仿壁虎微粘附阵列的设计、制备及粘附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生微粘附阵列在特种爬壁机器人领域具有重要的应用前景。作为一种基于干性粘附的功能粘附材料,仿壁虎微粘附阵列具有粘附与脱附可控、对接触表面无损伤、自清洁、可反复使用等优点。
     本文设计并制备了一种新型的倾斜仿壁虎微粘附阵列。为了防止微粘附支杆工作时发生坍塌、折断、失稳和聚结等方式的失效,分别针对粘附支杆的强度,刚度及稳定性进行分析,确定粘附支杆各个结构的相关参数。理论计算表明:粘附支杆倾斜20°,斜截面为45°时,阵列具有较为理想的粘附性能,且具有这种结构的粘附阵列可便利地调控吸附和脱附。然后针对浇注材料,阵列的基底厚度及密集度等进行分析,确定相应的各个阵列参数。文中还设计并加工了微型浇注模具,提出利用聚合物浇注负顶模来浇注粘附阵列的制备方法,有效地改善了粘附阵列的形貌特性,提高了阵列的粘附性能。最后利用硅橡胶和聚氨酯材料分别制备了两种不同结构的微粘附阵列,并对其进行粘附性能的测试。测试结果表明,该粘附阵列法向粘附强度可达0.31 N/cm2,切向粘附强度可达0.64 N/cm2,尽管微阵列的粘附性能相对于壁虎脚掌具有很大的差距,但其具有各向异性、可控吸附与脱附等粘附特性,在一定程度实现了功能上的仿生。
     本文以设计、制备及测试微粘附阵列为研究重点,为调控微粘附阵列自主吸附、脱附提供了理论、实验方面的依据,为仿壁虎机器人的粘附脚掌研究提出了有益的启示。
Biomimetic adhesive arrays are important to advanced climbing robot. As a kind of functional adhesive material based on dry adhesion, the gecko-inspired adhesive arrays have many advantages such as controllable attachment and detachment, harmless to the contact surfaces, self-cleaning property, durability, and so on.
     A novel lean gecko-inspired adhesive array is developed in this thesis. Firstly, the structure parameters of the biomimetic adhesive arrays are put forward. To avoid fibrillar breakdown, buckling, collapse and clumping, the required parameters of strength, stiffness, stability and anti-clumping are designed respectively. Theoretical calculation indicates that the resulted array have desired adhesion property when the lean angle is about 20°, cross surfaces angle is about 45°. Meanwhile, the array parameters are designed mainly focused on pouring material, substrate thickness and density. Then, the pouring micro mold is designed and manufactured. A new casting process use negative polymer up-mould is put forward based on the analysis of curing and demoulding characteristics. The shape and adhesion of the array is greatly improved by using this process. At last, two kind of adhesive arrays with different structure are poured with silicon rubber and polyurethane respectively, the adhesion characteristic is tested as well. The results show the normal and tangential adhesion is about 0.31 N/cm2 and 0.64 N/cm2. Although is poor compared with the gecko adhesion, the biomimetic adhesive arrays are anisotropy and controllable in attachment and detachment, achieve the function of gecko adhesion at a certain degree.
     Here, we focus on the design, manufacture and test of the adhesive arrays, present the theoretical and experimental basis to the controllable attachment and detachment of the adhesive array, and propose an available enlightenment to the gecko-inspired robot adhesive paw.
引文
[1]肖立,佟仕忠,丁启敏,等.爬壁机器人的现状与发展.自动化博览, 2005, 1: 17-21.
    [2]刘淑霞,王炎,等.爬壁机器人技术的应用.机器人, 1999, 21(2): 148-154.
    [3]郭成,谈士力,翁盛隆.微型爬壁机器人研究的关键技术.制造业自动化, 2004, 26(7): 21-24.
    [4] Autumn K, Gravish N. Gecko Adhesion: Evolutionary Nanotechnology, Philosophical Transactions of the Royal Society, 2008, 366(11):1575-1590.
    [5] Autumn K, Chang W P, Hsieh T, et al. Adhesion Force of A Single Gecko Foot-Hair. Nature, 2000, 405(8): 681-684.
    [6] Autumn K, Sitti M, Liang Y A, et al. Evidence For Van Der Waals Adhesion in Gecko Setae. PNAS, 2002, (99): 12252-12256.
    [7] Arzt E, Gorb S, Spolenak R. From Micro to Nano Contacts in Biological Attachment Devices, Proc. Natl Acad. Sci, USA, 2003, 100: 10603-10606.
    [8]路甬祥.仿生学的意义与发展.科学中国人, 2004, 4: 22-24.
    [9]杜家纬.二十一世纪仿生学研究对我国高新技术产业的影响.世界科学, 2004, 2: 2-16.
    [10] Huajian Gao, Xiang Wang, Haimin Yao, et al. Mechanics of Hierarchical Adhesion Structures of Geckos, Mechanics of Materials, 2005, 37: 275-285.
    [11] Aksak B, Murphy M, Sitti M. Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays, Langmuir, 2007, 23 (6): 3322-3332.
    [12] Aksak B, Murphy M, Sitti M, Gecko Inspired Micro-Fibrillar Adhesives for Wall Climbing Robots On Micro/Nanoscale Rough Surfaces, 2008 IEEE Int. Conf. on Robotics and Automation, Pasadena, CA, USA, 2008, 19-23: 3058-3063.
    [13] Gorb S, Varenberg M, Peressadko A, et al. Biomimetic Mushroom-Shaped Fibrillar Adhesive Microstructure, Journal of The Royal Society Interface, 2007, 4(13): 271–275.
    [14] Gorb S, Varenberg M. Mushroom-shaped Geometry of Contact Elements in Biological Adhesive Systems, Journal of Adhesion Science and Technology, 2007, 21(12-13): 1175-1183.
    [15] Gorb S, Sinha M, Peressadko A, et al. Insects Did It First: A Micropatterned Adhesive Tape for Robotic Applications, Bioinspiration and Biomimetics, 2007, 117-225.
    [16] Gorb S, Varenberg M. Shearing of Fibrillar Adhesive Microstructure: Friction and Shear Related Changes in Pull-Off Force, Journal of the Royal Society Interface, 2007, 4: 721-725.
    [17] Jeong H, Lee S, Kim P, et al. High Aspect-Ratio Polymer Nanostructures by Tailored Capillarityand Adhesive Force, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314: 359-364.
    [18] Liangti Qu, Liming Dai, Morley Stone, et al. Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off, Science, 2008, 322(328): 238-242.
    [19]任鸟飞,汪小华,王辉静,等.仿壁虎微纳米粘附阵列研究进展. MEMS器件与技术, 2006(8): 386-392.
    [20]陈士荣,梅涛,倪林,等.仿壁虎微纳米粘附阵列的工艺制备. MEMS器件与技术, 2006, 9: 434-437.
    [21]王辉静.仿壁虎微米阵列的加工及其粘附作用分析. MEMS器件与技术, 2008, 3: 62-165.
    [22] Geim K, Dubonos V, Grigorieva V, et al, Microfabricated Adhesive Mimicking Gecko Foot Hair, Nature Materials, 2003, 6: 1038-1040.
    [23] Yurdumakan B, Raravikar N, Ajayan P, et al. Synthetic Gecko Foot-Hairs from Multiwalled Carbon Nanotubes, Chemical Communications, 2005, 6: 3799-3801.
    [24] Northen M, Turner L. A Batch Fabricated Biomimetic Dry Adhesive, Nanotechnology, 2005, 16: 1159-1166.
    [25] Northen M, Turner L. Multi-Scale Compliant Structures for Use as a Chip-Scale Dry Adhesive, Solid-State Sensors, Actuators and Microsystems, 2005, 125-128.
    [26] Seok Kim, Metin Sitti. Biologically Inspired Polymer Micro-Fibers with Spatulate Tips as Repeatable Fibrillar Adhesives, Applied Physics Letters, 2006, 89(26): 261-263.
    [27] Lee J, Majidi C, Schubert B, et al. Sliding Induced Adhesion of Stiff Polymer Microfiber Arrays: 1. Macroscale Behavior, Journal Royal Society, Interface, 2008, 22: 1422-1452.
    [28] Sitti M, Fearing S. Synthetic Gecko Foot-Hair Micro/Nano-Structures for Future Wall Climbing Robots. IEEE Robotics and Automation Conference, Taiwan, Sept, 2003: 137-140.
    [29] Grigorieva V, Geim A K, Dubonos S V. Long-Range Non-Local Flow of Vortices in Narrow Superconducting Channels. Physical Review Letters, 2004, 92(23): 237-241.
    [30] Morariu M D, Voicu N E, Sch?ffer E. Hierarchical Structure Formation and Pattern Replication Induced by An Electric Field. Nature Materials, 2003, 2(1): 48-52.
    [31]潘力佳,何平笙.软刻蚀图形转移和微制造新工艺.细微加工技术, 2000,(2): 1-7.
    [32]潘力佳,何平笙.微接触印刷法控制硫化物晶体生长.化学通报, 2000, (12): 12-17.
    [33]戴振东.非连续约束变结构杆机构机器人:运动与控制的若干仿生基础问题,科学通报, 2008, 53(6): 618-622.
    [34] Geim, Dubonos, Grigorieva, et al. Microfabricated Adhesive Mimicking Gecko Foot-hair, NatureMaterials, 2003, 2: 461-463.
    [35] Zhendong Dai, Jiurong Sun, David Yue, et al. Effects of Morphology and Contact Mechanics on Adhesive Characteristics of Dung Beetle’s Bristle and Gecko’s Setae, Progress in Natural Science, 2007, 117(9): 1074-1081.
    [36]刘鸿文.材料力学[M],北京:高等教育出版社,第四版, 2004: 290-308.
    [37] Gaurav J, Shah, Sitti M. Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs. The 2004 IEEE International Conference on Robotics and Biomimetics, 2004: 541-548.
    [38] Santos D, Kim S, Spenko M, Parness A, et al. Directional Adhesion for Climbing: Theoretical and Practical Considerations, Journal of Adhesion Science and Technology, 2007, 21(12-13): 1317-1341.
    [39]孙久荣,郭策,程红,等.蜣螂与壁虎刚毛的比较及改形对其功能的影响.动物学报, 2005, 51(4): 761-767.
    [40] Dickinson M H, Farely C T, Full R J, How Animals Move: An Integrative View. Science, 2000, 288(7): 100-106.
    [41] Johnson K L, Kendall K, Roberts A D. Surface Energy and the Contact of Elastic Solids. Proc. of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1971, 324(1558): 301-313.
    [42] Johnson K L. Adhesion and Friction between a Smooth Elastic Spherical Asperity and a Plane Surface . Proc. of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1997, 453(1956): 163-179.
    [43] Haimin Yao, Huajian Gao. Multi-scale Cohesive Laws in Hierarchical Materials, International Journal of Solids and Structures, 2007, 44: 8177-8193.
    [44] Seok Kim, Metin Sitti. Effect of Backing Layer Thickness on Adhesion of Single-Level Elastomer Fiber Arrays, Applied Physics Letters, 2007, 91(16): 1905-1907.
    [45] Dongjie Guo, Shoujun Xiao, Hongbo Liu, et al. Diffusion of Hydrosilanes from the Control Layer to the Vinylsilane-Rich Flow Membrane during the Fabrication of Microfluidic Chips, Langmuir, 2005, 21: 10487-10491.
    [46]赵林林.仿壁虎脚掌刚毛阵列接触力学分析及试验研究, [硕士学位论文].南京,南京航空航天大学, 2007.
    [47]莫桂东.仿壁虎机器人脚掌粘性材料的仿生学研究, [硕士学位论文].南京,南京航空航天大学, 2008.
    [48]王辉静.仿壁虎微纳米阵列的粘附机理与控制方法研究, [博士学位论文].合肥,中国科学技术大学, 2006.
    [49]王田苗,孟偲,裴葆青,等.仿壁虎机器人研究综述.机器人, 2007, 5: 290-297.
    [50]吉爱红,戴振东,周来水.仿生机器人的研究进展.机器人, 2005, 27(3): 284-288.
    [51]戴振东,张昊,张明,等.非连续约束变结构机器人运动机构的仿生概念及模型.科学通报, 2007, 52(2): 236-239.
    [52]戴振东,于敏,吉爱红,等.动物驱动足摩擦学特征研究及仿生设计.中国机械工程, 2005, 16(16): 1454-1457.
    [53]戴振东,孙久荣.壁虎的运动及仿生研究进展.自然科学进展, 2006, (5): 519-523.
    [54]李宏凯,戴振东,石爱菊,等.大壁虎在垂直面和水平面上小跑和行走的关节角度观测.科学通报. 2008, 53(22): 2697-2703.
    [55]郭策,戴振东,吉爱红,等.壁虎脚趾运动调控的研究.中国生物医学工程学报, 2006, 25(1): 110-113.
    [56]戴振东,佟金,任露泉.仿生摩擦学的研究进展及其发展.科学通报. 2006, 51(1): 2353- 2359.
    [57]何斌,周群,岳继光.动物吸附机制的理论研究及应用现状,同济大学学报(自然科学版), 2007,6(35): 806-810.
    [58] Dai Zhendong, Sun Jiurong. Progress in Study on Gecko Locomotion and Biomimetic Gecko- robot . Progress in Natural Science. 2007, 17(1): 1-5.
    [59] Sangbae Kim, Matthew Spenko, Salomon Trujillo, et al. Whole Body Adhesion: Hierarchical, Directional and Distributed Control of Adhesive Forces for A Climbing Robot, IEEE International Conference on Robotics and Automation, 2007: 1268-1273.
    [60] Bryan Schubert, Jongho Lee, Carmel Majidi, et al. Sliding-Induced Adhesion of Stiff Polymer Microfibre Arrays. II. Microscale Behaviour, Journal of The Royal Society, Interface, 2008, 5: 845-853.
    [61] Dan Sameoto, Yasong Li, Carlo Menon. Multi-Scale Compliant Foot Designs and Fabrication for Use with a Spider-Inspired Climbing Robot, Journal of Bionic Engineering, 2008, 5: 189-196.
    [62] Boxin Zhao, Noshir Pesika, Kenny Rosenberg, et al. Adhesion and Friction Force Coupling of Gecko Setal Arrays: Implications for Structured Adhesive Surfaces, Langmuir 2008, 24: 1517- 1524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700