镁螯合酶各组分在ABA信号转导中的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁螯合酶是光合细菌和植物中普遍存在的一种特属于叶绿素合成的关键酶,能催化Mg2+和原卟啉IX形成镁卟啉IX。镁螯合酶由四个组分组成,分别是H亚基(CHLH/ABAR)、I亚基(CHLI)、D亚基(CHLD)和GUN4蛋白。在叶绿素生物合成过程中,这四个组分相互协调,共同调节镁螯合酶的活性。本实验室前期研究表明,H亚基是植物激素脱落酸受体。然而,目前还不清楚镁螯合酶的其它组分是否也参与ABA信号转导,且镁螯合酶催化合成镁卟啉IX与ABA信号转导之间是否有所区分。本论文通过生化、生理和遗传实验来揭示这一问题。
     本论文利用表面等离子共振技术(SPR),检测到只有镁螯合酶的CHLH/ABAR能够结合ABA,而其它三个组分CHLI、CHLD和GUN4不能结合ABA。
     目前报道了拟南芥CHLH基因的一个新的突变等位基因rtl1,本论文对其突变体的ABA相关表型分析表明,其在气孔运动和种子萌发中都表现出对ABA脱敏的表型,这与CHLH是ABA信号转导的正调节子的结论一致。通过遗传转化技术在拟南芥中过量表达CHLI1基因,突变体在种子萌发中表现出对ABA超敏的表型;而下调CHLI的植株在气孔运动方面表现出脱敏的表型,这说明CHLI在种子萌发和气孔运动中都正向调控ABA信号转导。利用烟草脆裂病毒所介导的病毒诱导基因沉默系统在烟草(Nicotiana benthamiana)中分别沉默CHLH、CHLI1和CHLD,结果显示CHLH和CHLI正向调控烟草气孔对ABA的敏感性,而CHLD并不参与其中。在拟南芥中,上调CHLD表达量的植株,以及上调和下调GUN4表达量的植株,在ABA主要的三个反应中都表现出与野生型一致的表型,这表明CHLD和GUN4并不参与ABA信号转导。以上结果证明镁螯合酶CHLH/ABAR和CHLI是ABA信号转导中重要的正调节因子,而另两个组分CHLD和GUN4不参与ABA信号转导。
     本论文的实验结果能够清晰而直接地证明镁螯合酶催化镁卟啉IX合成与ABA信号转导是相互独立的两个过程,也为在分子水平了解其机制提供了重要信息。
In plants and photosynthetic bacteria, Mg-chelatase catalyzes the insertionof Mg2+into protoporphyrin IX. This is the first committed step in chlorophyllbiosynthesis. It has been well established that Mg-chelatase functions incatalyzing Mg-Proto IX production as a hetero-tetramer, which is composed ofMg-chelatase subunits H, I (CHLI), D (CHLD), and a supplementary essentialand component GUN4(Genomes Uncoupled4). We previously reported that themagnesium-protoporphyrin IX (Mg-Proto IX) chelatase large subunit(Mg-chelatase H subunit CHLH/putative ABA receptor ABAR), achloroplast/plastid protein, binds ABA and functions in ABA signaling.However, it remains essentially unknown whether Mg-chelatase heterotetramercomplex or only CHLH function in ABA signaling, and why the Mg-Proto IXproduction process may differ from the CHLH-mediated ABA signaling. In thethesis, we designed biochemical, physiological and genetic experiments toexplore the mechanism.
     Here we report that, using a newly-developed surface plasmon resonancesystem, ABA-binding to CHLH, but not to the other Mg-chelatasecomponents/subunits CHLI, CHLD and GUN4, was detected.
     A new rtl1mutant allele of the CHLH gene in Arabidopsis thaliana showedABA-insensitive phenotypes in both stomatal movement and seed germination,which is consistent with the positive role of CHLH in ABA signaling.Upregulation of CHLI1resulted in ABA hypersensitivity in seed germination,while downregulation of CHLI conferred ABA insensitivity in stomatal responsein Arabidopsis, suggesting that CHLI positively regulates the major ABAresponses. Using a tobacco rattle virus (TRV) based virus-induced genesilencing (VIGS) system, we showed that CHLH and CHLI, but not CHLD,regulate stomatal sensitivity to ABA in tobacco (Nicotiana benthamiana).Consistently, the overexpression lines of the CHLD gene showed wild-typeABA sensitivity in Arabidopsis. Both the GUN4-RNA interference andoverexpression lines of Arabidopsis showed wild-type phenotypes in the major ABA responses, demonstrating that GUN4is not an ABA signaling regulator.
     These findings provide clear and direct evidence that the Mg-chelatasecatalyzed Mg-Proto IX production is distinct from ABA signaling, givinginformation to understand the mechanism by which the two cellular processesdiffers at the molecular level.
引文
Adhikari N D, Orler R, Chory J, et al. Porphyrins promote the association of GENOMESUNCOUPLED4and a Mg-chelatase subunit with chloroplast membranes. J Biol Chem,2009,284:24783-24796.
    Adhikari N D, Froehlich J E, Strand D D, et al. GUN4-Porphyrin Complexes Bind the ChlH/GUN5Subunit of Mg-Chelatase and Promote Chlorophyll Biosynthesis in Arabidopsis. Plant Cell,2011,22:1909-1935.
    Adie B A T, Perez-Perez J, Perez-Perez M M, et al. ABA is an essential signal for plant resistance topathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell,2007,19:1665-1681.
    Allen G J, Kuchitsu K, Chu S P, et al. Arabidopsis abi1-1and abi2-1Phosphatase Mutations ReduceAbscisic Acid–Induced Cytoplasmic Calcium Rises in Guard Cells. Plant Cell,1999,11:1785-1798.
    Apchelimov A A, Soldatova O P, Ezhova T A, et al. The analysis of the ChlI1and ChlI2genesusing acifluorfenresistant mutant of Arabidopsis thaliana. Planta,2007,225:935-943.
    Assmann S M. Ins and outs of guard cell ABA receptors. Plant Cell,1994,6:1187-1190.
    Axelsson E, Lundqvist J, Sawicki A, et al. Recessiveness and dominance in barley mutants deficientin Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Plant Cell,2006,18:3606-3616.
    Baulcombe D C. Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol,1999,2:109-113.
    Balmer Y, Koller A, del Val G, et al. Proteomics gives insight into the regulatory function ofchloroplast thioredoxins. Proc Natl Acad Sci USA,2003,100:370-375.
    Brenner S, Johnson M, Bridgham J, et al. Gene expression analysis by massively parallel signaturesequencing (MPSS) on microbead arrays. Nat Biotechnol,2000,18:630-634.
    Castelfranco P A and Beale S I. Chlorophyll biosynthesis: recent advances and areas of currentinterest. Annu Rev Plant Physiol,1983,34:241-278.
    Clough S J and Bent A F. Floral dip: a simplified method for Agrobacterium-mediatedtransformation of Arabidopsis thaliana. Plant J,1998,16:735-743
    Coursol S, Fan L M, Le Stunff H, et al. Sphingolipid signalling in Arabidopsis guard cells involvesheterotrimeric G proteins. Nature,2003,423:651-654.
    Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: Emergence of a core signalingnetwork. Annu Rev Plant Biol,2010,61:651-679.
    Davison PA, Schubert H L, Reid J D, et al. Structural and biochemical characterization of Gun4suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry,2005,44:7603-7612.
    Dougan D A, Mogk A, Zeth K, et al. AAA+proteins and substrate recognition, it all depends ontheir partner in crime. FEBS Lett,2002,529:6-10.
    Espineda C E, Linford A S, Devine D, et al. The AtCAO gene, encoding chlorophyll a oxygenase, isrequired for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA,1999,96:10507-10511.
    Fan L M, Zhao Z X, and Assmann S M. Guard cells: a dynamic signaling model. Curr Opin PlantBiol,2004,7:537-546.
    Finkelstein R R, Gampala S, Rock C. Abscisic acid signaling in seeds and seedlings. Plant Cell,2002,14(suppl): S15-S45.
    Fischerova H. Linkage relationships of recessive chlorophyll mutations in Arabidopsis thaliana. BiolPlant,1975,17:182-188.
    Fodje M N, Hansson A, Hansson M, et al. Interplay between an AAA module and an integrin Idomain may regulate the function of magnesium chelatase. J Mol Biol,2001,311:111-122.
    Fujii H, Chinnusamy V, Rodrigues A, et al. In vitro reconstitution of an abscisic acid signalingpathway. Nature,2009,462:660-664.
    Fujii H, Verslues P E, Zhu J K. Identification of Two Protein Kinases Required for Abscisic AcidRegulation of Seed Germination, Root Growth, and Gene Expression in Arabidopsis. Plant Cell,2007,19:485-494.
    Gibson L C D, Willows R D, Kannangara C G, et al. Magnesium-protoporphyrin chelatase ofRhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH,-Iand-D genes expressed in Escherichia coli. Proc Natl Acad Sci USA,1995,92:1941-1944.
    Gibson L C, Jensen P E, and Hunter C N. Magnesium chelatase from Rhodobacter sphaeroides:initial characterization of the enzyme using purified subunits and evidence for a BchI-BchDcomplex. Biochem J,1999,337:243-251.
    Grafe S, Saluz H P, Grimm B, et al. Mg-chelatase of tobacco: The role of the subunit CHLD in thechelation step of protoporphyrin IX. Proc Natl Acad Sci USA,1999,96:1941-1946.
    Guo R, Luo M and Weinstein J D. Magnesium-chelatase from developing pea leaves. Plant Physiol,1998,116:605-615.
    Hansson A, Willows R D, Roberts T H, et al. Three semidominant barley mutants with single aminoacid substitutions in the smallest magnesium chelatase subunit form defective AAA+hexamers.Proc Natl Acad Sci USA,2002,99:13944-13949.
    Himmelbach A, Yang Y and Grill E. Relay and control of abscisic acid signaling. Curr Opin PlantBiol,2003,6:470-479.
    Hirayama T and Shinozaki K. Perception and transduction of abscisic acid signals: keys to thefunction of the versatile plant hormone ABA. Trends Plant Sci,2007,12:343-350.
    Huang D, Jaradat M R, Wu W, et al. Structural analogs of ABA reveal novel features of ABAperception and signaling in Arabidopsis. Plant J,2007,50:414-428.
    Huang Y S and Li H M. Arabidopsid CHLI2can substitute for CHLI1. Plant Physiol,2009,150:636-645.
    Hynes R O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell,1992,69:11-25.
    Ikegami A, Motohashi K, Yoshimura N, et al. The CHLI1subunit of Arabidopsis thalianamagnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem,2007,282:19282-19291.
    Iyer L M, Koonin E V, Aravind L. Adaptations of the helix-grip fold for ligand binding and catalysisin the START domain superfamily. Proteins,2001,43:134-144.
    Jensen P E, Gibson L C D, Henningsen K W, et al. Expression of the chlI, chlD, and chlH genesfrom the cyanobacterium Synechocystis PCC6803in Escherichia coli and demonstration thatthe three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J BiolChem,1996a,271:16662-16667.
    Jensen P E, Willows R D, Petersen B L, et al. Structural genes for Mg-chelatase subunits in barley:Xantha-f,-g and-h. Mol Gen Genet,1996b,250:383-394.
    Jensen P E, Gibson L C, and Hunter C N. Determinants of catalytic activity with the use of purified I,D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803.Biochem J,1998,334:335-344.
    Jensen P E, Gibson L C and Hunter C N. ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysisduring Mg2+insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits.Biochem J,1999a,339:127-134.
    Jensen P E, Reid J D and Hunter C N. Modification of cysteine residues in the ChlI and ChlHsubunits of magnesium chelatase results in enzyme inactivation. Biochem J,2000,352:435-441.
    Jia H F, Chai Y M, Li C L, et al. Cloning and characterization of the H subunit of a magnesiumchelatase gene (PpCHLH) in peach. J Plant Growth Regul,2011a,30:445-455.
    Jia H F, Chai Y M, Li C L, et al. Abscisic acid plays an important role in the regulation ofstrawberry fruit ripening. Plant Physiol,2011b,157:188-199.
    Johnston C A, Temple B R, Chen J G, et al. Comment on a G protein coupled receptor is a plasmamembrane receptor for the plant hormone abscisic acid. Science,2007,318:914.
    Karger G A, Reid J D, and Hunter C N. Characterization of the binding of deuteroporphyrin IX tothe magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry,2001,40:9291-9299.
    Katharine E H, Noriyuki N, Kenichi H, et al. Early abscisic acid signal transduction mechanisms:newly discovered components and newly emerging questions. Genes and Development,2010,24:1695-1708.
    Kobayashi K, Mochizuki N, Yoshimura N, et al. Masuda T Functional analysis of Arabidopsisthaliana isoforms of the Mg-chelatase CHLI subunit. Photochem Photobiol Sci,2008,7:1188-1195.
    Koncz C, Mayerhofer R, Koncz-Kalman Z, et al. Isolation of a gene encoding a novel chloroplastprotein by T-DNA tagging in Arabidopsis thaliana. EMBO J,1990,9:1337-1346.
    Kumagai M H, Donson J, Dellacioppa G, et al. Cytoplasmic inhibition of carotenoid biosynthesiswith virus-derived RNA. Proc Natl Aacd Sci USA,1995,92:1679-1683.
    Lake V, Olsson U, Willows R D, et al. ATPase activity of magnesium chelatase subunit I is requiredto maintain subunit D in vivo. Eur J Biochem,2004,271:2182-2188.
    Larkin R M, Alonso J M, Ecker J R, et al. GUN4, a regulator of chlorophyll synthesis andintracellular signaling. Science,2003,299:902-906.
    Lecerof D, Fodje M, Hansson A, et al. Structural and mechanistic basis of porphyrin metallation byferrochelatase. J Mol Biol,2000,297:221-232.
    Legnaioli T, Cuevas J, and Mas P. TOC1functions as a molecular switch connecting the circadianclock with plant responses to drought. EMBO J,2009,28:3745-3757.
    Leung J and Giraudat J. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol,1998,49:199-222.
    Liu X, Yue Y, Li B, et al. A G protein coupled receptor is a plasma membrane receptor for the planthormone abscisic acid. Science,2007a,315:1712-1716.
    Liu X, Yue Y, Li W, et al. Response to comment on a G protein coupled receptor is a plasmamembrane receptor for the plant hormone abscisic acid. Science,2007b,318:914.
    Liu Y, Schiff M and Dinesh-Kumar S P. Virus-induced gene silencing in tomato. Plant J,2002,31:777-786.
    Lupas A N, and Martin J. AAA proteins. Curr Opin Struct Biol,2002,12:746-753.
    Lytle B L, Song J K, Cruz N B, et al. Structures of two Arabidopsis thaliana major latex proteinsrepresent novel helix-grip folds. Proteins,2009,76:237-243.
    Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading tochlorophylls. Photosynth Res,2008,96:121-143.
    Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, et al. Gene expression profiling of the tetrapyrrolemetabolic pathway in Arabidopsis with a mini-array system. Plant Physiol,2004,135:2379-2391.
    Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisicacid sensors. Science,2009,324:1064-1068.
    Melcher K, Ng L M, Zhou X E, et al. A gate–latch–lock mechanism for hormone signalling byabscisic acid receptor. Nature,2009,462:602-608.
    Miyazono K, Miyakawa T, Sawano Y, et al. Structural basis of abscisic acid signaling. Nature,2009,462:609-614.
    Mochizuki N, Brusslan J A, Larkin R, et al. Arabidopsis genomes uncoupled5(GUN5) mutantreveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction.Proc Natl Acad Sci USA,2001,98:2053-2058.
    Mustilli A C, Merlot S, Vavasseur A, et al. Arabidopsis OST1Protein Kinase Mediates theRegulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive OxygenSpecies Production. Plant Cell,2002,14:3089-3099.
    Nakayama M, Masuda T, Bando T, et al. Cloning and expression of the soybean chlH gene encodinga subunit of Mg-chelatase and localization of the Mg2+concentration-dependent ChlH proteinwithin the chloroplast. Plant Cell Physiol,1998,39:275-284.
    Nambara E, Suzuki M, Abrams S, et al. A screen for genes that function in abscisic acid signaling inArabidopsis thaliana. Genetics,2002,161:1247-1255.
    Neuwald A F, Aravind L, Spouge J L, et al. AAA+: a class of chaperone-like ATPases associatedwith the assembly, operation, and disassembly of protein complexes. Genome Res,1999,9:27-43.
    Nishimura N, Hitomi K, Arvai A S, et al. Structural mechanism of abscisic acid binding andsignaling by dimeric PYR1. Science,2009,326:1373-1379.
    Nishimura N, Sarkeshik A, Nito K, et al. PYR/PYL/RCAR family members are major in-vivo ABI1protein phosphatase2C-interacting proteins in Arabidopsis. Plant J,2010,61:290-299.
    Nott A, Jung H S, Koussevitzky S, et al. Plastid-to-nucleus retrograde signaling. Annu Rev PlantBiol,2006,57:739-759.
    Ogura T and Wilkinson A J. AAA+superfamily ATPases: common structure-diverse function.Genes Cells,2001,6:575-597.
    Pandey S P and Somssich I E. The role of WRKY transcription factors in plant immunity. PlantPhysiol,2009,150:1648-1655.
    Pandey S and Assmann S M. The Arabidopsis putative G proteincoupled receptor GCR1interactswith the G protein a subunit GPA1and regulates abscisic acid signaling. Plant Cell,2004,16:1616-1632.
    Pandey S, Chen J G, Jones A M, et al. G-protein complex mutants are hypersensitive to abscisic acidregulation of germination and postgermination development. Plant Physiol,2006,141:243-256.
    Pandey S, Nelson D C and Assmann S M. Two novel GPCR-type G proteins are abscisic acidreceptors in Arabidopsis. Cell,2009,136:136-148.
    Papenbrock J, Grafe S, Kruse E, et al. Mg-chelatase of tobacoo: identification of a Chl D cDNAsequence encoding a third subunit, analysis of the interaction of the three subunits with theyeast two-hybrid system, and reconstitution of the enzyme activity by co-expression ofrecombinant CHLD,CHLH and CHLI. Plant J,1997,12:981-990.
    Papenbrock J, Mock H P, Kruse E, et al. Expression studies in tetrapyrrole biosynthesis: inversemaxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta,1999,208:264-273.
    Park S Y, Fung P, Nishimura N, et al. Abscisic acid inhibits type2C protein phosphatases via thePYR/PYL family of START proteins. Science,2009,324:1068-1071.
    Peter E, and Grimm B. GUN4is required for posttranslational control of plant tetrapyrrolebiosynthesis. Mol Plant,2009,2:1198-1210.
    Petersen B L, Kannangara C G, and Henningsen K W. Distribution of ATPase and ATP-to-ADPphosphate exchange activities in magnesium chelatase subunits of Chlorobium vibrioforme andSynechocystis PCC6803. Arch Microbiol,1999a,171:146-150.
    Petersen B L, M ller M G, Jensen P E, et al. Identification of the Xan-g gene and expression of theMg-chelatase encoding genes Xan-f,-g and-h in mutant and wild type barley (Hordeumvulgare L.). Hereditas,1999b,131:165-170.
    Radauer C, Lackner P and Breiteneder H. The Bet v1fold: an ancient, versatile scaffold for bindingof large, hydrophobic ligands. BMC Evol Biol,2008,8:286.
    Reid J D, and Hunter C N. Current understanding of the function of magnesium chelatase. BiochemSoc Trans,2002,30:643-645.
    Reid J D, and Hunter C N. Magnesium-dependent ATPase activity and cooperativity of magnesiumchelatase from Synechocystis sp. PCC6803. J Biol Chem,2004,279:26893-26899.
    Rissler H M, Collakova E, DellaPenna D, et al. Chlorophyll biosynthesis. Expression of a secondchlI gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis.Plant Physiol,2002,128:770-779.
    Saavedra X, Modrego A, Rodriguez D, et al. The nuclear interactor PYL8/RCAR3of Fagussylvatica FsPP2C1is a positive regulator of abscisic acid signaling in seeds and stress. PlantPhysiol,2010,152:133-150.
    Santiago J, Dupeux F, Round A, et al. The abscisic acid receptor PYR1in complex with abscisicacid. Nature,2009a,462:665-668.
    Santiago J, Rodrigues A, Saez A, et al. Modulation of drought resistance by the abscisic acidreceptor PYL5through inhibition of clade A PP2Cs. Plant J,2009b,60:575-578.
    Sawicki A, and Willows R D. Kinetic analyses of the magnesium chelatase provide insights into themechanism, structure, and formation of the complex. J Biol Chem,2008,283:31294-31302.
    Seki M, Umezawa T, Urano K, et al. Regulatory metabolic networks in drought stress responses.Curr Opin Plant Biol,2007,10:296-302.
    Shang Y, Yan L, Liu Z Q, et al. The Mg-chelatase H subunit antagonizes a group of WRKYtranscription repressors to relieve ABA-responsive genes of inhibition, Plant Cell,2010,22:1909-1935.
    Shen Y Y, Wang X F, Wu F Q, et al. The Mg-chelatase H subunit is an abscisic acid receptor.Nature,2006,443:823-826.
    Shinozaki K, Yamaguchi-Shinozaki K and Seki M. Regulatory network of gene expression in thedrought and cold stress responses. Curr Opin Plant Biol,2003,6:410-417.
    Strand A, Asami T, Alonso J, et al. Chloroplast to nucleus communication triggered by accumulationof Mg-protoporphyrinIX. Nature,2003,421:79-83.
    Ton J, Flors V and Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends PlantSci,2009,14:310-17.
    Tsuzuki T, Takahashi K, Inoue S I, et al. Mg-chelatase H subunit affects ABA signaling in stomatalguard cells, but is not an ABA receptor in Arabidopsis thaliana. J Plant Res,2011,124:527-538.
    Umezawa T, Nakashima K, Miyakawa T, et al. Molecular Basis of the Core Regulatory Network inABA Responses: Sensing, Signaling and Transport. Plant Cell Physiol,2010,51:1821-1839.
    Vale, R.D. AAA proteins: Lords of the ring. J. Cell Biol,2000,150: F13-F19.
    Verdecia M A, Larkin R M, Ferrer J L, et al. Structure of the Mg-chelatase cofactor GUN4reveals anovel hand-shaped fold for porphyrin binding. PLoS Biol,2005,3: e151.
    Verslues P E and Zhu J K. New developments in abscisic acid perception and metabolism. CurrOpin Plant Biol,2007,10:447-452.
    Walker C J and Weinstein J D. Further characterization of the magnesium chelatase in isolateddeveloping cucumber chloroplasts. Plant Physiol,1991a,95:1189-1196.
    Walker C J and Weinstein J D. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase:resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci USA,1991b,88:5789-5793.
    Walker C J and Weinstein J D. The magnesium-insertion step of chlorophyll biosynthesis is atwo-stage reaction. Biochem J,1994,299:277-284.
    Walker C J and Williows R D. Mechanism and regulation of Mg-chelatase. Biochem J,1997,327:321-333.
    Walker-Simmons M K, Rose P A, et al. The7’-methyl group of abscisic acid is critical for biologicalactivity in wheat embryo germination. Plant Physiol,1994,106:1279-1284.
    Wang X F, Xin Q, Shen Y Y, et al. Approaches to the identification of ABAR as an abscisic acidreceptor. In A.R. Kermode, ed, Methods in Molecular Biology, Springer Science+BusinessMedia, LLC.2011,773:83-97, DOI10.1007/978-1-61779-231-1_6.
    Wang X M. Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol,2002,5:408-414.
    Wang X Q, Ullah H, Jones A M, et al. G protein regulation of ion channels and abscisic acidsignaling in Arabidopsis guard cells. Science,2001,292:2070-2072.
    Willows R D, Gibson L C, Kannangara C G, et al. Three separate proteins constitute the magnesiumchelatase of Rhodobacter sphaeroides. Eur J Biochem,1996,235:438-443.
    Willows R D, and Beale S I. Heterologous expression of the Rhodobacter capsulatus BchI,-D, and-H genes that encode magnesium chelatase subunits and characterization of the reconstitutedenzyme. J Biol Chem,1998,273:34206-34213.
    Wu F Q, Xin Q, Cao Z, et al. The Mg-chelatase H subunit binds abscisic acid and functions inabscisic acid signaling: New evidence in Arabidopsis. Plant Physiol,2009,150:1940-1954.
    Yin P, Fan H, Hao Q, et al. Structural insights into the mechanism of abscisic acid signaling by PYLproteins. Nat Struct Mol Biol,2009,16:1230-1236.
    Yoshida R, Hobo T, Ichimura K, et al. ABA-Activated SnRK2Protein Kinase is Required forDehydration Stress Signaling in Arabidopsis. Plant Cell Physiol,2002,43:1473-1483.
    Zhang D P, Wu Z Y, Li X Y, et al. Purification and identification of a42-kilodalton abscisicacid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol,2002,128:714-725.
    Zhang W, Qin C, Zhao J, et al. Phospholipase Dα1-derived phosphatidic acid interacts with ABI1phosphatase2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA,2004,101:9508-9513.
    Zhang Y, Zhu H, Zhang Q, et al. Phospholipase Dα1and phosphatidic acid regulate NADPHoxidase activity and production of reactive oxygen species in ABA-mediated stomatal closurein Arabidopsis. Plant Cell,2009,21:2357-2377.
    Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. GENEVESTIGATOR: Arabidopsismicroarray database and analysis toolbox. Plant Physiol,2004,136:2621-2632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700