以脱细胞脐动脉为支架构建组织工程血管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程血管的构建是组织工程研究领域的重点和难点,其成功构建不仅为可供移植的材料提供了新的来源,更为临床上诸多心血管疾病的患者带来治愈的希望。本研究拟以人毛囊间充质干细胞为种子细胞,以脱细胞胎儿脐动脉为支架材料,体外构建组织工程血管,所得结果如下:
     (一)应用拔取成人毛发的方法,从中分离获得人毛囊间充质干细胞,通过显微镜观察、流式细胞分析的方法,从形态学、分子标记物方面检测一般特性;通过诱导成骨、成脂肪及成软骨检测其多向分化潜能的生物学行为;通过流式细胞分析、免疫荧光染色及实时定量PCR对人毛囊间充质干细胞来源的平滑肌细胞进行鉴定,发现其表达成熟平滑肌细胞的特异性标志物。从而证明人毛囊间充质干细胞可以作为构建组织工程血管的种子细胞。
     (二)获取在临床上废弃的胎儿脐动脉,经胰蛋白酶和十二烷基硫酸钠联合处理去掉脐动脉的细胞成分作为组织工程血管的支架。组织学观察发现该动脉细胞成分已经完全去除,但胶原和弹力纤维的结构仍保持完好。扫描电镜进一步确定纤维互相交织,为以后种子细胞的铺展、迁徙、分化提供合适的生存环境。细胞化学及生物化学分析还发现脱细胞脐动脉细胞外基质成分依然存在,胶原蛋白及弹力纤维的含量并未发生明显变化。将脱细胞前后的脐动脉进行生物力学的比较发现脱细胞的脐动脉具有较好的生物力学性质。可见利用临床废弃组织,经脱细胞处理后作为组织工程血管的支架,具有很好的应用前景。
     (三)将人毛囊间充质干细胞接种在脱细胞脐动脉支架上构建组织工程血管,组织学确定种子细胞黏附并迁移至血管的中膜,免疫组织化学染色检测平滑肌标志物α-actin和calponin呈阳性表达。重要的是构建的组织工程血管已经表现出对血管活性物质如氯化钾、去甲肾上腺素及硝普钠的反应活性,从而成功构建了在组织结构和生理功能与天然血管极为接近的组织工程血管。
     综上所述,我们建立了高效的分离、纯化、培养及扩增人毛囊间充质干细胞的技术体系;制备了具有合理的空间结构及组织相容性的脱细胞动脉支架;成功构建了具有生物活性的组织工程血管,为开展无免疫排斥的个性化血管移植治疗打下坚实的实验基础。
Cardiovascular disease is the leading cause of mortality and morbidity in thewest. Autologous tissues are presently preferred for surgical grafts of cardiovasculardisease but have the disadvantage of being insufficient in quantity or of poor quality.In contrast, the use of allografts or xenografts for cardiovascular repair carries therisks of severe immune rejection and disease transmission, which limit their clinicalapplication. Tissue engineering is an emerging multidisciplinary frontierscience involving molecular biology, cell biology, bioengineering, andclinical medicine that is likely to revolutionize the ways to improvethe health and quality of life for millions of people worldwide byrestoring, maintaining or enhancing tissue and organ function. This experiment aimsto determine if hair follicle mesenchymal stem cells can be used as seed cells incombination with an acellular umbilical artery as scaffold material to construct asmall tissue-engineered vascular graft.
     Materials&Methods: We isolated mesenchymal stem cells from human hairfollicle (HF-MSC). The HF-MSC display CD44, CD90, CD73and CD105andexhibit multipotency toward to adipocytes, osteoblasts and condrocytes underappropriate culture conditions. Very promisingly HF-MSC expressed vascular smoothmuscle specific markers: ɑ-actin, caloponin and myosin heavy chain. The expressionof ɑ-actin and caloponin of HF-MSC significantly increased when cultured in thepresence of TGF-β, shift from30%to90%by flow cytometry analysis, whichprovides potential smooth muscle cells (HF-SMC) for cardiovascular tissueengineering. Cord blood vessel is a rich source of native human biomaterials,providing unlimited material sources for engineering artificial organs, in particularfor engineering cardio vasculature as their components, histological structure andmechanical properties are very similar to cardio vasculature. We created decellularsmall diameter blood vessel scaffolds by digesting the arterial cord blood vessels withtrypsin and SDS. The decellular arterial scaffolds (De-AS) remained the main extracellular matrix, such as, collagen, proteoglycans and elastin and mechanicalproperties by histochemistry and biochemistry, compared to their native counterparts.We seeded HF-SMC into the De-AS.
     Results: The HF-SMC in the De-AS migrated approximately to the2/3of theDe-AS from the lumen, distributed circumferentially and still expressed ɑ-actin andcalponin, laying the base for the generation of functional vasoreactivity in responseto constrictors.
     Conclusion: In this study we have allowed hair follicle mesenchymal stem cellsto grow on an acellular umbilical artery. With this approach we have successfullyconstructed a tissue-engineered blood vessel.
引文
[1] Liu JY, Swartz DD, Peng HF, Gugino SF, Russell JA, Andreadis ST.Functional tissue-engineered blood vessels from bone marrow progenitor cells.Cardiovasc Res.2007;75:618-28.
    [2] Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteriesengineered in vitro. Circ Res2006;98(1):25-35.
    [3] Weintraub WS, Jones EL, Craver JM, Guyton RA.Frequency of repeatcoronary-bypass or coronary angioplasty after coronary-artery bypass surgeryusing saphenous venous grafts. Am J Cardiol1994;73(2):103-12.
    [4] Klinkert P, Post PN, Breslau PJ, van Bocke JH.Saphenous vein versus PTFEfor above-knee femoropopliteal bypass. a review of the literature. Eur J VascEndovasc Surg2004;27(4):357-62.
    [5] Gauvin R, Ahsan T, Larouche D, Levesque P, Dube J, Auger FA, etal. A novel single-step self-assembly approach for the fabrication oftissue-engineered vascular constructs. Tissue Eng Part A2010;16(5):1737-47.
    [6] Yuji Naito, Toshiharu Shinoka, Daniel Duncan, Narutoshi Hibino, DanielSolomon, Muriel Cleary,Animesh Rathore, Corey Fein, Spencer Church,Christopher Breuer. Vascular tissue engineering: Towards the next generationvascular grafts. Advanced Drug Delivery Reviews63(2011)312–323
    [7] Weinberg, C. B. and Bell, E. A blood vessel model constructed from collagenand cultured vascular cells. Science231,(1986)397–400
    [8] L.E. Niklason, et al.Functional arteries grown in vitro, Science284(5413)(1999)489–493.
    [9] Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS, et al. Bloodvessels engineered from human cells. Lancet.2005;365:2122-4.
    [10] McKee JA, Banik SS, Boyer MJ, Hamad NM, Lawson JH, Niklason LE,et al. Human arteries engineered in vitro. EMBO Rep.2003;4:633-8.
    [11] Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency.Nature.2006;441:1061-7.
    [12] Rodolfa KT, Eggan K.A transcriptional logic for nuclear reprogramming.Cell.2006;126:652-5.
    [13] Cervera RP, Stojkovic M. Commentary: somatic cell nuclear transfer--progressand promise. Stem Cells.2008;26:494-5.
    [14] Daley GQ, Goodell MA, Snyder EY. Realistic prospects for stem celltherapeutics[R].Hematology Am Soc Hematol Educ Program.2003:398-418.
    [15] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ,Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts.Science.1998;282:1145-7.
    [16] Sudheer PD, Rahman H, Mastan SG, Reddy MP. Isolation of novelmicrosatellites using FIASCO by dual probe enrichment from Jatropha curcas L.and study on genetic equilibrium and diversity of Indian population revealed byisolated microsatellites. Mol Biol Rep.2010;37:3785-93.
    [17] Jockenhoevel S,Zund G,Hoerstrup SP,Chalabi K,Sachweh JS,DemircanL, et al. Fibrin gel--advantages of a new scaffold in cardiovascular tissueengineering. Eur J Cardiothorac Surg.2001;19:424-30.
    [18] Cummings CL, Gawlitta D, Nerem RM, Stegemann JP. Properties ofengineered vascular constructs made from collagen, fibrin, and collagen-fibrinmixtures. Biomaterials.2004;25:3699-706.
    [19] Griffith LG, Naughton G. Tissue engineering--current challenges andexpanding opportunities. Science.2002;295:1009-14.
    [20] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouseembryonic and adult fibroblast cultures by defined factors. Cell.2006;126:663-76.
    [21] Yu RN, Estrada CR. Stem Cells: A Review and Implications for Urology.Urology.2010;75:664-70.
    [22] Jahoda CA, Whitehouse J, Reynolds AJ, Hole N. Hair follicle dermal cellsdifferentiate into adipogenic and osteogenic lineages. ExpDermatol.2003;12:849-59.
    [23] Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, et al.Isolationof a novel population of multipotent adult stem cells from human hair follicles.Am J Pathol.2006;168:1879-88.
    [24] Lako M, Armstrong L, Cairns PM, Harris S, Hole N, Jahoda CA. Hairfollicle dermal cells repopulate the mouse haematopoietic system. J CellSci.2002;115:3967-74.
    [25] De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P,et al. Differential expression of stem cell mobilization-associated molecules onmulti-lineage cells from adipose tissue and bone marrow. Immunol Lett.2003;89:267-70.
    [26] Kinner B, Zaleskas JM, Spector M. Regulation of smooth muscle actinexpression and contraction in adult human mesenchymal stem cells. Exp CellRes.2002;278:72-83.
    [27] Togel F, Westenfelder C. Adult bone marrow-derived stem cells for organregeneration and repair. Dev Dyn.2007;236:3321-31.
    [28] Deutsch, M, et al. Clinical autologous in vitro endothelialization ofinfrainguinal ePTFEgrafts in100patients:a9-year experience.Surgery.1999,126(5):p.847-855.
    [29] Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciatedsource of stem cells for biotechnology. Trends Biotechnol.2006;24:150-4.
    [30] Reynolds AJ,Lawrence C,Cserhalmi-Friedman PB,Christiano AM,JahodaCA. Trans-gender induction of hair follicles. Nature.1999;402:33-4.
    [31] Bernard BA. The biology of hair follicle.J Soc Biol.2005,199:343-348.
    [32] Krause K, Foitzik K. Biology of the hair follicle:the basics. Semin Cutan MedSurg.2006,25:2-10
    [33] Jahoda CA, Reynolds AJ. Dermal-epidermal interactions.Adult follicle-derivedcell populations and hair growth. Dermatol Clin.1996,14:573-583.
    [34] Tan T, Hu Z,Zhou H. Separation and purification of human hair follicle stemcells by micromanipulation and magnetic cell sorting [J].Zhongguo Xiu FuChong Jian Wai Ke Za Zhi,2008,22(2):202-205
    [35] Kloepper JE,Tiede S,Brinckmann J,et al. Immunophenotyping of the humanbulge region: the quest to define useful in situ markers for human epithelial hairfollicle stem cells and their niche.[J].Exp Dermatol,2008,17(7):592-609
    [36] Funchs E, Tumbar T, Guasch G, et al. Soxializing with their neigbors: stemcell and their niche [J]. Cell.2004,116:769-778.
    [37] Yang JS, Lavker RM, Sun TT. Upper human hair follicle contains asubpopulation of keratinocytes with superior in vitro proliferative potential [J]Invest Derm atoll,1993,101(5):652-659
    [38]张群,丛笑倩,张文杰,等。利用中性蛋白酶消化法扩增毛囊干细胞的实验研究[J]。上海交通大学学报(医学版),2007,27(4):387-391
    [39]唐建兵,李勤,陈璧,等。两种人毛囊外根鞘细胞培养方法的比较[J]。广东医学,2005,26(1):44-45.
    [40] Hoogduijn MJ, Gorjup E, Genever PG. Comparative characterization of hairfollicle dermal stem cells and bone marrow mesenchymal stem cells.
    [41] Da-Wen Yu, Tian Yang, Tung-Tien Sun. Osteopontin Gene is Expressed in theDermal Papilla of Pelage Follicles in a Hair-Cycle-Dependent Manner Journal ofInvestigative Dermatology (2001)117,1554–1558.
    [42] Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, PatilS, Hardy W, Devine S, Ucker D, Deans R, Moseley A, HoffmanR.Mesenchymal stem cells suppress lymphocyte proliferation in vitro andprolong skin graft survival in vivo. Exp Hematol.2002Jan;30(1):42-8.
    [43] Bordji K, Grillasca JP, Gouze JN,et al. Evidence for the presence ofperoxisome proliferator-activated receptor (PPAR) alpha and gamma and retinoidZ receptor in cartilage. PPARgamma activation modulates the effects ofinterleukin-1beta on rat chondrocytes [J]. J Biol Chem,2000,275(16):12243-12250.
    [44] Smith P, Shuler FD, Georgescu HI, et al. Genetic enhancement of matrixsynthesis by articular chondrocytes: comparison of different growth factor genesin the presence and absence of interleukin-1[J]. Arthritis Rheum,2000,5:1156-1164.
    [45] Kuh SU,Zhu Y, Li J, et al. Can TGF-1and rhBMP-2act in synergyto transform bone marrow stem cells to discogenic-type cells[J]. ActaNeurochir (Wien),2008,10:1073-1079.
    [46] Jin Yu Liu, Hao Fan Peng, Stelios T. Andreadis.Derivation of FunctionalSmooth Muscle Cells from Multipotent Human Hair Follicle Mesenchymal StemCells. TISSUE ENGINEERING.
    [47] Vaughan,M. B.,Howard,E. W.,and Tomasek,J. J.(2000). Transforminggrowth factor-beta1promotes the morphological and functional differentiationof the myofibroblast. Exp. Cell Res.257,180–189.
    [48] Leof, E. B., Proper, J. A.,Goustin, A. N., Shipley, G. D., DiCorletto,P. E., and Moses, H. L.(1986). Induction of c-sis mRNA and activity similarto platelet derived growth factor by transforming growth factor_: A proposedmodel for indirect mitogenesis involving autocrine activity. Proc. Natl. Acad. Sci.USA83,2453–2457.
    [49] Postlethwaite, A. E., Keski-Oja, J., Moses, H. L., and Kang, A. H.(1987). Stimulation of the chemotactic migration of human fibroblasts bytransforming growth factor beta. J. Exp. Med.165,251–256.
    [50] Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche,N. S., Wakefield, L. M., Heine, U. I., Liotta, L. A., Falanga, V.,Kehrl, J. H., and Fauci, A. S.(1986). Transforming growth factor type beta:Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagenformation in vitro. Proc. Natl. Acad. Sci. USA83,4167–4171.
    [51]杨志明.组织工程基础与临床研究[M].先:人民卫生音像出版社,2004.
    [52] Godbey WT, Atala A.In vitro systems for tissue engineering [J].Ann N Y AcadSci,2002,221(1-2):1-22.
    [53]蔡霞,高学军,孙文娟等。应用胶原凝胶构建组织工程皮肤的研究[J]。中国美容整形外科杂志,2007,,1(2):140-142.
    [54]方佩斐,贾维敏.组织工程中天然支架材料的研究现状[J]。安徽卫生职业技术学院学报,2006,5(4):74.
    [55] Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering[J].Biomaterials.1999,20(12):1133-1142.
    [56] Shanmugasundaram N, Ravichandran P, Reddy PN et al. Collagen-chitosanpolymeric scaffolds for the in vitro culture of human epidermal carcinoma cells[J].Biomaterials,2001,22(14):1943-1951.
    [57] Tschoeke B, Flanagan TC, Cornelissen A, Koch S, Roehl A, SriharwokoM, etal.Development of a composite degradable/nondegradabletissue-engineered vascular graft. Artif Organs2008;32:800–9.
    [58] Torikai K, Ichikawa H, Hirakawa K, Matsumiya G, Kuratani T, Iwai S,et al. A self-renewing, tissue-engineered vascular graft for arterialreconstruction.J Thorac Cardiovasc Surg2008;136:37–45.45e31.
    [59] RashidST,Fuller B,HamiltonG,SeifalianAM.Tissue engineering of a hybridbypass graft for coronary and lower limb bypass surgery. FASEB J2008;22:2084–9.
    [60] Mao JS, Zhao LG, Yin YJ et al. Structure and properties of bilayerchitosan-gelatin scaffolds [J].Biomaterials.2003,24(6):1067-1074.
    [61] Liu LS, Thompson AT, Heidaran MA et al.An osteoconductivecollagen/hyaluronate matrix for bone regeneration [J]. Biomaterials.1999,20(12):1097-1108.
    [62] Samouillan V, Dandurand-Lods J, Lamure A, et al. Thermal analysischaracterization of aortic tissues for cardiac valve prostheses[J].J Biomed MaterRes,1999,46(4):531-538.
    [63] Kasimir MT, Rieder E, Seebacher G, et al. Comparison of differentdecellularization procedures of porcine heart valves [J]. Int J Artificial Organs,2003,26(5):421-427.
    [64] WILSON G,YEGER H,KLEMENT P,et al. Acellular matrix allograft smallcaliber vascular prostheses[J]. Trans Am Soc Artif Intern Organs,1990,36:340-343
    [65] Sliver GM, Katske GE, Stutaman FL, et al.Umbilical vein for qortocoronarybypass. Angiology,1982,33:4502453.
    [66] Yeh HS, Keller JT, Brackett KA, et al. Human umbilical artery formicrovascular grafting. Experimental study in the cat. J Neurosurg.1984,61:7372742.
    [67] Karkow WS, Crznley JJ, Cranley RD. et al. Extended study of zneurysmformation in umbilical vein grafts. J Vasc Surg.1986,4:4862492.
    [68] Daniel J, McFetridge P. Mechanical asseessment of the human umbilical veinfor vascular tissue engineering applications. Poster Abstracts PCardiovascularPathology,13:1392200.
    [69] B.L. Langille, F. O'Donnell, Reductions in arterial diameter produced bychronic decreases in blood flow are endothelium-dependent, Science231(4736)(1986)405–407.
    [70] J. Ando, et al., Shear stress inhibits adhesion of cultured mouse endothelialcells to lymphocytes by downregulating VCAM-1expression, Am. J. Physiol.267(3Pt1)(1994) C679–C687.
    [71] X. Bao, et al., Temporal gradient in shear but not steady shear stress inducesPDGF-A and MCP-1expression in endothelial cells: role of NO, N
    [72] A.T. Halka, et al., The effects of stretch on vascular smooth muscle cellphenotype in vitro, Cardiovasc. Pathol.17(2)(2008)98–102.
    [73] Cho SW, Lim SH, Kim IK, Hong YS, Kim SS, Yoo KJ, et al.Small-diameter blood vessels engineered with bone marrow-derived cells. AnnSurg2005;241(3):506-15.
    [74] Lim SH, Cho SW, Park JC, Jeon O, Lim JM, Kim SS, et al.Tissue-engineered blood vessels with endothelial nitric oxide synthase activity. JBiomed Mater Res B Appl Biomater2008;85B(2):537-46.
    [75] Roh JD, Brennan MP, Lopez-Soler RI, Fong PM, Goya A, Dardik A,et al. Construction of an autologous tissue-engineered venous conduit from bonemarrow-derived vascular cells: optimization of cell harvest and seedingtechniques. J Pediatr Surg2007;42(1):198-202.
    [76] Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H.First evidence that bone marrow cells contribute to the construction of tissueengineered vascular autografts in vivo. Circulation2003;108(14):1729-34.
    [77] Dong JD, Gu YQ, Li CM, Wang CR, Feng ZG, Qiu RX, et al. Responseof mesenchymal stem cells to shear stress in tissue-engineered vascular grafts.Acta Pharmacol Sin2009;30(5):530-6.
    [78] Zhao YL, Zhang S, Zhou JY, Wang JL, Zhen MC, Liu Y, et al.Thedevelopment of a tissue-engineered artery using decellularized scaffold andautologous ovine mesenchymal stem cells. Biomaterials2010;31(2):296-307.
    [79] Nieponice A, Soletti L, Guan JJ, Deasy BM, Huard J, Wagner WR,et al. Development of a tissue-engineered vascular graft combining abiodegradable scaffold, muscle-derived stem cells and a rotational vacuumseeding technique. Biomaterials2008;29(7):825-33.
    [80] Nieponice A, Soletti L, Guan JJ, Hong Y, Gharaibeh B, Maul TM, etal.In vivo assessment of a tissue-engineered vascular graft combining abiodegradable elastomeric scaffold and muscle-derived stem cells in a rat model.Tissue Eng Part A2010;16(4):1215-23.
    [81] Soletti L, Hong Y, Guan JJ, Stankus JJ, El-Kurdi MS, Wagner WR,et al.A bilayered elastomeric scaffold for tissue engineering of small diametervascular grafts. Acta Biomater2010;6(1):110-22.
    [82] Martin Birchall, George Hamilton.Tissue-engineered vascular replacements forchildren The Lancet, Volume380, Issue9838, Pages197-198,21July2012
    [83] Costsrelis G. Epithelial stem cells: a folliculocentric view. JInvest Dermatol2006;126(7):1459-68.
    [84] Inoue K, Aoi N, Sato T, Yamauchi Y, Suga H, Eto H, et al. Differentialexpression of stem-cell-associated markers in human hair follicle epithelial cells.Lab Invest2009;89(8):844-56.
    [85] Jaks V, Barker N, KasPer M, van Es JH, Snippert HJ, Clevers H, etal. Lgr5marks cycling, yet long-lived. hair follicle stem cells. Nat Genet2008;40(11):1291-99.
    [86] Lyle S,Christofidou-Solomidou M,Liu Y,Elder DE,Albelda S,CotsarellsG. The C8/144B monoclonal antibody recognizes cytokeratin15and defines thelocation of human hair follicle stem cells. J Cell Sci1998:111(Pt21):3179-88.
    [87] Commo S, Gaillard O, Bernard BA. The human hair follicle contains twodistinct K19positive compartments in the outer root sheath: a unifyinghypothesis for stem cell reservoir? Differentiation2000:66(4-5):157-64.
    [88] Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. ProcNatl Acad Sci USA2005;102(15):5530-4.
    [89] Vidal VP, Chaboissler MC, Lutzkendorf S, Cotsarelis G, Mill P,Hui CC,et al. Sox9is essential for outer root sheath differentiation and the formation ofthe hair stem cell compartment. Curr Biol2005:5(15):1340-51.
    [90] MARTIN J. HOOGDUIJN, ERWIN GORJUP, and PAUL G. GENEVER.Comparative Characterization of Hair Follicle Dermal Stem Cells and BoneMarrow Mesenchymal Stem Cells. STEM CELLS AND DEVELOPMENT15:49–60(2006)
    [91] Stock UA,Sakamoto T,Hatsuoka S,et a1. Patch augmentation of thepulmonary artery with bioabsorbable polymers and autologous cell seeding
    [J].J Thorac Cardiovasc Surg,2000,120:1158-1168.
    [92] L’heureux N,Paquet S,Labbe R,et a1.A completely biological tissue-engineered human blood vessel [J]. FASEB,1998,12:47-56.
    [93] Asahara T,Murohara T, Sullivan A.et a1. Isolation of putative progenitorendothelial cells for angiogenesis [J] Science,1997,275:964-967.
    [94] Reyes M,Dudek A,Jahagirdar B, et a1.Origin of endothelial progenitors inhuman postnatal bone marrow[J].J Clin Invest,2002,109,337-346.
    [95] Kern PA,Knedler A,Eckel RH, et a1. Isolation and culture of microvascularendothelium from human adipose tissue [J].J Clin Invest,1983,71(6):1822-1829.
    [96] Cha ST,Talavera D,Demir E,et a1. A method of isolation and culture ofmicrovascular endothelial cells from mouse skin [J].Microvasc Res,2005,70(3):198-204.
    [97] THE HUMAN ENDOTHELIAL CELL IN TISSUE CULATURE Zeitschrift furZellforschung60,69-79(1963)
    [98] Endothelial cell culture: beginnings of modern vascular biology. The Journal ofClinical Investigation. Volume114Number8October2004.
    [99] Ying Cao, Zhao Sun, Lianming Liao,et al. Human adipose tissue–derivedstem cells differentiate into endothelial cells in vitro and improve postnatalneovacularization in vivo[J]. Biochemical and Biophysical ResearchCommunications,2005,332:370-379.
    [100] Ceriello A,dello Russo P,Amstad P,et al. High glucose inducesantioxidant enzymes in human endothelial cells in culture. Evidence linkinghyperglycemia and oxidative stress[J]. Diabetes,1996,45(4):471-477.
    [101] Jaffe EA Nachman RL Becker CG et al.Culture of human endothelial cellsderived from umbilical veins. Identification by morphologic and immunologiccriteria J. J Clin Invest197352(11)2745-2756.
    [102] Terramani TT Eton D Bui PA et al.Human microvascular endothelial cellsoptimization of culture conditions J. In Vitro Cell Dev Biol Anim200036(2):125-132.
    [103] Ingthorsson S Sigurdsson V Fridriksdottir AJ et al. Endothelial cells stimulategrowth of normal and cancerous breast epithelial cells in3D culture J. BMCRes Notes20103(1):184.
    [104] Frerich B Zückmantel K Hemprich A. Microvascular engineering in perfusionculture immunohistochemistry and CLSM findings J. Head Face Med2006,2:26.
    [105] Langer R, Vacanti JP. Tissue engineering Science,1993,260(5110):920-926.
    [106] Yavuz K, Geyik S, Pavcnik D, et al. Comparison of the endothelializationof small intestinal submucosa, dacron, and expanded polytetrafluoroethylenesuspended in the thoracoabdominal aorta in sheep J Vasc Interv Radiol,2006,175:873-882.
    [107] Hinds MT, Rowe RC, Ren Z, et al. Development of a reinforced porcineelastin composite vascular scaffold J Biomed Mater Res A,2006,773:458-469.
    [108] Long JL, Tranquillo RT. Elastic fiber production in cardiovasculartissue-equivalents Matrix Biol,2003,224:339-350.
    [109] Isenberg BC, Williams C, Tranquillo RT. Endothelialization and flowconditioning of fibrin-based media-equivalents Ann Biomed Eng,2006,346:971-985.
    [110] Bensaid W, Triffitt JT, Blanchat C, et al. A biodegradable fibrin scaffold formesenchymal stem cell transplantation Biomaterials,2003,2414:2497-2502.
    [111] Ratcliffe A. Tissue engineering of vascular grafts Matrix Biol,2000,194:353-357.
    [112] Cassell OC, Hofer SO, Morrison WA, et al. Vascularisation oftissue-engineered grafts: theulation of angiogenesis in reconstructive surgery anddisease states Brit J Plast Surg,2002,558:603-610.
    [113] Cho SW,Lim SH,Kim IK, et al. Small-diameter blood vessels engineeredwith bone marrow-derived cells. Ann Surg,2005,241:506-515.
    [114] Kaushal S,Amiel GE,Guleserian KJ, et al. Functional small-diameterneovessels created using endothelial progenitor cells expanded ex vivo. NatMed,2001,7:1035-1040.
    [115] Ngangan AV, McDevitt TC. Acellular ization of embryoid bodies via physicaldisruption methods[J]. Biomaterials2009;30;1143-1149.
    [116]胡刚,刑彬,欧来良,等.动物血管脱细胞方法及细胞外基质材料评价研究[J].中国生物医学工程学报2008;27(6):912-921.
    [117] Hashimoto Y, Funamoto S, Sasaki S, et al. Preparation andcharacterization of decellularized cornea using high-hydrostatic pressurization orcorneal tissue engineering [J].Biomaterials2010;31:3941-3948.
    [118] Funamoto S, Nam K, Kimura T, et al. The use of high-hydrostaticpressureto treatment decellularize blood vessels [J]. Biomaterials2010;31:3590-359
    [119] Yin M, Liu JF, Fujisato T, et al. Tissue-engineered vascular scaffolds preTissue-engineered vascular scaffolds prepared by ultrahigh pressuredecellularization treatment[J].Journal of Clinical Rehabilitative TissueEngineering Research200.
    [120] Sasaki S, Funamoto S, Hashimoto Y, et al. In vivo evaluation of a novelscaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure todecellularize porcine corneas [J].Molecular Vision2009;15:2022-2028.
    [121] Shupe T, Williams M, Brown A, et al. Method for the decellularization ofintact rat liver[J].Organogenesis2010;6(2):134-136.
    [122]Wang P, Li C, Zhang RQ, et al. Various method of preparing acellulartissue-engineered xenogeneic valve stents[J].Journal of Clinical Rehabilit TissueEngineering Research2009;13(16):3041-3044.
    [123]陆军,肖学钧,陈欣欣.比较牛颈静脉去细胞处理试验方法[J].岭南心血管病杂志2008;14(6):440-443.
    [124]崔晓平,张永红,薛军.胰蛋白酶法和Triton X-100法脱猪软骨细胞的比较[J].中国组织工程研究与临床康复2009;13(46):9080-9083.
    [125]韩啸,蒋雄刚,徐鹏,等.聚乙二醇和胰蛋白酶用于猪动脉管道去细胞效果比较[J].华中科技大学学报(医学版)2007;36(4):551-553
    [126] Schenke-Layland K,Vasilevski O,Opitz F,et al. Impact of decellularizationof xenogeneic tissue on extracellular matrix integrity for tissue engineering ofheart valves[J]. J Struct Biol2003;143:201-208.
    [127] Grauss RW, Hazekamp MG, Oppenhuizen F, et al. Histologicalevaluationof decellularized porcine aortic valves: matrixchanges due to differentdecellularization methods [J].Eur J Cardiothorac Surg2005;27:566-571.
    [128]杨立信,徐志云,黄盛东,等.三种去细胞方法构建的主动脉瓣膜支架的性能比较[J].第二军医大学学报2007;28(1):8-12.
    [129]Woods T, Gratzer PF. Effectiveness of three extraction techniques in thedevelopment of a decellularized bone-anterior cruciate ligament-bone graft [J].Biomaterials2005;26:7339-7349.
    [130] Elder BD, Eleswarapu SV, Athanasiou KA. Extraction techniques for thedecellularization of tissue engineered articular cartilage constructs [J].Biomaterials2009;30:3749-3756.
    [131] Wu Z, Zhou Y, Li N, et al. The use of phospholipase A to prepare acellularporcine cornal stroma as a tissue engineering scaffold [J]. Biomaterials2009;30:3513-3522.
    [132] Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellularnerve graft via optimized chemical processing [J]. Tissue Eng2004;10:1346-1358.
    [133] Hudson TW, Zawko S, Deister C, et al. Optimized acellular nerve graft isimmunologically tolerated and supports regeneration [J]. Tissue Eng2004;10:1641-1651.
    [134]武欣,谷涌泉,张建,等.生物血管异种移植的初步研究[J].中国实验动物学报,2007,15(1):39-42.
    [135] Langer R,Vacanti JP. Tissue engineering[J]. Science1993,260:920-926.
    [136] Fields C, Cassano A, Makhoul RG, et al. Evaluation of electrostaticallyendothelial cell seeded expanded polytetrafluoroethylene grafts in a caninefemoral artery model[J]. J Biomater Appl,2002,17:135-152.
    [137] Veves A, Akbari CM, Primavera J, et al. Endothelial dysfunction and theexpression of endothelial nitric oxide synthetase in diabetic neuropathy,vasculardisease,and foot ulceration[J]. Diabetes.1998,47(3):457-4
    [138] Schmidt CE, Baler JM. Vascular tissues: natural biomaterials for tissue repairand tissue engineering[J]. Biomaterials2000;21:2215-2231.
    [139] Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA,et al. Tissue-engineered vascular grafts transform into mature blood vessels viaan infammation-mediated process of vascular remodeling. Proc Natl Acad SciUSA2010;107(10):4669-74.
    [140] Cho SW, Lim JE, Chu HS, Hyun HJ, Choi CY, Hwang KC, et al.Enhancement of in vivo endothelialization of tissue-engineered vascular graftsby granulocyte colony-stimulating factor. J Biomed Mater Res A2006;76A(2):252-63.
    [141] Cho SW, Kim IK, Kang JM, Song KW, Kim HS, Park CH, et al.Evidence for in vivo growth potential and vascular remodeling oftissue-engineered artery. Tissue Eng Part A2009;15(4):901-12.
    [142] Hibino N, Shin’oka T, Matsumura G, Ikada Y, Kurosawa H. The tissue-engineered vascular graft using bone marrow without culture. J ThoracCardiovasc Surg2005;129(5):1064-70.
    [143] Matsumura G, Ishihara Y, Miyagawa-Tomita S, Ikada Y, Matsuda S,Kurosawa H, et al. Evaluation of tissue-engineered vascular autografts. TissueEng2006;12(11):3075-83.
    [144] Brennan MP, Dardik A, Hibino N, Roh JD, Nelson GN, PapademitrisX, et al. Tissue-engineered vascular grafts demonstrate evidence of growth anddevelopment when implanted in a juvenile animal model. Ann Surg2008;248(3):370-6.
    [145] Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, BreuerC, et al. Late-term results of tissue-engineered vascular grafts in humans. JThorac Cardiovasc Surg2010;139(2):431-6.
    [146] Mirensky TL, Hibino N, Sawh-Martinez RF, Yi T, Villalona G, ShinokaT, et al. Tissue-engineered vascular grafts: does cell seeding matter? J PediatrSurg2010;45(6):1299-305.
    [147] Zhang L,Zhou JY,Lu QP,Wei YJ,Hu SS. A novel small-diameter vasculargraft: in vivo behavior of biodegradable three-layered tubular scaffolds.Biotechnol Bioeng2008;99(4):1007-15.
    [148] Hjortnaes J, Gottlieb D, Figueiredo JL, Melero-Martin J, Kohler RH,Bischoff J, et al. Intravital molecular imaging of small-diametertissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng Part CMethods2010;16(4):597-607.
    [149] Hashi CK, Zhu YQ, Yang GY, Young WL, Hsiao BS, Wang K, etal. Antith-rombogenic property of bone marrow mesenchymal stem cells innano-fbrous vascular grafts. Proc Natl Acad Sci U S A2007;104(29):11915-20.
    [150] He HB, Shirota T, Yasui H, Matsuda T. Canine endothelial progenitorcell-lined hybrid vascular graft with nonthrombogenic potential. J ThoracCar-diovasc Surg2003;126(2):455-64.
    [151] Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, SutherlandFW, et al. Functional small-diameter neovessels created using endothelialprogenitor cells expanded ex vivo. Nat Med2001;7(9):1035-40.
    [152] Neff LP, Tillman BW, Yazdani SK, Machingal MA, Yoo JJ, Soker S,et al. Vascular smooth muscle enhances functionality of tissue-engineered bloodvessels in vivo. J Vasc Surg2011;53(2):426-34.
    [153] Zhu CH, Ying DJ, Mi JH, Li L, Zeng W, Hou CL, et al. Developmentof anti-atherosclerotic tissue-engineered blood vessel by A20-regulatedendothe-lial progenitor cells seeding decellularized vascular matrix. Biomaterials2008;29(17):2628-36.
    [154] Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE.Decellularized tissue-engineered blood vessel as an arterial conduit. Proc NatlAcadSci U S A2011;108(22):9214-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700