ZnO薄膜p型掺杂的研究及ZnO纳米点的可控生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种新型的宽禁带化合物半导体材料,具有直接带隙能带结构,室温禁带宽度为3.37eV,对应于近紫外光波段。另外,ZnO还具有60 meV的高激子束缚能,其激子在室温下可以稳定存在,易于实现室温或更高温度下激子-激子碰撞的受激辐射。因此,ZnO是制备半导体紫外LEDs(Light-EmittingDiodes发光二极管)和LDs(Laser Diodes激光器)的理想材料。除了光学性能的优势,ZnO还具有无毒、热稳定性好、抗辐射性强、原材料丰富、外延薄膜容易生长、带隙宽度调节的合金体系(ZnMgO和ZnCdO)完备和体单晶易得等优点。另一方面,ZnO还具有丰富的纳米结构,包括纳米线、纳米管、纳米带、纳米环、纳米点等。当材料尺寸降低到纳米尺度时,可能出现许多与体材料不同的新颖光电性能。因此,各种ZnO纳米结构在纳米电子、纳米光电子、生物医药、气敏传感器等领域有望得到广泛的应用。
     要实现ZnO在光电领域的广泛应用,首先必须获得性能良好的n型和p型材料。然而,ZnO具有强烈的掺杂单极性,天然为n型,通过掺杂人们已经获得了高质量的n型ZnO。但是ZnO的p型掺杂却异常困难,在取得一定进展的同时仍存在诸多问题,并且对于何种元素为ZnO最佳受主元素的问题还不甚明了。这是目前制约ZnO材料实际应用的最大瓶颈,也是ZnO研究中面临的主要挑战。本文研究重点在于寻找合适的ZnO p型掺杂元素与掺杂技术,并深入探索p型掺杂机理。另外,本文也制备了ZnO纳米线和纳米点,并初步实现ZnO纳米材料的可控生长。主要工作包括以下内容:
     1.在之前制备Al-N共掺p型ZnO薄膜的基础上,研究生长温度和Al施主含量两个重要参数对薄膜p型导电性能的影响,提出一个共掺法生长p型ZnO的模型。
     2.采用磁控溅射法Li掺杂技术实现ZnO薄膜的p型转变,系统研究了实现p型ZnO的生长窗口和掺杂机理。研究表明,只有在富氧与合适Li含量的条件下,才能最大程度地促进Li_(Zn)受主形成,并抑制Li_i和Li_(Zn)-Li_i等缺陷复合体的补偿作用,从而获得良好的p型电导性能。
     3.采用氧等离子体辅助MOCVD(Metal Organic Chemical Vapor Deposition金属有机物化学气相沉积)法生长非故意掺杂的p型ZnO薄膜。氧等离子体不仅能提高氧的化学势,降低锌空位等受主型缺陷的形成能,并且可以有效地提高ZnO薄膜中的氧含量,从而降低氧空位施主浓度。这两方面最终导致本征p型电导的形成。
     4.采用射频等离子体辅助MOCVD法生长p型ZnO:N薄膜,揭示了p型性能对生长温度的依赖性。研究发现,p型ZnO:N中具有双受主行为,等离子体辅助生长将引入锌空位受主,它和N受主一起对ZnO:N的p型电导起作用。作者研究了p型ZnO:N薄膜的紫外光电导行为,提出一个表面吸附与光脱附模型,合理地解释了所观察到的紫外光电导现象。采用一种非等离子体N掺杂技术实现ZnO的p型转变,并制备了ZnO同质结LEDs的原型器件。
     5.采用MOCVD法在硅衬底上无催化生长ZnO纳米线阵列,引入低温形核层能为纳米线提供良好的生长核心,从而导致整齐阵列的生长。通过控制反应物气体流量,可以实现ZnO纳米线的尺寸的裁剪。
     6.采用MOCVD法在硅和蓝宝石衬底上可控生长ZnO纳米点,纳米点尺寸为5~10nm。研究发现,通过控制生长温度可以很好地调节ZnO纳米点的生长密度。作者报导了ZnMgO纳米点的生长,通过控制Mg含量,可以自由地调节ZnMgO纳米点中自由激子(FX)发射峰位。另外,通过在纳米点中分别引入Ga施主和N受主,可以实现ZnO纳米点费米能级与电阻率的调节。最后,本文介绍了ZnO/MgO准核壳结构纳米点的生长与表征,MgO壳层有效地钝化了ZnO纳米点活泼的表面,从而显著提高了纳米点的光致发光强度。作者在ZnO/MgO纳米点中观察到量子尺寸效应:FX发射峰位随着ZnO尺寸的减小而蓝移。并且由于量子约束效应,ZnO/MgO纳米点激子束缚能增大到118meV,约为体材料的两倍。
With a large exciton binding energy of 60 meV and a wide bandgap of 3.37 eV at room temperature, ZnO is considered as a promising material for short-wavelength optoelectronic devices, such as light-emitting diodes (LEDs) and laser diodes (LDs). In addition, ZnO has many other advantages, including the availability of large-area single crystal, the amenability to wet chemical etching, the high radiation resistance, the relatively low costs, and the availability of alloys system (ZnMgO and ZnCdO) for bandgap engineering, etc. On the other hand, by virtue of numerous unique properties expected in the low-dimensional system, ZnO nanometer-scale materials, such as nanowires, nanotubes, nanobelts, and nanodots promise to be important in the next-generation electronic, optoelectronic, and medical applications.
     Due to the asymmetric doping limitations, n-type ZnO, with a high electron concentration, has been well prepared. The realization of p-type ZnO, however, has proven difficult and thought to be the bottleneck in the development of ZnO-based devices. Also, the optimal choice of acceptor species in ZnO remains to be determined. In this regard, the work was focused on the growth and characterization of p-type ZnO thin films in this dissertation, in an attempt to better understand the p-type doping mechanism. In addition, the controllable growth of ZnO nanowires and nanodots were reported. The work included:
     1. Al-N codoped p-type ZnO thin films were prepared by dc reactive magnetron sputtering. The effects of growth temperature and Al content on properties of Al-N codoped ZnO were discussed.
     2. The author demonstrated the reproducible growth of Li-doped p-type ZnO thin films by dc reactive magnetron sputtering. Under the oxygen rich condition and a proper Li content, the formation of Li_(Zn) acceptor could be enhanced, resulting in low-resistivity, p-type ZnO thin films. In addition, the doping mechanism for the p-type ZnO.Li was proposed tentatively.
     3. Intrinsic p-type ZnO thin films were grown by plasma-assisted metalorganic chemical vapor deposition (MOCVD). The increment of the oxygen concentration in the intrinsic p-type ZnO, compared with the intrinsic n-type layer, was well confirmed by secondary ion mass spectroscopy. The origin of intrinsic p-type behavior was ascribed to the formation of zinc vacancy and some complex acceptor center.
     4. N-doped, p-type ZnO thin films were grown by plasma-assisted MOCVD by using NO plasma. The intrinsic zinc vacancy and extrinsic nitrogen acceptor, identified by low-temperature photoluminescence (PL), contributed to the p-type conductivity in the ZnO:N simultaneously. Also, the author demonstrated comparative study on ultraviolet photoconductivity of p-type ZnO:N thin films and n-type ZnO epilayer. The surface adsorption and photodesorption process, combined with a competition between holes and electrons, in the p-type ZnO:N was proposed, providing qualitative agreement with the observed behaviors. Furthermore, the author developed a plasma-free MOCVD method to grow reproducible N-doped, p-type ZnO thin films. The typical rectifying I-V characteristics and room-temperature electroluminescence from the ZnO homojunction LEDs were observed.
     5. Well-aligned ZnO nano wires were grown on silicon substrates by MOCVD without catalysts. The mechanism of the catalyst-free growth of ZnO nanowires on silicon substrates was discussed. By modulating the flux of the reactant, the diameter of ZnO nanowires could be well tailored.
     6. ZnO and ZnMgO nanodots (NDs), with the diameter of 5~10 nm, were grown on silicon and sapphire substrates by MOCVD. The density of the NDs was shown to be temperature-dependent. By adjusting the Mg content, a tailored optical bandgap was achieved for the ZnMgO NDs. Also, the Ga donor and N acceptor were introduced into ZnO NDs, respectively. The author demonstrated, with a combination of valence band x-ray photoelectron spectroscopy and scanning tunneling microscopy, that the electrical properties as well as Fermi level of the ZnO NDs could be well tuned by the donor/acceptor doping. Finally, ZnO/MgO quasi core-shell NDs were grown by a MOCVD method. The free exciton (FX) emission from the NDs showed remarkable enhancement after the growth of MgO shell layer. Also, the FX emission exhibited an evident blueshift with the decreased ZnO size due to the quantum confinement effect. An exciton binding energy of 118 meV was obtained from temperature-dependent PL, which was almost two times as that of the bulk materials.
引文
[1] Shuji Nakamura and Gerhard Fasol, The Blue Laser Diode: GaN based Light Emitters and Lasers, Springer-Verlag (Heidelberg), (1997).
    
    [2] D. C. Look, Recent advances in ZnO materials and device, Mater. Sci. Eng. B, (2001), 80, 383-387.
    [3] S. B. Zhang, S.-H. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B, (2001), 63,075205:1-7.
    [4] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. (2005), 98,041301:1-103.
    [5] C. H. Bates, W. B. White, and R. Roy, New High-Pressure Polymorph of Zinc Oxide, Science, (1962), 137, 993-993.
    [6] A. B. M. Almamun Ashrafi, Akio Ueta, Adrian Avramescu, Hidekazu Kumano, Ikuo Suemune, Young-Woo Ok and Tae-Yeon Seong, Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(OOl) substrates with ZnS buffer layers, Appl. Phys. Lett., (2000), 76, 550-552.
    [7] V. Kumar and B. S. R. Sastry, Thermal Expansion Coefficient of Binary Semiconductors, Cryst. Res. Technol., (2001), 36,565-569.
    [8] David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 85th Edition, (2004-2005).
    [9] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Recent progress in processing and properties of ZnO, Prog. Mate. Sci., (2005), 50,293-340.
    [10] D.G Thomas, The exciton spectrum of zinc oxide, J. Phys. Chem. Solids (1960), 15, 86-89.
    
    [11] K. Shindo, A. Morita, and H. Kamimura, Spin-Orbit Coupling in Ionic Crystals with Zincblende and Wurtzite Structures, J. Phys. Soc. Jpn. (1965), 20, 2054-2059.
    
    [12] W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Valence-band ordering and magneto-optic exciton fine structure in ZnO, Phys. Rev. B (2002), 65, 075207:1-12.
    
    [13] A. Kobayashi, O. F. Sankey, S. M. Vola, and J. D. Dow, Semiempirical tight-binding bandstructures of wurtzite semiconductors: A1N, CdS, CdSe, ZnS, and ZnO, Phys. Rev. B, (1983), 28,935-945.
    [14]U.Rossler,Energy bands of hexagonal Ⅱ-Ⅵ semiconductor,Phys.Rev.,(1969),184,733-738.
    [15]B.K.Meyer,H.Alves,D.M.Hofmann,W.Kriegseis,D.Forster,F.Bertram,J.Christen,A.Hoffmann,M.Straβburg,M.Dworzak,U.Haboeck,and A.V.Rodina,Bound exciton and donor-acceptor pair recombinations in ZnO,phys.star.sol.(b),(2004),241,231-260.
    [16]T.Makino,Y.Segawa,M.Kawasaki,A.Ohtomo,R.Shiroki,K.Tamura,T.Yasuda,and H.Koinuma,Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films,Appl.Phys.Lett.,(2001),78,1237-1239.
    [17]E.Tomzig and H.Helbig,Band-edge emission in ZnO,J.Lumin.,(1976),14,403-415.
    [18]J.J.Hopfield,Fine structure in the optical absorption edge of anisotropic crystals,J.Phys.Chem.Solids,(1960),15,97-107.
    [19]D.C.Reynolds,C.W.Litton,and T.C.Collins,Zeeman Effects in the Edge Emission and Absorption of ZnO,Phys.Rev.,(1965),140,A1726-A1734.
    [20]D.C.Reynolds and T.C.Collins,Excited Terminal States of a Bound Exciton-Donor Complex in ZnO,Phys.Rev.,(1969),185,1099-1103.
    [21]Y.W.Heo,D.P.Norton,and S.J.Pearton,Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy,J.Appl.Phys.,(2005),98,073502:1-6.
    [22]Jason B.Baxter,Feng Wu,and Eray S.Aydil,Growth mechanism and characterization of zinc oxide hexagonal columns,Appl.Phys.Lett.,(2003),83,3797-3799.
    [23]D.C.Look,,C.Coskun,B.Claflin,and G.C.Farlow,Electrical and optical properties of defects and impurities in ZnO,Phys.B,(2003),340/342,32-38.
    [24]R.F.Service,Will UV Lasers Beat the Blues?,Science,(1997),276,895-895.
    [25]Z.K.Tang,G.K.L.Wong,P.Yu,M.Kawasaki,A.Ohtomo,H.Koinuma,and Y.Segawa,Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,Appl.Phys.Lett.,(1998),72,3270-3272.
    [26]Michael H.Huang,Samuel Mao,Henning Feick,Haoquan Yan,Yiying Wu,Hannes Kind,Eicke Weber,Richard Russo,and Peidong Yang,Room-Temperature Ultraviolet Nanowire Nanolasers,Science,(2001),292,1897-1899.
    [27]J.Choy,E.Jang,J.Won,J.Chung,D.Jang,and Y.Kim,Soft solution route to directionally grown ZnO nanorod arrays on Si wafer;room-temperature ultraviolet laser,Adv.Mater.,(2003),22,1911-1914.
    [28]H.Yan,J.Johnson,M.Law,R.He,K.Knutsen,J.R.McKinney,J.Pham,R.Saykally,and P.Yang,ZnO Nanoribbon Microeavity Lasers,Adv.Mater.,(2003),15,1907-1911.
    [29]J.C.Johnson,K.P.Knutsen,H.Yan,M.Law,P.Yang,and R.J.Saykally,Nano Lett.,(2004),4,197-200.
    [30]刘恩科,朱秉升,罗晋生,半导体物理学,电子工业出版社,第六版,(2003)
    [31]Dieter K.Schroder,Semiconductor material and device characterization,Wiley,2nd Edition,(1998).
    [32]H.Morkoc,Nitride Semiconductors and Devices,Springer,1th Edition,(1999).
    [33]J.W.Nielson and E.F.Dearborn,The growth of large single crystals of zinc oxide,J.Phys.Chem.,(1962),64,1762-1763.
    [34]R.A.Laudise,E.D.Kolb,and A.J.Caporaso,Hydrothermal growth of large sound crystals of zinc oxide,J.Am.Ceram.Soc.,(1964),47,9-16.
    [35]D.C.Reynolds,C.W.Litton,D.C.Look,J.E.Hoelscher,B.Claflin,T.C.Collins,B.Nemeth,and J.Nause,High-quality,melt-grown ZnO single crystals,J.Appl.Phys.,(2004),95,4802-4805.
    [36]E.Ohshima,H.Ogino,I.Niikura,K.Maeda,M.Sato,M.Ito,T.Fukuda,Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method,J.Cryst.Growth,(2004),260,166-170.
    [37]D.Pfisterer,D.M.Hofmann,J.Sanna,B.Ko Meyer,R.Tena-Zaer,V.Munoz-Sanjose,Th.Frank,and G.Pensl,Intrinsic and extrinsic point-defects in vapor transport grown ZnO bulk crystals,Physiea B,(2006),376/377,767-770.
    [38]D.C.Look and B.Claflin,P-type doping and devices based on ZnO,Phys.Stat.Soc.(b),(2004),241,624-630.
    [39]H.Kato,M.Sano,K.Miyamoto,and T.Yao,Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy,J.Cryst.Growth,(2002),237/239,538-543.
    [40]S.M.Jejurikar,A.G.Banpurkar,A.V.Limaye,S.K.Date,S.I.Patil,K.P.Adhi,P.Misra and L.M.Kukreja,and Ravi Bathe,Structural,morphological,and electrical characterization of heteroepitaxial ZnO thin films deposited on Si(100)by pulsed laser deposition:Effect of annealing(800℃)in air,J.Appl.Phys.,(2006),99,014907:1-7.
    [41]B.M.Han,S.Chang,and S.Y.Kim,Chopping effect on the crystallinity of ZnO films prepared by a r.f.planar magnetron sputtering method,Thin Solid Films 338(1999)265-268.
    [42]X.Wang,S.Yang,J.Wang,M.Li,X.Jiang,G.Du,X.Liu,and R.P.H.Chang,Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition,J.Cryst.Growth(2001),226,123-129.
    [43]R.Triboulet and Jacques Perriere,Epitaxial growth of ZnO films,Prog.Cryst.Growth Charact.Mater.,(2003),47,65-138.
    [44]K.Sakurai,T.Takagi,T.Kubo,D.Kajita,T.Tanabe,H.Takasu,S.Fujita,and S.Fujita,Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy,J.Cryst.Growth,(2002),237/239,514-517.
    [45]K.Iwata,P.Fons,A.Yamada,K.Matsubara,and S.Niki,Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE,J.Crystal Growth,(2000),209,526-531.
    [46]E.B.Yousfi,B.Weinberger,F.Donsanti,P.Cowache,and D.Lincot,Atomic layer deposition of zinc oxide and indium sulfide layers for Cu(In,Ga)Se_2 thin-film solar cells,Thin Solid Films,(2001),387,29-32.
    [47]A.Miyake,H.Kominami,H.Tatsuoka,H.Kuwabara,Y.Nakanishi,and Y.Hatanaka,Luminescent properties of ZnO thin films grown epitaxially on Si substrate,J.Cryst.Growth,(2000),214/215,294-298.
    [48]T.Pauporté and D.Lincot,Electrodeposition of semiconductors for optoelectronic devices:results on zinc oxide,Electrochimica Acta,(2000),45,3345-3353.
    [49]B.S.Li,Y.C.Liu,D.Z.Shen,Y.M.Lu,J.Y.Zhang,X.G.Kong,X.W.Fan,and Z.Z.Zhi,Growth of high quality ZnO thin films at low temperature on Si(100)substrates by plasma enhanced chemical vapor deposition,J.Vac.Sci.Technol.,(2002),20,265-269.
    [50]T.E.Murphy,S.Walavalkar,and J.D.Phillips,Epitaxial growth and surface modeling of ZnO on c-plane Al_2O_3,Appl.Phys.Lett.,(2004),85,6338-6340.
    [51]S.Muthukumar,J.Zhong,Y.Chen,Y.Lu,and T.Siegrist,Growth and structural analysis of metalorganic chemical vapor deposited(11-20)Mg_xZn_(1-x)O(0<x<0.33)films on (01-12)R-plane Al_2O_3 substrates,Appl.Phys.Lett.,(2003),82,742-744.
    [52]K.Ogata,S.-W.Kim,Sz.Fujita,and Sg.Fujita,ZnO growth on Si substrates by metalorganic vapor phase epitaxy,J.Cryst.Growth,(2002),240,112-116.
    [53]Kyu-Hyun Bang,Deuk-Kyu Hwang,Sang-Wook Lira,and Jae-Min Myoung,Effects of growth temperature on the properties of ZnO/GaAs prepared by metalorganic chemical vapor deposition,J.Cryst.Growth,(2003),250,437-443.
    [54] K. Tamura, A. Ohtomo, K. Saikusa, Y. Osaka, T. Makin, Y. Segaw, M. Sumiya, S. Fuke, H. Koinuma, and M. Kawasaki, Epitaxial growth of ZnO films on lattice-matched ScAlMgO4(0001) substrates, J. Cryst. Growth, (2000), 214/215, 59-62.
    [55] M. Losurdo, G. Bruno, and P. Capezzuto, On the use of remote RF plasma source to enhance III-V MOCVD technology, J. Cryst. Growth, (1997), 170,301-305.
    [56] A. Dadgar, N. Oleynik, J. Biasing, S. Deiter, D. Forstera, F. Bertram, A. Diez, M. Seip, A. Greiling, J. Christen, and A. Krost, Heteroepitaxy and nitrogen doping of high-quality ZnO, J. Cryst. Growth, (2004), 272,800-804.
    [57] Sho Shirakat, Keisuke Saeki, and Tomoaki Terasako, Metalorganic molecular beam epitaxy of ZnO using DEZn and H_2O precursors, J. Cryst. Growth, (2002), 237/239,528-532.
    [58] T. P. Smith, W. J. Mecouch, P. Q. Miraglia, A. M. Roskowski, P. J. Hartlieb, and R. F. Davis, Evolution and growth of ZnO thin films on GaN(0001) epilayers via metalorganic vapor phase epitaxy, J. Cryst. Growth, (2003), 257, 255-262.
    [59] D. C. Oh, A. Setiawan, J. J. Kim, H. J. Ko, H. Makino, T. Hanada, M. W. Cho, and T. Yao, Characterization of N-doped ZnO layers grown on (0001) GaN/Al_2O_3 substrates by molecular beam epitaxy, Current Appl. Phys., (2004), 4,625-629.
    [60] Yefan Chen, Hang-ju Ko, Soon-ku Hong, Takafumi Yao, and Yusaburo Segawa, Two-dimensional growth of ZnO films on sapphire(0001) with buffer layers, J. Cryst. Growth, (2000), 214/215,87-91.
    [61] V. Craciun, J. Perriere, N. Bassim, R. K. Singh, D. Craciun, and J. Spear, Low-temperature growth of epitaxial ZnO films on (001) sapphire by ultraviolet-assisted pulsed laser deposition, Appl. Phys. A, (1999), 69, S531-S533.
    [62] G. J. Fang, D. J. Li, and B. L. Yao, Fabrication and vacuum annealing of transparentconductive AZO thin films prepared by DC magnetron sputtering, Vacuum, (2003), 68, 363-372.
    [63] C. H. Liu, Min Yan, Xiang Liu, Eric Seelig, and R. P. H. Chang, Effect of electric field upon the ZnO growth on sapphire (0 0 0 1) by atomic layer epitaxy method, Chem. Phys. Lett., (2002), 355,43-47.
    [64] Jongmin Lim, Kyoungchul Shin, Hyounwoo Kim, and Chongmu Lee, Enhancement of ZnO nucleation in ZnO epitaxy by atomic layer epitaxy, Thin Solid Films, (2005), 475, 256- 261.
    [65] J. H. Lee and B.O. Park, Characteristics of Al-doped ZnO thin films obtained by ultrasonicspray pyrolysis: effects of Al doping and an annealing treatment, Mater. Sci. Eng. B-Solid State Mater.Adv.Technol.,(2004),106,242-245.
    [66]A.Bougrine,A.El Hichou,M.Addou,J.Ebothe,A.Kachouane,and M.Troyon,Structural,optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis,Mater.Chem.Phys.,(2003),80,438-445.
    [67]Minrui Wang,Jing Wang,Wen Chen,Yan Cui and Liding Wang,Effect of preheating and annealing temperatures on quality characteristics of ZnO thin film prepared by sol-gel method,Mater.Chem.Phys.,(2006),97,219-225.
    [68]H.Li,J.Wang,H.Liu,C.Yang,H.Xu,X.Li,and H.Cui,Sol-gel preparation of transparent zinc oxide films with highly preferential crystal orientation,Vacuum,(2004),77,57-62.
    [69]S.W.Kim,S.Fujita,and S.Fujita,Self-organized ZnO quantum dots on SiO_2/Si substrates by metalorganic chemical vapor deposition,Appl.Phys.Lett.,(2002),81,5036-5038.
    [70]S.Barik,A.K.Srivastava,P.Misra,R.V.Nandedkar,and L.M.Kukreja,Alumina capped ZnO quantum dots multilayer grown by pulsed laser deposition,Solid State Commun.,(2003),127,463-467.
    [71]Y.J.Zeng,Z.Z.Ye,Y.F.Lu,J.G.Lu,L.Sun,W.Z.Xu,L.P.Zhu,B.H.Zhao,and Y.Che,ZnMgO quantum dots grown by low-pressure metal organic chemical vapor deposition,Appl.Phys.Lett.,(2007),90,012111:1-3.
    [72]Seu Yi Li,Chia Ying Lee,Tseung Yuen Tseng,Copper-catalyzed ZnO nanowires on silicon(100)grown by vapor-liquid-solid process,J.Cryst.Growth,(2003),247,357-362.
    [73]Hui Zhang,Deren Yang,Shenzhong Li,Xiangyang Ma,Yujie Ji,Jin Xu,Duanlin Que,Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process,Mater.Lett.,(2005),59,1696-1700.
    [74]J.Lee,K.Parka,M.Kanga,I.Parkb,S.Kimc,W.Chod,H.S.Hand,and S.Kima,ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders,J.Cryst.Growth,(2003),254,423-431.
    [75]Y.J.Zeng,Z.Z.Ye,W.Z.Xu,L.P.Zhu,B.H.Zhao,Well-aligned ZnO nanowires grown on Si substrate via metal-organic chemical vapor deposition,Appl.Surf.Scie.,(2005),250,280-283.
    [76]P.Yang,H.Yan,S.Mao,R.Russo,J.Johnson,R.Saykally,N.Morris,J.Pham,R.He,and H.Choi,Controlled Growth of ZnO Nanowires and Their Optical Properties,Adv.Funct.Mater.,(2002),12,323-331.
    [77]Jih-Jen Wu and Sai-Chang Liu,Catalyst-Free Growth and Characterization of ZnO Nanorods, J. Phys. Chem. B, (2002), 106,9546-9551.
    [78] Ye Sun, Gareth M. Fuge, and Michael N.R. Ashfold, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett., (2004), 396,21-26.
    [79] Y. J. Xing, Z. H. Xi, X.D. Zhang, J. H. Song, R. M. Wang, J. Xu, Z. Q. Xue, and D. P. Yu, Nanotubular structures of zinc oxide, Solid State Commun., (2004), 129,671-675.
    [80] W. Z. Xu, Z. Z. Ye, D. W. Ma, H. M. Lu, L. P. Zhu, B. H. Zhao, X. D. Yang and Z. Y. Xu, Quasi-aligned ZnO nanotubes grown on Si substrates, Appl. Phys. Lett., (2005), 87, 093110:1-3.
    [81] X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu and W. Jaeger, Room-temperature photoluminescence from ZnO ZnMgO multiple quantum wells grown on Si substrates, Appl. Phys. Lett., (2007), 91,022103:1-3
    [82] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Nanobelts of Semiconducting Oxides, Science, (2001), 291,1947-1949.
    [83] Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens Mater., (2004), 16, R829-R858.
    [84] H. Yan, R. He, J. Pham, and P. Yang, Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals, Adv. Mater., (2003), 15,402-405.
    [85] P. X. Gao and Z. L. Wang, Nanopropeller arrays of zinc oxide, Appl. Phys. Lett. (2004), 84, 2883-2885.
    [86] Hong Jin Fan, Peter Werner, and Margit Zacharias, Semiconductor Nanowires From Self-Organization to Patterned Growth, Small, (2006), 2,700-717.
    [87] Z. L. Wang, Novel nanostructures of ZnO for nanoscalephotonics, optoelectronics, piezoelectricity, and sensing, Appl. Phys. A, (2007), 88, 7-15.
    [88] W. T. Chiou, W. Y. Wu, and J. M. Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond & Related Mater., (2003), 12,1841-1844.
    [89] B. Liu, and H. C. Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc. (2003), 125,4430-4431.
    [90] S. W. Kim, T. Kotani, M. Ueda, S. Fujita, and S. Fujita, Selective formation of ZnO nanodots on nanopatterned substrates by metalorganic chemical vapor deposition, Appl. Phys. Lett., (2003), 83,3593-3595.
    [91] W. I. Park, Gyu-Chul Yi, J.-W. Kim and S.-M. Park, Schottky nanocontacts on ZnO nanorod arrays, Appl. Phys. Lett., (2003), 82,4358-4360.
    [92]Won Il Park,Jin Suk Kim,Gyu-Chul Yi,M.H.Bae and H.-J.Lee,Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,Appl.Phys.Lett.,(2004),85,5052-5054.
    [93]Q.H.Li,Q.Wan,Y.X.Liang,and T.H.Wang,Electronic transport through individual ZnO nanowires,Appl.Phys.Lett.,(2004),84,4556-4558.
    [94]Q.Wan,Q.H.Li,Y.J.Chen,and T.H.Wang,X.L.He,J.P.Li,and C.L.Lin,Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,Appl.Phys.Lett.,(2004),84,3654-3656.
    [95]A.V.Desai and M.A.Haque,Influence of electromechanical boundary conditions on elasticity of zinc oxide nanowires,Appl.Phys.Lett.,(2007),91,183106:1-3.
    [96]J.Stangl,V.Holy,and G.Bauer,Structural properties of self-organized semiconductor nanostructures,Rev.Mod.Phys.,(2004),76,725-783.
    [97]A.L.Roest,J.J.Kelly,and D.Vanmaekelbergh,Staircase in the Electron Mobility of a ZnO Quantum Dot Assembly due to Shell Filling,Phys.Rev.Lett.(2002),89,036801:1-4.
    [98]Fumiyasu Oba,Shigeto R.Nishitani,Seiji Isotani,Hirohiko Adachi,and Isao Tanaka,Energetics of native defects in ZnO,J.Appl.Phys.,(2001),90,824-828
    [99]A.F.Kohan,G Ceder,D.Morgan,and Chris G.Van de Walle,First-principles study of native point defects in ZnO,Phys.Rev.B,(2000),61,15019-15027.
    [100]F.A.Kroger,The Chemistry of Imperfect Crystals,North-Holland,Amsterdam;Interscience (Wiley),New York,(1964).
    [101]D.C.Look,J.W.Hemsky,and J.R.Sizelove,Residual Native Shallow Donor in ZnO,Phys.Rev.Lett.,(1999),82,2552-2555.
    [102]Anderson Janotti and Chris G.Van de Walle,Oxygen vacancies in ZnO,Appl.Phys.Lett.,(2005),87,122102:1-3.
    [103]J.I.Pankove and N.M.Johnson,Hydrogen in Semiconductors and Semimetals,Academic Press,Boston,(1991).
    [104]C.G.Van de Walle,Hydrogen as a Cause of Doping in Zinc Oxide,Phys.Rev.Lett.,(2000),85,1012-1015.
    [105]C.G.Van de Walle,Defect analysis and engineering in ZnO,Physica B,(2001),308/310,899-903.
    [106]G.Alvin Shi,Michael Stavola,S.J.Pearton,M.Thieme,E.V.Lavrov,and J.Weber,Hydrogen local modes and shallow donors in ZnO,Phys.Rev.B,(2005),72,195211:1-8.
    [107] E. V. Monakhov, J. S. Christensen, K. Maknys, B. G. Svensson, and A. Yu. Kuznetsov, Hydrogen implantation into ZnO for n~+-layer formation, Appl. Phys. Lett., (2005), 87, 191910:1-3.
    [108] S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord, J. M. Gil, H. V. Alberto, R. C. Vilao, J. Piroto Duarte, N. Ayres de Campos, A. Weidinger, R. L. Lichti, and S. J. C. Irvine, Experimental Confirmation of the Predicted Shallow Donor Hydrogen State in Zinc Oxide, Phys. Rev. Lett., (2000), 86,2601-2604.
    
    [109] D. M. Hofmann, Albrecht Hofstaetter, Frank Leiter, Huijuan Zhou, Frank Henecker, Bruno K. Meyer Sergei B. Orlinskii Jan Schmidt, Pavel G. Baranov, Hydrogen: A Relevant Shallow Donor in Zinc Oxide, Phys. Rev. Lett., (2002), 88, 045504:1-4.
    [110] N. H. Nickel and K. Fleischer, Hydrogen Local Vibrational Modes in Zinc Oxide, Phys. Rev. Lett., (2003), 90,197402:1-4.
    [111] Y. M. Strzhemechny, Howard L. Mosbacker, and David C. Look, Remote hydrogen plasma doping of single crystal ZnO, Appl. Phys. Lett., (2004), 84, 2545-2547.
    [112] F. Tuomisto, V. Ranki, K. Saarinen, and D C. Look, Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO, Phys. Rev. Lett., (2003), 91, 205502:1-4.
    [113] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices, Appl. Phys. Lett., (2000), 76,259-261.
    [114] K. H. Kim, K. C. Park, and D. Y. Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, J. Appl. Phys., (1997), 81, 7764-7772.
    [115] R. J. Hong, X. Jiang, V. Sittinger, B. Szyszka, T. Hoing, G. Brauer, G. Heide and G. H. Frischat, Uniformity in large area ZnO:Al films prepared by reactive midfrequency magnetron sputtering, J. Vac. Sci. Technol. A, (2002), 20,900-905.
    [116] K. T. R. Reddy, H. Gopalaswamy, P. J. Reddy, and R. W. Miles, Effect of gallium incorporation on the physical properties of ZnO films grown by spray pyrolysis, J. Cryst. Growth, (2000), 210, 516-520.
    [117] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett., (2000), 77, 3761-3763.
    [118] M. Miki-Yoshida, U, F. Paraguay-Delgado, W. Estrada-Lopez, and E. Andrade, Structure and morphology of high quality indium-doped ZnO films obtained by spray pyrolysis, Thin Solid Films, (2000), 376,99-109.
    [119] Q. B. Ma, Z. Z. Ye, H. P. He, L. P. Zhu, J. Y. Huang, Y. Z. Zhang, B. H. Zhao, Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective ZnO:Ga films, Scripta Materialia, (2008), 58,21-24.
    [120] Y. Yamamoto, K. Saito, K. Takahashi, and M. Konagai, Preparation of boron-doped ZnO thin films by photo-atomic layer deposition, Sol. Energy Mater. Sol. Cells, (2001), 65, 125-132.
    [121] T. Minami, T. Yamamoto, and T. Miyata, Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering, Thin Solid Films, (2000), 366,63-68.
    [122] T. Minami, H. Sato, H. Nanto, and S. Takata, Highty Conductive and Transparent Silicon Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering, Jpn. J. Appl. Phys. (1986),25,L776-L779.
    [123] B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, and M. R. Rabadanov, Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system, J. Cryst. Growth, (1999), 198/199,1222-1225.
    [124] M. de la L. Olvera, A. Maldonado, R. Asomoza, O. Solorza, and D. R. Acosta, Characteristics of ZnO:F thin films obtained by chemical spray. Effect of the molarity and the doping concentration, Thin Solid Films, (2001), 394,241-248.
    [125] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition, Jpn. J. Appl. Phys., (1997), 36, L1453-L1455.
    [126] Xin-Li Guo, Hitoshi Tabata, Tomoji Kawai, Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source, J. Cryst. Growth, (2001), 223,135-139.
    [127] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett., (2001), 81, 1830-1832.
    [128] A. B. M. Almamun ASHRAFI, Ikuo SUEMUNE, Hidekazu KUMANO and Satoru TANAKA, Nitrogen-Doped p-Type ZnO Layers Prepared with H2O Vapor-Assisted Metalorganic Molecular-Beam Epitaxy, Jpn. J. Appl. Phys. (2002), 41, L1281-L1284.
    [129] J. F. Rommeluere, L. Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, V. Sallet and Y. Marfaing, Electrical activity of nitrogen acceptors in ZnO films grown by metalorganic vapor phase epitaxy, Appl. Phys. Lett., (2003), 83,287-289.
    [130] X. Li, Y. Yan, T. A. Gessert, C. L. Perkins, D. Young, C. Dehart, and M. Young, Chemical vapor deposition-formed p-type ZnO thin films, J. Vac. Sci. Technol. A, (2003), 21, 1342-1346.
    [131] W. Z. Xu, Z. Z. Ye, T. Zhou, B. H. Zhao, L. P. Zhu, and J. Y. Huang, Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source, J. Cryst. Growth, (2004), 265,133-136.
    [132] H. W. Liang, Y. M. Lu, D. Z. Shen, Y. C. Liu, J. F. Yan, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, and X. W. Fan, P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO, phys. stat. sol. (a), (2005), 202,1060-1065.
    [133] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, B. Liu, Y. Che, L. P. Zhu, and B. H. Zhao, Mater. Lett., (2007), 61,41-44.
    [134] Z. Y. Xiao, Y. C. Liu, R. Mu, D. X. Zhao, and J. Y. Zhang, Stability of p-type conductivity in nitrogen-doped ZnO thin film, Appl. Phys. Lett., (2008), 92,052106:1 -3.
    [135] T. Yamamoto and H. K. Yoshida, Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO, Jpn. J. Appl. Phys., (1999), 38, L166-169.
    [136] L. G. Wang and A. Zunger, Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of p-Type ZnO, Phys. Rev. Lett., (2003), 25,256401:1-4.
    [137] M. Joseph, H. Tabata, and T. Kawai, p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping, Jpn. J. Appl. Phys., (1999), 38, L1205-L1207.
    [138] J. G.Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, p-type conduction in N-Al co-doped ZnO thin films, Appl. Phy. Lett., (2004), 85,3134-3135.
    [139] L. L. Chen, J. G.Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, and L. P. Zhu,p-type behavior in In-N codoped ZnO thin films, Appl. Phys. Lett., (2005), 87, 252106:1-3.
    [140] X. Guo, J. Choi, H. Tababata, and T Kawai, Fabrication and optoelectronic properties of transparent ZnO homostructural. light-emitting diode, Jpn. J. Appl. Phys., (2001), 40, L177-L180.
    [141] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat.Mater.,(2005),4,42-46.
    [142]W.Z.Xu,Z.Z.Ye,Y.J.Zeng,L.P.Zhu,B.H.Zhao,L.Jiang,J.G.Lu,H.P.He,and S.B.Zhang,ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition,Appl.Phys.Lett.,(2006),88,173506:1-3.
    [143]J.Nause,M.Pan,V.Rengarajan,W.Nemeth,S.Ganesan,A.Payne,N.Li,and I.Ferguson,ZnO semiconductors for lighting,Proc.of SPIE,(2005),5941,59410D:1-8.
    [144]W.Liu,S.L.Gu,J.D.Ye,S.M.Zhu,S.M.Liu,X.Zhou,R.Zhang,Y.Shi,Y.D.Zheng,Y.Hang,and C.L.Zhang,Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique,Appl.Phys.Lett.,(2006),88,092101:1-3.
    [145]B.T.Adekore,J.M.Pierce,R.F.DavisD,W.Barlage and J.F.Muth,Nitrogen acceptors in bulk ZnO substrates and homoepitaxial ZnO films,J.Appl.Phys.(2007),102,024908:1-12.
    [146]Z.P.Wei,Y.M.Lu,D.Z.Shen,Z.Z.Zhang,B.Yao,B.H.Li,J.Y.Zhang,D.X.Zhao,X.W.Fan,and Z.K.Tang,Room temperature p-n ZnO blue-violet light-emitting diodes,Appl.Phys.Lett.,(2007),90,042113:1-3.
    [147]C.H.Park,S.B.Zhang,and Su-Huai Wei,Origin of p-type doping difficulty in ZnO:The impurity perspective,Phys.Rev.B,(2002),66,073202:1-3.
    [148]K.K.Kim,H.S.Kim,D.K.Hwang,J.H.Lim,and S.J.Park,Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant,Appl.Phys.Lett.,(2003),83,63-65.
    [149]Y.W.Hoo,Y.W.Kwon,Y.Li,S.J.Pearton,D.P.Norton,p-type behavior in phosphorus-doped(Zn,Mg)O device structures,Appl.Phys.Lett.,(2004),84,3474-3476.
    [150]Arnold Allenic,Wei Guo,Yanbin Chen,Michael Brandon Katz,Guangyuan Zhao,Yong Che,Zhendong Hu,Bing Liu,Sheng Bai Zhang,and Xiaoqing Pan,Amphoteric Phosphorus Doping for Stable p-Type ZnO,Adv.Mater.,(2007),19,3333-3337.
    [151]D.C.Look,G.M.Renlund,R.H.Burgener,and J.R.Sizelove,As-doped p-type ZnO produced by an evaporation/sputtering process,Appl.Phys.Lett.,(2004),85,5269-5271..
    [152]Veeramuthu Vaithianathan,Byung-Teak Lee,Sang Sub Kim,Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition,Appl.Phys.Lett.,(2005),86,062101:1-3.
    [153]W.Guo,A.Allenic,Y.B.Chen,X.Q.Pan,Y.Che,Z.D.Hu,and B.Liu,Microstructure and properties of epitaxial antimony-doped p-type ZnO films fabricated by pulsed laser deposition, Appl. Phys. Lett., (2007), 90,242108:1-3.
    [154] K. Ip, Y. W. Heo, D. P. Norton, S. J. Pearton, J. R. LaRoche and F. Ren, Zn_(0.9)Mg_(0.1)O/ZnO p-n junctions grown by pulsed-laser deposition, Appl. Phys. Lett., (2004), 85,1169-1171.
    [155] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, S. J. Park, UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering, Adv. Mater., (2006), 18,2720-2724.
    [156] Y. Ryu, T-S. Lee, Jorge A. Lubguban, Henry W. White, B-J. Kim, Y-S. Park, and C-J. Youn, Next generation of oxide photonic devices ZnO-based ultraviolet light emitting diodes, Appl. Phys. Lett. (2006), 88,241108:1-3.
    [157] Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, Excitonic ultraviolet lasing in ZnO-based light emitting devices, Appl. Phys. Lett., (2007), 90,131115:1-3.
    [158] Sukit Limpijumnong, S. B. Zhang, Su-Huai Wei, and C. H. Park, Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide, Phys. Rev. Lett., (2004), 92,155504:1-4.
    [159] U. Wahl, E. Rita,J. G. Correia,A. C. Marques,E. Alves,and J. C. Soares, Direct Evidence for As as a Zn-Site Impurity in ZnO, Phys. Res. Lett., (2005), 95,215503:1-4.
    [160] E. C. Lee and K. J. Chang, Possible p-type doping with group-I elements in ZnO, Phys. Rev. B., (2004), 70,115210:1-4.
    [161] M. G. Wardle, J. P. Goss, and P. R. Briddon, Theory of Li in ZnO: A limitation for Li-based p-type doping, Phys. Rev. B., (2005), 71,155205:1-10.
    [162] A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, Preparation and characterization of Li-doped ZnO films, J. Vac. Sci. Technol. A, (1991), 9,286-289.
    [163] N. R. Aghamalyan, E. Kh. Goulanian, R. K. Hovsepyan, E. S. Vardanyan, and A. F. Zerrouk, Effect of lithium impurity on the opto-electrical properties of zinc oxide films, Phys. Stat. Sol. (a), (2003), 199,425-430.
    [164] J.-R. Duclere, M. Novotny, A. Meaney, R. O'Haire, E. McGlynn, M.O. Henry, J.-P.Mosnier, Properties of Li-, P- and N-doped ZnO thin films prepared by pulsed laser deposition, Superlattices and Microstruct., (2005), 38, 397-405.
    [165] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L.Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, and Y. L. Hu, Realization of p-type ZnO films via monodoping of Li acceptor, J. Cryst. Growth, (2005), 283, 180-184.
    [166] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, and B. H. Zhao, Dopant source choice for formation of p-type ZnO: Li acceptor, Appl. Phys. Lett., (2006), 88,062107:1-3.
    [167] X. H. Wang, B. Yao, Z. Z. Zhang, B. H. Li, Z. P. Wei, D. Z. Shen,Y. M. Lu and X. W. Fan, The mechanism of formation and properties of Li-doped p-type ZnO grown by a two-step heat treatment, Semicond. Sci. Technol., (2006), 21,494-497.
    [168] Hong Seong Kang, Byung Du Ahn, Jong Hoon Kim, Gun Hee Kim, Sung Hoon Lim, Hyun Woo Chang, and Sang Yeol Lee, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant, Appl. Phys. Lett., (2006), 88,202108:1-3.
    [169] Li Duan, Wei Gao, Ruiqun Chen, Zhuxi Fu, Influence of post-annealing conditions on properties of ZnO:Ag films, Solid State Commun., (2008), 145,479-481.
    [170] Kwang-Soon Ahn, Todd Deutsch, Yanfa Yan, Chun-Sheng Jiang, Craig L. Perkins, John Turner, and Mowafak Al-Jassim, Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation, J. Appl. Phys., (2007), 102,023517:1-6.
    [171] Wu Jun, and Yang Yintang, Deposition of K-doped p type ZnO thin films on (0001) Al_2O_3 substrates, Mater. Lett., (2008), 62,1899-1901.
    [172] Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy, J. Appl. Phys., (2004), 95,6268-6272.
    [173] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, J. G.Lu, H. P. He, L. P. Zhu, B. H. Zhao, Y. Che, and S. B. Zhang, Appl. Phys. Lett., (2006), 88,262103:1-3.
    [174] S. K. Hazra, and S. Basu, Stable p-ZnO thin films by oxygen control using reverse spray dynamics, Solid State Commun., (2005), 133,245-248.
    [175] S. T. Tan, B. J. Chen, X. W. Sun, M. B. Yu, X. H. Zhang, and S. J. Chua, Realization of-intrinsic p-type ZnO thin films by metal organic chemical vapor deposition, J. Electron. Mater., (2005), 34,1172-1176,
    
    [176] Q. X. Su, P. B. Kirby, and E. Komuro, Edge supported ZnO thin film bulk acoustic wave resonators and filter design, Frequency Control Symposium and Exhibition, 2000. Proceedings of the 2000 IEEE/EIA International, (2000), 434-440.
    [177] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO, Appl. Phys. Lett., (1999), 75,3366-3368.
    [178] S. W. Jung, S. J. An, G. C. Yi, C. U. Jung, S. I. Lee, and S. Cho, Ferromagnetic properties of Zn_(1-x)Mn_xO epitaxial thin films, Appl. Phys. Lett., (2002), 80,4561-4563.
    [179]T.Wakano,N.Fujimura,Y.Morinaga,N.Abe,A.Ashida,and T.Ito,Magnetic and magneto-transport properties of ZnO:Ni films,Physica E,(2001),10,260-264.
    [180]杨邦朝,王文生,薄膜物理与技术,电子科技大学出版社,(1994).
    [181]顾培夫,薄膜技术,浙江大学出版社,(1990).
    [182]王力衡,黄运添,郑海涛,薄膜技术,清华大学出版社,(1991).
    [183][日]金原粲,藤原英夫 著,王力衡,郑海涛 译,薄膜,电子工业出版社,(1988).
    [184]P.J.Clarke,Evolution of integrated-circuit vacuum processes,U.S.Patent,No.3616450,(1971).
    [185]G.B.Stringfellow,Organometallic vapor-phase epitaxy:theory and practice,Academic Press,(1999).
    [186]T.Yamamoto,and K.Y.Hiroshi,Unipolafity of ZnO with a wide-band gap and its solution using codoping method,J Cryst Growth,(2000),214/215,552-555.
    [187]Eun-Cheol Lee,Y.-S.Kim,Y.-G.Jin,and K.J.Chang,Compensation mechanism for N acceptors in ZnO,Phys.Rev.B,(2002),64:085120 1-5.
    [188]T.A.Cleland,and D.W.Hess,Diagnostics and modeling of N_2O RF glow discharges,J.Electrochem.Soc.,(1989),136,3103-3111.
    [189]Paul W.Wang,Shixian Sui,Wensheng Wang and William Durrer,Aluminum nitride and alumina composite film fabricated by DC plasma processes,Thin Solid Films,(1997),295,142-146.
    [190]D.Manova,V.Dimitrova,W.Fukarek and D.Karpuzov,Investigation of d.c.-reactive magnetron-sputtered AlN thin films by electron microprobe analysis,X-ray photoelectron spectroscopy and poladsed infra-red reflection,Surf.Coat.Technol.,(1998),106,205-208.
    [191]S.B.Zhang,S-H.Wei,Yanfa.Yan,The thermodynamics of codoping:How does it work?,Physiea B,(2001),302/303,135-139.
    [192]T.Yamamoto,Control of N-Impurity States in N-Doped ZnO,ZnS and ZnTe,Jpn.J.Appl.Phys.,(2003),42,L514-L516.
    [193]C.L.Wu,J.C.Wang,M.H.Chan,T.T.Chen,and S.Gwoa,Heteroepitaxy of GaN on Si(111)realized with a coincident-interface AlN-Si_3N_4(0001)double-buffer structure,Appl.Phys.Lett.,(2003),83,4530-4532.
    [194]L.J.Wang,and N.C.Giles,Temperature dependence of the free-exciton transition energy in zinc oxide by photolumineseenee excitation spectroscopy,J.Appl.Phys.,(2003),94,973-978.
    [195] D. C. Look, Electrical and optical properties of p-type ZnO, Semicond. Sci. Technol., (2005),20,S55-S61.
    [196] B. J. Skromme, and G. L. Martinez, Optical Activation Behavior of Ion Implanted Acceptor Species in GaN, MRS Internet J. Nitride Semicond. Res., (2000), 5S1, W9.8:1-6.
    [197] A. K. Rice, and K. J. Malloy, Microstructural contributions to hole transport in p-type GaN.Mg, J. Appl. Phys., (2001), 89,2816-2825.
    [198] S. H. Jeong, B. S. Kim, and B. T. Lee, Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient, Appl. Phys. Lett., (2003), 82,2625-2627.
    [199] Z. Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X. L. Yuan, and T. Sekiguchi, Postgrowth annealing of defects in ZnO studied by positron annihilation, x-ray diffraction, Rutherford backscattering, cathodoluminescence, and Hall measurements, J. Appl. Phys., (2003), 94,4807-4812.
    [200] T. V. Butkhuzi, A. V. Bureyev, A. N. Georgobiani, N. P. Kekelidze, and T. G.Khulordava, Optical and electrical properties of radical beam gettering epitaxy grown n- and p-type ZnO single crystals, J. Cryst. Growth (1992), 117,366-369.
    [201] W-J. Lee, J. Kang, and K. J. Chang, Defect properties and p-type doping efficiency in phosphorus-doped ZnO, Phys. Rev. B, (2006), 73,024117:1-6.
    [202] J. Gutowski, N. Presser, and I. Broser, Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy, Phys. Rev. B, (1988), 38,9746-9758.
    [203] A. Tsukazaki, H. Saito, K. Tamura, M. Ohtani, H. Koinuma, M. Sumiya, S. Fuke, T. Fukumura, M. Kawasaki, Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N, Appl. Phys. Lett., (2002), 81,235-237.
    [204] M. Sumiya, S. Fuke, A. Tsukazaki, K. Tamura, A. Ohtomo, M. Kawasaki, H. Koinuma, Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser deposition, J. Appl. Phys., (2003), 93,2562-2569.
    [205] J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. W. Fan, Method of control of nitrogen content in ZnO films Structural and photoluminescence properties, J. Vac. Sci. Technol. B, (2004), 22,94-98.
    [206] S. Limpijumnong, X. N. Li, S-H. Wei, S. B. Zhang, Substitutional diatomic molecules NO, NC, CO, N2, and O2 Their vibrational frequencies and effects on p doping of ZnO, Appl. Phys. Lett., (2005), 86,211910:1-3.
    [207] N. H. Nickel, F. Friedrich, J. F. Rommeluere, P. Galtier, Vibrational spectroscopy of undoped and nitrogen-doped ZnO grown by metalorganic chemical vapor deposition, Appl. Phys. Lett., (2005), 87, 211905:1-3.
    [208] A. Zeuner, H. Alves, D.M. Hofrnann, B.K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, M. Dworzak, Optical Properties of the Nitrogen Acceptor in Epitaxial ZnO, Phys. Stal. Sol. (b), (2002), 234, R7-R9.
    [209] B. Claflin, D. C. Look, S. J. Parkc, G. Cantwelld, Persistent n-type photoconductivity in p-type ZnO, J. Cryst. Growth, (2006), 287,16-22.
    [210] W. Z. Xu, Z. Z. Ye, L. Jiang, Y. J. Zeng, L. P. Zhu, B. H. Zhao, Low-temperature MOVPE growth of ZnO thin films by using a buffer layer, Appl. Surf. Scie., (2006), 252, 5926-5929.
    [211] R. T. Girard, O. Tjernberg, G. Chiaia, S. Soderholm, U. O. Karlsson, C. Wigren, H. Nylen, and I. Lindau, Electronic structure of ZnO(0001) studied by angle-resolved photoelectron spectroscopy, Surf. Sci., (1997), 373,409-417.
    [212] Craig L. Perkins, Se-Hee Lee, Xiaonan Li, Sally E. Asher, and Timothy J. Courts, Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy, J. Appl. Phys., (2005), 97,034907:1-7.
    [213] Yanfa Yan, S. B. Zhang, and S. T. Pantelides, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO, Phys. Res. Lett., (2001), 86, 5723-5726.
    
    [214] Hiroaki Matsui, Hiromasa Saeki, Tomoji Kawai, Hitoshi Tabata and Bunsho Mizobuchi, N doping using N_2O and NO sources: From the viewpoint of ZnO. J. Appl. Phys., (2004), 95, 5882-5888.
    [215] Zhi Gen Yu, Hao Gong, Ping Wu, Study on anomalous n-type conduction of P-doped ZnO using P_2O_5 dopant source, Appl. Phys. Lett., (2005), 86,212105:1-3.
    [216] K. Ogata, K. Maejima, S. Fujita, S. Fujita, Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy, J. Cryst. Growth, (2003), 248,25-30.
    [217] M. C. Jeong, B. Y. Oh, W. Lee, J. M. Myoung, Comparative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition (MOCVD), J. Cryst. Growth, (2004), 268,149-154.
    [218] K. Maejima, M. Ueda, S. Fujita, and S. Fujita, Growth of ZnO Nanorods on A-Plane (1120) Sapphire by Metal-Organic Vapor Phase Epitaxy, Jpn. J. Appl. Phys., (2003), 42, 2600-2604.
    
    [219] B. P. Zhang, N. T. Binh, Y. Segawa, Y. Kashiwaba, K. Haga, Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11-20) substrates, Appl. Phys. Lett., (2004), 84,586-588.
    [220] X. Y. Kong, Z. L. Wang, Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals, Appl. Phys. Lett., (2004), 84, 975-977.
    
    [221] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett., (2001), 78, 407-409.
    
    [222] K. Vanhausden, W. L .Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., (1996), 79,7983-7985.
    [223] T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, Microwave spectroscopy of a quantum-dot molecule, Nature, (1998), 395,873-876.
    [224] U. Banin, Y. W. Cao, D. Katz, and O. Millo, Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots, Nature, (1999), 400,542-544.
    [225] J6rg J. Schneider, Magnetic Core/Shell and Quantum-Confined Semiconductor Nanoparticles via Chimie Douce Organometallic Synthesis, Adv. Mater., (2001), 13, 529-533.
    [226] Daocheng Pan, Qiang Wang, Shichun Jiang, Xiangling Ji, and Lijia An, Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via a Novel Two-Phase Thermal Approach, Adv. Mater., (2005), 17,176-179.
    [227] Jialong Zhao, Julie A. Bardecker, Andrea M. Munro, Michelle S. Liu, Yuhua Niu, I-Kang Ding, Jingdong Luo, Baoquan Chen, Alex K.-Y. Jen, and David S. Ginger, Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer, Nano Lett., (2006), 6,463-467.
    [228] Yang-Wei Lin, Wei-Lung Tseng, and Huan-Tsung Chang, Using a Layer-by-Layer Assembly Technique to Fabricate Multicolored-Light-Emitting Films of CdSe@CdS and CdTe Quantum Dots, Adv. Mater., (2006), 18,1381-1386.
    [229] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science, (2005), 307, 538-544.
    [230] John P. Zimmer, Sang-Wook Kim, Shunsuke Ohnishi, Eichii Tanaka, John V. Frangioni, and Moungi G. Bawendi, Size Series of Small Indium Arsenide-Zinc Selenide Core-ShellNanocrystals and Their Application to In Vivo Imaging, J. Am. Chem. Soc., (2006), 128, 2526-2527.
    [231] Won II Park, Gyu-chul Yi, Miyoung Kim, and Stephen J. Pennycook, Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures, Adv. Mater., (2003), 15, 526-529.
    [232] Steven C. Erwin, Lijun Zu, Michael I. Haftel, Alexander L. Efros, Thomas A. Kennedy, and David J. Norris, Doping semiconductor nanocrystals, Nature, (2005), 436,91-94.
    [233] Bin Xiang, Pengwei Wang, Xingzheng Zhang, Shadi. A. Dayeh, David P. R.Aplin, Cesare Soci, Dapeng Yu, and Deli Wang, Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition, Nano Lett., (2007), 7, 323-328.
    [234] Chin-Ching Lin, Hung-Pei Chen, and San-Yuan Chen, Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film Si wafer in aqueous solutions, Chem. Phys. Lett., (2005), 404,30-34.
    [235] Seung Yong Bae, Chan Woong Na, Ja Hee Kang, and Jeunghee Park, Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation, J. Phys. Chem. B, (2005), 109,2526-2531.
    [236] J. Zhong, S. Muthukumar, Y. Chen, and Y. Lu, H. M. Ng, W. Jiang and E. L. Garfunkel, Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition, Appl. Phys. Lett., (2003), 83, 3401-3403.
    [237] C. Xu, M. Kim, J. Chun, and D. Kim, Growth of Ga-doped ZnO nanowires by two-step vapor phase method, Appl. Phys. Lett., (2005), 86,133107:1-3.
    
    [238] Seung Yong Bae, Hyun Chul Choi, Chan Woong Na, and Jeunghee Park, Influence of In incorporation on the electronic structure of ZnO nanowires, Appl. Phys. Lett., (2005), 86, 033102:1-3.
    
    [239] J. Jack Li, Y. Andrew Wang, Wenzhuo Guo, Joel C. Keay, Tetsuya D. Mishima, Matthew B. Johnson, and Xiaogang Peng, Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction, J. Am. Chem. Soc., (2003), 125,12567-12575.
    [240]Kumaxanand Palaniappan,Cuihua Xue,Ganesh Arumugam,Stephen A.Hackney,and Jian Liu,Water-Soluble,Cyclodextrin-Modified CdSe-CdS Core-Shell Structured Quantum Dots,Chem.Mater.,(2006),18,1275-1280.
    [241]R.Wargnier,A.V.Baranov,V.G.Maslov,V.Stsiapura,M.Artemyev,M.Pluot,A.Sukhanova,and I.Nabiev,Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dot-Nanogoid Assemblies,Nano Lett.,(2004),4,451-457.
    [242]B.O.Dabbousi,J.Viejo,F.V.Mikulec,J.R.Heine,H.Mattousi,R.Ober,K.F.Nsen,and M.D.Bawendi,(CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,J.Phys.Chem.B,(1997),101,9463-9475.
    [243]M.Danek,K.F.Jensen,C.B.Murray,and M.G.Bawendi,Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe,Chem.Mater.,(1996),8,173-180.
    [244]Peter Reiss,Joell Bleuse,and Adam Pron,Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion,Nano Lett.,(2002),2,781-784.
    [245]W.L.Wilson,P.F.Szajowski,L.E.Brus,Quantum Confinement in Size-Selected,Surface-Oxidized Silicon Nanocrystals Science,(1993),262,1242-1244.
    [246]Y.W.Cao,and U.Banin,Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores,J.Am.Chem.Soc.,(2000),122,9692-9702.
    [247]S.Haubold,M.Haase,A.Kornowski,and H.Weller,Strongly Luminescent InP/ZnS Core-Shell Nanoparticles,ChemPhysChem,(2001),2,331-334.
    [248]S.Kim,B.Fisher,H.J.Eisler,and M.Bawendi,Type-Ⅱ Quantum Dots:CdTe/CdSe(Core/Shell)and CdSe/ZnTe(Core/Shell)Heterostructures,J.Am.Chem.Soc.,(2003),125,11466-11467.
    [249]M.Brumer,A.Kigel,L.Amirav,A.Sashchiuk,O.Soiomesch,N.Tessler,and E.Lifshitz,PbSe/PbS and PbSe/PbSe_xS_(1-x)Core/Shell Nanocrystals,Adv.Funct.Mater.,(2005),15,1111-1116.
    [250]Chun-Yen Chen,Chiu-Ting Cheng,Chih-Wei Lai,Ya-Hui Hu,Pi-Tai Chou,Yi-Hsuan Chou,and Hsin-Tien Chiu,Type-Ⅱ CdSe/CdTe/ZnTe(Core-Shell-Shell)Quantum Dots with Cascade Band Edges:The Separation of Electron(at CdSe)and Hole(at ZnTe)by the CdTe Layer,Small,(2005),1,1215-1220.
    [251] Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region, Appl. Phys. Lett., (2004), 84, 5359-5361.
    [252] H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. J. Koinuma, Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells, J. Appl. Phys., (2002), 91,1993-1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700