferentiation of marrow stroma cell-scaffold constructs in the absence of dexame-thasone[J]. J Biomed Mater Res A,2005,72(3):326-334.
    [162]Chun S Y, Lim G J, Kwon T G, et al. Identification and characterization of bioactivefactors in bladder submucosa matrix[J]. Biomaterials,2007,28(29):4251-4256.
    [163]Park J S, Chu J S, Tsou A D, et al. The effect of matrix stiffness on the differentiationof mesenchymal stem cells in response to TGF-beta[J]. Biomaterials,2011,32(16):3921-3930.
    [164]Kniazeva E, Kachgal S, Putnam A J. Effects of extracellular matrix density and me-senchymal stem cells on neovascularization in vivo[J]. Tissue Eng PartA,2011,17(7-8):905-914.
    [165]Subramanian K, Owens D J, O'Brien T D, et al. Enhanced differentiation of adultbone marrow-derived stem cells to liver lineage in aggregate culture[J]. Tissue EngPart A,2011,17(17-18):2331-2341.
    [166]Bleibel W, Al-Osaimi A M. Hepatic encephalopathy[J]. Saudi J Gastroenterol,2012,18(5):301-309.
    [167]Pontikoglou C, Deschaseaux F, Sensebe L, et al. Bone marrow mesenchymal stemcells: biological properties and their role in hematopoiesis and hematopoietic stem celltransplantation[J]. Stem Cell Rev,2011,7(3):569-589.
    [168]Sharif S, Nakagawa T, Ohno T, et al. The potential use of bone marrow stromal cellsfor cochlear cell therapy[J]. Neuroreport,2007,18(4):351-354.
    [169]Khan M, Manzoor S, Mohsin S, et al. IGF-1and G-CSF complement each other inBMSC migration towards infarcted myocardium in a novel in vitro model[J]. Cell Bi-ol Int,2009,33(6):650-657.
    [170]Morigi M, Introna M, Imberti B, et al. Human bone marrow mesenchymal stem cellsaccelerate recovery of acute renal injury and prolong survival in mice[J]. StemCells,2008,26(8):2075-2082.
    [171]Hayase M, Kitada M, Wakao S, et al. Committed neural progenitor cells derived fromgenetically modified bone marrow stromal cells ameliorate deficits in a rat model ofstroke[J]. J Cereb Blood Flow Metab,2009,29(8):1409-1420.
    [172]Keilhoff G, Stang F, Goihl A, et al. Transdifferentiated mesenchymal stem cells asalternative therapy in supporting nerve regeneration and myelination[J]. Cell MolNeurobiol,2006,26(7-8):1235-1252.
    [173]Granero-Molto F, Weis J A, Miga M I, et al. Regenerative effects of transplantedmesenchymal stem cells in fracture healing[J]. Stem Cells,2009,27(8):1887-1898.
    [174]Kanazawa H, Fujimoto Y, Teratani T, et al. Bone marrow-derived mesenchymal stemcells ameliorate hepatic ischemia reperfusion injury in a rat model[J]. PLoSOne,2011,6(4):e19195.
    [175]van Poll D, Parekkadan B, Cho C H, et al. Mesenchymal stem cell-derived moleculesdirectly modulate hepatocellular death and regeneration in vitro and in vivo[J]. Hepa-tology,2008,47(5):1634-1643.
    [176]Kuo T K, Hung S P, Chuang C H, et al. Stem cell therapy for liver disease: parame-ters governing the success of using bone marrow mesenchymal stem cells[J]. Gastro-enterology,2008,134(7):2111-2121,2121.
    [177]Shizhu J, Xiangwei M, Xun S, et al. Bone marrow mononuclear cell transplant thera-py in mice with CCl4-induced acute liver failure[J]. Turk J Gastroenterol,2012,23(4):344-352.
    [178]Oyagi S, Hirose M, Kojima M, et al. Therapeutic effect of transplanting HGF-treatedbone marrow mesenchymal cells into CCl4-injured rats[J]. J Hepatol,2006,44(4):742-748.
    [179]Aurich I, Mueller L P, Aurich H, et al. Functional integration of hepatocytes derivedfrom human mesenchymal stem cells into mouse livers[J]. Gut,2007,56(3):405-415.
    [180]Hwang S, Hong H N, Kim H S, et al. Hepatogenic differentiation of mesenchymalstem cells in a rat model of thioacetamide-induced liver cirrhosis[J]. Cell BiolInt,2012,36(3):279-288.
    [181]Russo F P, Alison M R, Bigger B W, et al. The bone marrow functionally contributesto liver fibrosis[J]. Gastroenterology,2006,130(6):1807-1821.
    [182]di Bonzo L V, Ferrero I, Cravanzola C, et al. Human mesenchymal stem cells as atwo-edged sword in hepatic regenerative medicine: engraftment and hepatocyte diffe-rentiation versus profibrogenic potential[J]. Gut,2008,57(2):223-231.
    [183]Zhao W, Li J J, Cao D Y, et al. Intravenous injection of mesenchymal stem cells iseffective in treating liver fibrosis[J]. World J Gastroenterol,2012,18(10):1048-1058.
    [184]杨晋翔,李志钢,邱岳,等. BMSC向肝细胞分化及重建肝功能的研究进展[J].北京中医药大学学报(中医临床版),2009,16(2).
    [185]Forte G, Minieri M, Cossa P, et al. Hepatocyte growth factor effects on mesenchymalstem cells: proliferation, migration, and differentiation[J]. Stem Cells,2006,24(1):23-33.
    [186]Tamama K, Fan V H, Griffith L G, et al. Epidermal growth factor as a candidate forex vivo expansion of bone marrow-derived mesenchymal stem cells[J]. StemCells,2006,24(3):686-695.
    [187]Fiedler J, Roderer G, Gunther K P, et al. BMP-2, BMP-4, and PDGF-bb stimulatechemotactic migration of primary human mesenchymal progenitor cells[J]. J Cell Bi-ochem,2002,87(3):305-312.
    [188]Ponte A L, Marais E, Gallay N, et al. The in vitro migration capacity of human bonemarrow mesenchymal stem cells: comparison of chemokine and growth factor che-motactic activities[J]. Stem Cells,2007,25(7):1737-1745.
    [189]Kawai K, Xue F, Takahara T, et al. Matrix metalloproteinase-9contributes to the mo-bilization of bone marrow cells in the injured liver[J]. Cell Transplant,2012,21(2-3):453-464.
    [190]Son B R, Marquez-Curtis L A, Kucia M, et al. Migration of bone marrow and cordblood mesenchymal stem cells in vitro is regulated by stromal-derived fac-tor-1-CXCR4and hepatocyte growth factor-c-met axes and involves matrix metallo-proteinases[J]. Stem Cells,2006,24(5):1254-1264.
    [191]Belema-Bedada F, Uchida S, Martire A, et al. Efficient homing of multipotent adultmesenchymal stem cells depends on FROUNT-mediated clustering of CCR2[J]. CellStem Cell,2008,2(6):566-575.
    [192]Li C, Kong Y, Wang H, et al. Homing of bone marrow mesenchymal stem cells me-diated by sphingosine1-phosphate contributes to liver fibrosis[J]. J Hepa-tol,2009,50(6):1174-1183.
    [193]Zhang L J, Yu J P, Li D, et al. Effects of cytokines on carbon tetrachloride-inducedhepatic fibrogenesis in rats[J]. World J Gastroenterol,2004,10(1):77-81.
    [194]Zheng W D, Zhang L J, Shi M N, et al. Expression of matrix metalloproteinase-2andtissue inhibitor of metalloproteinase-1in hepatic stellate cells during rat hepatic fibro-sis and its intervention by IL-10[J]. World J Gastroenterol,2005,11(12):1753-1758.
    [195]Miyata E, Masuya M, Yoshida S, et al. Hematopoietic origin of hepatic stellate cellsin the adult liver[J]. Blood,2008,111(4):2427-2435.
    [196]Tai B C, Du C, Gao S, et al. The use of a polyelectrolyte fibrous scaffold to deliverdifferentiated hMSCs to the liver[J]. Biomaterials,2010,31(1):48-57.
    [197]Zhou P, Lessa N, Estrada D C, et al. Decellularized liver matrix as a carrier for thetransplantation of human fetal and primary hepatocytes in mice[J]. LiverTranspl,2011,17(4):418-427.
    [198]Cho K A, Lim G W, Joo S Y, et al. Transplantation of bone marrow cells reducesCCl4-induced liver fibrosis in mice[J]. Liver Int,2011,31(7):932-939.
    [199]Sakaida I, Terai S, Yamamoto N, et al. Transplantation of bone marrow cells reducesCCl4-induced liver fibrosis in mice[J]. Hepatology,2004,40(6):1304-1311.
    [200]Fukumitsu K, Yagi H, Soto-Gutierrez A. Bioengineering in organ transplantation:targeting the liver[J]. Transplant Proc,2011,43(6):2137-2138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700