大孔树脂气液固循环流化床吸附银杏黄酮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气液固循环流化床作为一种新型的吸附分离装置,具有操作连续化、传质速度快和液固相接触充分等优点,拥有广泛的应用前景。本文提出并初步开展大孔树脂气液固循环流化床分离银杏黄酮的研究,旨在创立大孔树脂气液固循环流化床分离中药及天然药物的新技术及其理论基础。
     本文首先考察了气相对大孔树脂液固循环流化床吸附银杏黄酮规律的影响。研究结果表明,气相的加入可提高大孔树脂对银杏黄酮的吸附和脱附效果,均优于此条件下的液固循环流化床。气液固循环流化床系统的吸附和脱附效率随大孔树脂颗粒直径及下行床料液流速的增加而降低,随着料液浓度的降低而提高。在单因素考察的基础上,本文进行了大孔树脂气液固循环流化床吸附银杏黄酮的四因素三水平正交实验,并获得了最佳实验条件。
     为了研究液、固相流动特性对传质过程的影响,本文考察了气液固循环流化床液、固相的扩散特性。结果表明,采用0.6-0.9mm直径的树脂颗粒时,下行床液相轴向扩散系数Daxl在6.320×10-5 - 9.427×10-5m2/s之间,上行床Daxl在1.207×10-3 - 2.414×10-3m2/s之间;随着上、下行床表观气速的增大,上、下行床的Pe准数均减小,Daxl均增大,即表观气速的增大加剧了气液固循环流化床的液相返混,使其更加偏离平推流。当增大颗粒直径时,上行床液相返混加剧,下行床液相返混减弱。上行床固相扩散系数为1.254×10-3m2/s,下行床的固相扩散系数在5.892×10-4 - 9.348×10-4m2/s之间,固含率的增加可减弱下行床的返混程度。
     对大孔树脂吸附银杏黄酮的动力学进行研究的结果表明,吸附过程由液膜扩散和颗粒内扩散共同控制,但随着粒径的降低,液膜扩散控制逐渐加强而颗粒内扩散控制减弱,同时搅拌速度的增加可以提高传质速率,表明加强扰动对吸附过程具有促进作用。
     最后,在上述研究结果的基础上,建立了气液固循环流化床下行床吸附和上行床脱附的传质模型。模型计算值与试验结果吻合较好,能够较好地预测床体的吸附和脱附过程。
As a novel separation facility for adsorption process, gas-liquid-solid circulating fluidized bed (GLSCFB) has extensive application prospect for its continuous operation, fast mass transfer and well contact between liquid-solid phases. The adsorption of ginkgo flavonoids by macroporous resin GLSCFB was proposed and investigated in the paper to establish a potential method and theoretical basis for the separation of traditional chinese medicine and natural drugs using GLSCFB.
     First of all, the effect of gas phase on the adsorption of ginkgo flavonoids by liquid-solid circulating fluidized bed (LSCFB ) was investigated. Result revealed that adsorption and desorption efficiency of ginkgo flavonoids were improved as gas phase was pumped into GLSCFB and superior to LSCFB. Investigation on the factors influencing the adsorption of GLSCFB indicated that it was preferable for GLSCFB adsorption and desorption with smaller particle size, lower feed velocity and dilute ginkgo flavonoids concentration. Based on the single factor research, the optimum experimental conditions were obtained from the results of the orthogonal test of four factors at three different levels.
     Then, the dispersion characteristics of liquid and solid phases in GLSCFB were studied. When the diameter of resin particles was 0.6-0.9mm, the liquid axial dispersion coefficient (Daxl) of downcomer was between 6.320×10-5 and 9.427×10-5m2/s, the Daxl of riser was between 1.207×10-3 and 2.414×10-3 m2/s. With the increasing of gas velocity, the value of Peclet number reduced and Daxl increased which indicated that liquid backmixing was intensified and the flow pattern deviated further from plug flow reactor as gas velocity increased. With increasing particles diameter, the liquid backmixing in riser was enhanced, but in downcomer it was weakened. The axial dispersion coefficients of solid phase (Daxs) in the riser was 1.254×10-3 m2/s,Daxs in the downcomer was between 5.892×10-4-9.348×10-4 m2/s,the increasing of solids holdup could reduce the solid backmixing in downcomer.
     Investigation on the adsorption kinetics of macroporous resin indicated that adsorption process of ginkgo flavonoids was controlled by film diffusion and intra-pore diffusion, but the film diffusion control become stronger as the particle diameter decreased. Higher stirring speed could increase mass transfer rate demonstrated that disturbance is beneficial for adsorption.
     Finally, the adsorption model of downer and desorption model of riser were developed. Both models could predict adsorption and desorption process well. And the experimental data were inosculated to the calculated values.
引文
[1]叶俊,银杏叶研究进展,中成药, 1998, 20(4): 36~38
    [2]刘宗敏,张慧,戴梓茹等,银杏黄酮的生理作用研究现状及发展前景,湖南林业科技, 2006, 33(6): 76~77
    [3]李艳丽, D101树脂法分离银杏黄酮类物质的研究: [硕士学位论文],郑州:郑州大学, 2006
    [4]麻秀萍等,大孔吸附树脂对银杏叶黄酮的吸附研究,中国中药杂志, 1997, 22(9): 539~542
    [5]卢锦花,胡小玲,岳红,吸附树脂提取分离银杏叶提取物的研究进展,化工进展, 2001, 20(3): 1~4
    [6]崔堂兵,石漫莹,郭勇等,银杏黄酮的提取与大孔树脂吸附研究,广西农业生物科学, 2002, 21(4): 266~270
    [7]张春秀,胡小玲等,银杏叶黄酮类化合物的提取分离,化学研究与应用, 2001, 13(4): 454~456
    [8]大孔吸附树脂法提取分离植物中黄酮类化合物的研究综述,食品安全监督与法制建设国际研讨会暨第二届中国食品研究生论坛论文集(上), 2005
    [9]于智峰,王敏,大孔吸附树脂在黄酮类化合物分离中的应用,中药材, 2006, 29(12): 1380~1384
    [10]何琦等,大孔吸附树脂在天然产物分离纯化中的应用及发展趋势, 2005, 3(2): 1~5
    [11]韩金玉等,大孔吸附树脂对银杏内酯和白果内酯吸附性能的研究,离子交换与吸附, 2000, 16(5): 426~431
    [12]庄玲华,银杏黄酮苷在吸附树脂上的吸附-解吸行为研究: [硕士学位论文],四川:四川大学, 2003
    [13]陆志科,谢碧霞,大孔树脂对竹叶黄酮的吸附分离特性研究,经济林研究, 2003, 21(3):1~4
    [14]莫晓燕,徐静,邵卫祥,大孔吸附树脂分离纯化银杏中种皮总黄酮.天然产物研究与开发, 2008, 20:157~160
    [15]潘见,陈强,谢慧明等,大孔树脂对葛根黄酮的吸附分离特性研究,农业工程学报, 1999, 15(1):236~239
    [16]王帮臣,大孔树脂膨胀床吸附银杏黄酮的研究: [硕士学位论文],天津:天津大学, 2007
    [17]段文立,循环流化床吸附挥发性有机化合物的实验研究: [硕士学位论文],中国科学院研究生院, 2003
    [18]刘家祺,分离过程,北京:化学工业出版社, 2002
    [19]湛竟清,胡立江,谷氨酸钠流化床吸附脱色的柱过程研究,生物工程学报,1996, 12 (2): 194~200
    [20]刘福强,复合功能树脂对1, 2, 4-酸的吸附机理及其生产废水的治理研究:[博士学位论文],南京:南京大学, 2004
    [21]王春红,吸附树脂吸附动力学研究: [博士学位论文],天津:南开大学, 2000
    [22]傅亚,刘火安,银杏黄酮柱层析提取新工艺研究,四川食品与发酵, 2005, 41(3):45~47
    [23]关红欣,胡洪波,张雪洪等,膨胀床吸附层析技术基础性能研究进展,化学工业与工程, 2004, 21(4):254~258
    [24] Lan Q D, Bassi A, Zhu J X, etal., Continuous protein recovery with a liquid-solid circulating fluidized-bed ion exchanger, AIChE, 2002, 48(2): 225~261
    [25]金涌等,流态化工程原理,北京:清华大学出版社, 2001
    [26] Fan L S, Gas-Liquid-Solid Fluidization Engineering, Butterworths Publishers, London, MA, USA, 1989
    [27] Yang W G, Wang J F, Chen W, Liquid-phase flow structure and backmixing characteristics of gas-liquid-solid three-phase circulating fluidized bed. Chem. Eng. Science: 1999, 54, 5293~5298
    [28] Jin Y, Zhu J X, Yu Z Q. Novel Configurations and Variants. In: Grace J R, Avidan AA, Knowlton T M, eds. Circulation Fluidized Bed, UK: Blacie Academie and Protessional, 1997: 525-567
    [29]梁五更等,气液固三相循环流态化,化工学报, 1995, 46(1):117~122
    [30]韩社教,金涌,俞芷青等,气液固三相循环流化床中气固相含率轴径向的分布,高校化学工程学报, 1997, 11(3):276~280
    [31] Liu Z L, Vatanakul M, Zheng Y, Hydrodynamic and mass transfer in gas-liquid-solid three-phase circulating fluidized bed, Chem. Eng. Technology, 2003, 26(12): 1247~1253
    [32] Vatanakul M, Zheng Y, Couturier M, Flow characterization of a three-phase circulating fluidized bed using an ultrasonic technique, Canadian Society for Chemical Engineering, 2003, 81(6): 1121~1129
    [33] Zarraa M A, Mass Transfer Characteristics during the Removal of Dissolved Heavy Metals from Waste Solutions in Gas Sparged Fluidized Beds of Ion Exchange Resins, Chem. Eng. Technol., 1999, 22(6): 533~537
    [34]陈甘棠,化学反应工程,北京:化学工业出版社, 2000
    [35]胡宗定,王一平,工程电导测试技术,天津:天津大学出版社, 1990, 22~28
    [36]刘福强,陈金龙,费正皓等,复合功能超高交联吸附树脂对氨基萘酚磺酸的静态吸附热力学及动力学特征,应用化学, 2003, 20(12): 1123~1128
    [37] Levenspiel O, Chemical Reaction Engineering, 2nd, New York: John Wiley & Sons, Inc. 1972
    [38]刘正军,大孔树脂液固循环流化床吸附银杏黄酮的研究: [硕士学位论文].天津:天津大学, 2007
    [39] Han S J, Jin Y, Yu Z Q, Axial and radial distributions of gas and solid hold-up in gas-liquid-solid three phase circulating fluidized bed, 1997, 11(3): 276~280
    [40] Han S J, Zhou J, Jin Y, Phase holdup and liquid dispersion in gas-liquid-solid circulating fluidized beds, 1997, 5(3): 246~253
    [41] Han S J, Zhou J, Jin Y, Liquid dispersion in gas-liquid-solid circulating fluidized beds, Chemical Engineering Journal, 1998, 70(1): 9~14.
    [42] Vatanakul M, Sun G G, Zheng Y, Axial liquid dispersion in gas-liquid-solid circulating fluidized bed, Chinese Journal of Chemical Engineering, 2005,13(1): 124~127
    [43] Kang Y, Cho Y J, Lee C G, Radial liquid dispersion and bubble distribution in three-phase circulating fluidized beds, Canadian Journal of Chemical Engineering, 2003, 81(6): 1130~1138
    [44]郭慕孙,李洪钟,流态化手册,北京:化学工业出版社, 2008
    [45] Basu P, Large J F, eds, Circulating Fluidized Bed TechnologyⅡ, Oxford: Pergamon Press, 1988: 127~137
    [46] Kathleen S, Jan B, Overall solids movement and solids residence time distribution in a CFB-riser, Chemical Engineering Science, 2000(55): 4101~4116
    [47] R′egis A, Geoffrey P, Mehrdji H, Hydrodynamic and solid residence time distribution in a circulating fluidized bed: Experimental and 3D computational study, Chemical Engineering and Processing, 2008, 47: 463~473
    [48] Avidan A A, Yerushalmi J, Solids mixing in a expanded top fluidized bed, AIChE Journal, 1985, 31: 835~841
    [49] Mostoufi N, Chaouki J, On the axial movement of solids in gas-solid fluidized beds, Trans IChemE, 2000, 78:911-920
    [50] Sylvain L, Christophe G, Jamal C, Solid phase hydrodynamics of three-phase fluidized beds-A convective/dispersive mixing model, Chemical Engineering Journal, 2007(133): 85~95
    [51]魏飞,金涌,俞芷青,流动方向对循环流化床中颗粒混合行为的影响,化工冶金, 1997, 18 (2): 129~136
    [52] Wei F, Wang Z, Jin Y, Dispersion of lateral and axial solids in a cocurrent downflow circulating fluidized be, Powder Techno, 1994, 81: 25~30
    [53]魏飞,金涌,俞芷青等,磷光颗粒示踪技术在循环流态化中的应用,化工学报, 1994, 45 (2): 230~235
    [54]聂向锋,龙文宇,卢春喜等,液固循环床提升管中颗粒停留时间分布及扩散特性,中国石油大学学报(自然科学版), 2008, 32(3): 133~137
    [55] Bartels C R., Kleimann G, Korzum J N, A novel ion-exchange method for the isolation of streptomycin, Chem.Eng.Prog., 1958, 54: 49~52
    [56] Draeger N M, Chase H A, Protein Adsorption in Liquid Fluidized Beds, Advances in Separation Process, 1990, 118: 161~172
    [57] Draeger N M, Chase H A, Modeling of Protein Adsorption in Liquid Fluidized Beds, Separation for Biotechnology, 1990: 325~334
    [58] Lan Q D, Development of a Continuous Ion Exchange System for Protein Recovery Using Liquid-Solid Circulating Fluidized Bed, [Dissertation], 2001
    [59] Trivedi U, Bassi A S, Zhu J X, Continuous enzymatic polymerization of phenol in a liquid-solid circulating fluidized bed, Powder Technology,2006,169: 61~70
    [60] Alexander R, Hermann H, Internally circulating fluidized bed for continuous adsorption and desorption, Chemical Engineering and Processing, 1995: 521~527
    [61] Dutta M, Dutta N N, Bhattacharya K G, Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon, Separation and Purification Technology, 1999, 16: 213~224
    [62]宋应华,朱家文,陈葵等,大孔树脂对红霉素的吸附动力学研究,离子交换与吸附, 2007, 23(4): 34 9~359
    [63]赵毅等,烟气循环流化床同时脱硫脱氮试验研究,中国电机工程学报, 2005, 25(2): 120-124
    [64]马双忱,赵毅等,烟气循环流化床脱硫数学模型及应用,中国电机工程学报, 2004, 24(10): 228~232
    [65] Wright P R, Glasser B J, Modeling Mass Transfer and Hydrodynamics in Fluidized Bed Adsorption of Proteins, AIChE Journal, 2001, 47(2): 474~488
    [66]佟晓冬,流化床吸附蛋白质的基础研究: [博士学位论文],天津:天津大学, 2002
    [67] Yun J X, Lin D Q, Yao S J, Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds, Journal of Chromatography A, 2005:16~26
    [68] Li P, Xiu G H, Rodrigues A E, Experimental and Modeling Study of Protein Adsorption in Expanded Bed. American Institute of Chemical Engineers Journal, 2005, 51(11):2965~2977
    [69]庄向平,银杏叶中总黄酮含量的测定和提取方法,中草药, 1992, 23(3): 122~124
    [70]胡敏,姜发堂,张声华,三种测定银杏叶提取物中总黄酮的方法比较,食品与发酵, 1997, 23(4): 40~43
    [71]刘明言,杨扬,薛娟平等,气液固三相流化床反应器测试技术,过程工程学报, 2005, 5(2): 217~222
    [72]安晓冬,液固流化床流动结构的研究及分形重构: [硕士学位论文],天津:天津大学, 2006
    [73]刘建华,气液固循环流化床自组织结构可视化研究: [硕士学位论文],天津:天津大学, 2008
    [74]唐丽华,游本刚,刘扬,正交实验设计优化AB-8树脂对珍珠菜总黄酮的吸附条件,抗感染药学, 2006, 3(3): 102~104
    [75] Chen W, Yang W G, Wang J F, Characterization of Axial and Radial Liquid Mixing in a Liquid-Solid Circulating Fluidized Bed, Ind. Eng. Chem. Res, 2001, 40: 5431~5435
    [76] Kannan N, Sundaram M M, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - a comparative study, Dyes and Pigments,2001, 51: 25~40
    [77] Razzak S A, Zhu J X, Barghi S, Radial distributions of phase holdups and phase propagation velocities in a three-phase gas-liquid-solid fluidized bed (GLSCFB) riser, Ind. Eng. Chem. Res. 2009, 48: 281~289
    [78]吴筱锦,用流态化树脂床回收金属氰化物,国外黄金参考, 1997(4): 14~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700