大孔树脂液固循环流化床吸附银杏黄酮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前运用大孔树脂吸附分离银杏黄酮主要是在固定床和膨胀床中进行,固定床操作稳定性高、易于控制,但是当固体杂质存在时,易阻塞流道。膨胀床在进行吸附操作时,降低了床层阻力,使颗粒实现了稳定分级,但是其吸附、清洗、洗脱、再生均要进行切换操作,比较繁琐。液固循环流化床(LSCFB)作为一种吸附分离装置,与固定床、膨胀床相比,具有操作连续化、传质速度快、液固间接触良好以及轴向返混程度小的优点。本文旨在探讨LSCFB银杏黄酮吸附作用方式及其影响因素的研究,主要考察了LSCFB的颗粒轴向固含率分布、流体流动状况、液相混合行为以及银杏黄酮大孔树脂吸附的特性及规律。
     本文首先运用电导法和CCD(电荷耦合器件)摄像法研究了LSCFB下行床和上行床的轴向固含率分布,研究表明,下行床中密相区颗粒轴向固含率在0.35~0.55之间;稀相区在0.1以下,自由区为0。上行床中轴向固含率在0.01~0.04之间,基本上呈均匀分布。然后考察了LSCFB流体流动状况的影响因素,结果表明,在同样的表观液速下,颗粒粒径越大,密相区高度越小。主水流和辅助水流单独变化时,颗粒循环速度先增大后减小。
     以KCl为示踪剂,采用电导率仪分别研究了LSCFB下行床和上行床的停留时间分布(RTD)。实验得出下行床RTD无因次方差在0.1左右,液相返混系数Daxl在1.85×10-6~1.81×10-5之间,Bo准数在10.4~16.9之间,床层比较稳定,接近平推流。上行床无因次方差在0.2~0.3之间,Daxl在1.48×10-3~2.96×10-3之间,Bo准数在5.65~7.44之间,说明上行床由于滞留区、循环流等原因存在一定程度的返混。
     对LSCFB吸附影响因素进行了考察,其结果表明,下行床表观液速越小、颗粒装柱量越大、颗粒循环速度越大对LSCFB吸附越有利。从LSCFB四因素三水平吸附正交实验得出最佳的实验条件为:颗粒粒径范围为0.45~0.6mm、装柱高度为50cm、颗粒循环速度为0.285kg/m2·s、下行床表观液速为0.15mm/s。
     最后进行了LSCFB上行床脱附模型和下行床吸附模型的研究,其结果表明,上行床模型能够预测床体的脱附情况,实验值与计算值之间吻合的比较好;下行床模型能够预测床体的吸附情况,由于密相区大孔树脂颗粒流化时会有少量的返混,所以实验值和模型计算值之间会有一定的偏差。
Separating gingko flavones with macroporous resins is now mainly operated in fixed bed or expanded bed. It has higher stability and is easy to be controlled of the fixed bed operation. When solid impurity existing in the bed, it is easy to be jammed. Expanded bed operation can decrease bed resistance. However, it has a disadvantage, which is that the adsorption, washing, elution and regeneration must be in switching operation. Comparing with fixed bed and expanded bed, liquid-solid circulating fluidized bed (LSCFB) has some advantages. For example, it is continuous in operation, fast in mass transfer, well in the contacting between liquid and solid and small in the axial backmixing extent. Main research content in this paper is as follows: particle axial holdup distribution, residence time distribution (RTD), liquid mixing behavior and the performance of absorption and separation of the macroporous resin for ginkgo Flavonoids.
     The axial solid holdup of the downcomer and the riser in the LSCFB had been measured firstly with conductivity meter and CCD. Experimental results show that the particle axial solid holdup of the dense area in the downcomer is between 0.35 and 0.55,and it is below 0.1 in the dilute area; The axial solid holdup in the riser is between 0.01 and 0.04 and the distribution is uniform. Investigation on the factors influencing the LSCFB fluid flow indicates that the larger the particle diameter is, the lower the dense area height will be. During the respective change of main fluid and assistant fluid, the particle circulating rate (Gs) increased first, and then decreased.
     In the residence time distribution (RTD) experiment of the downcomer, the dimensionless variance is about 0.1, the liquid backmixing coefficient is between 1.85×10-6 and 1.81×10-5, and the Bo value is between 10.4 and 16.9, so the bed is very stable, the flow pattern was similar to that of plug flow reactor (PFR). And in the RTD of the riser, the dimensionless variance is between 0.2 and 0.3, the liquid backmixing coefficient is between 1.48×10-3 and 2.96×10-3, the Bo value is between 5.65 and 7.44, so the results indicate that the riser is backmixing in an extent because of the existence of stagnant area and circulating flow.
     Investigations on the factors influencing the LSCFB adsorption indicate that it is favorable for LSCFB adsorption of a lower Uld, a higher Gs and a bigger charge. The results of LSCFB adsorption with the orthogonal test of four factors at three different levels gave the optimum experimental conditions: the particle size with 0.45~0.6mm diameter, the particle column height with 50 centimeter, Gs with 0.285 kg/m2·s and Uld with 0.15 mm/s.
     Finally, the riser desorption model and downcomer adsorption model were carried out. The results indicate that the riser desorption model can predict desorption process and the experimental value is inosculate to the calculated value; the downcomer adsorption model can predict adsorption process and the experimental value has some deviations from the calculated value because there will be a little backmixing when the macroporous resins fluidized in dense area.
引文
[1]惠俊峰,惠有为,米钰等,银杏黄酮苷提取方法的研究,西北农业大学, 2004,13(2):101~103
    [2]王帮臣,大孔树脂吸附银杏黄酮的研究:[学位论文],天津大学,2007
    [3] Xiao G F, Shan J, Wu Q L, The hydrodynamic behavior of the liquid–solid circulating fluidized bed ion exchange system for cesium removal. Journal of Chromatography A, 2005, 1077: 143~150
    [4]金涌,祝京旭,汪展文等,流态化工程原理,北京:清华大学出版社,2001
    [5]吴梅林,周春山,陈龙胜,酶法提取银杏黄酮类化合物研究,天然产物研究与开发,2004,16(6):557~560
    [6]朱红,高尔,王德伟,王汝琴,银杏黄酮的药学研究进展,食品与药品,2005,7(2):4~7
    [7]张迪清,何照范.银杏叶资源化学研究,北京:中国轻工业出版社,1999,10~13
    [8]韩金玉,李海静,褚巧伟,天然产物银杏内酯研究进展,化工进展,2000,19(2):23
    [9]张迪清,何照范,银杏叶资源化学研究,北京:中国轻工业出版社,1999
    [10]刘峥,陈永,银杏总黄酮水浸提方法研究,化学世界,1996,37(7):355~357
    [11]陈冲,罗思齐.银杏叶提取物的生产工艺条件研究,中草药,1997,28(7):402~404
    [12]王红喜,银杏叶提取物注射液的制备及质量标准研究: [学位论文],中国药科大学,2003
    [13]宋小妹,王会鑫,张宁,大孔吸附树脂在中药研究中的应用,陕西中医学院学报,2002,25(6):39~41
    [14]何伟,李纬,大孔树脂在中药成分分离中的应用,南京中医药大学学报,2005,21(2):134~136
    [15]张荣泉,王德仁,大孔吸附树脂在中药成分精制中的应用,中国药业,2004,13(5):72~73
    [16]胡军,周跃华,大孔吸附树脂在中药成分精制纯化中的应用,中成药,2002,24(2), 35~37
    [17]刘国庆,朱翠萍,王占生,大孔树脂对大豆乳清废水中异黄酮的吸附特性研究,离子交换与吸附,2003,19(3):229~231
    [18]韩金玉,李海静,李岩等,大孔吸附树脂对银杏内酯和白果内酯吸附性能的研究,离子交换与吸附,2000,16(5):426~429
    [19]潘见,陈强,谢慧明等,大孔树脂对葛根黄酮的吸附分离特性研究,农业工程学报,1999,15(1):236~239
    [20]关红欣,胡洪波,张雪洪等,膨胀床吸附层析技术基础性能研究进展,化学工业与工程,2004,21(4):254~258
    [21]蒋伟,连续移动床吸附技术及其应用,矿业科学技术,2003,1: 36~38
    [22]张德胜,对二甲苯生产工艺的优化与技术改进:[学位论文],北京化工大学,2004
    [23]吴献东,模拟移动床分离过程的建模与优化研究:[学位论文],浙江大学,2006
    [24]马淑芬,杨春育,佟泽民等,模拟移动床吸附分离技术,北京石油化工学院学报,2003,11(1),34~38
    [25]梁五更,张书良等,液固循环流化床的研究(Ⅰ),化工学报,1993,44(6):667~671
    [26]梁五更,张书良等,液固循环流化床的研究(Ⅱ),化工学报,1993,44(7):672~676
    [27]张欢,王金福等,液固循环流化床中颗粒轴向速度的实验研究,高校化学工程学报,2002,16(4):408~414
    [28] Zheng Y, Zhu J X, Overall pressure balance and system stability in a liquid-solid circulating fluidized bed, Chemical Engineering Journal, 2000,79,145~153
    [29] Xiao G F, Jing S, Wu Q L, The hydrodynamic behavior of the liquid–solid circulating fluidized bed ion exchange system for cesium removal. Powder Technology, 2003,134 (3):235~242
    [30] Richardson J F and Zaki W N, Trans.Inst.Chem.Eng, 1954, 35~36
    [31] Liang W G, Zhang S L, Zhu J X, etal, flow characteristics of the liquid-solid circulating fluidized bed, Powder Technology, 1997,90,95~102
    [32] Zheng Y, Zhu J X, Radial solids flow structure in a liquid solid circulating fluidized bed reactor, Ind.Eng.Chem.Res.,1997, 36: 4651~4658
    [33] Zheng Y, Zhu J X, Wen J W, etal, The axial hydrodynamics in a liquid-solid circulating fluidized bed, Can J Chem Eng, 1999, 77: 284~290
    [34]于根,树脂颗粒液固流化床径向流动结构研究:[学位论文],天津大学,2006
    [35]徐建伟,杨茹,张晓冬,大型气液固循环流化床中相含率的分布研究,北京化工大学学报,2005,32(4),14~18
    [36] Lan Q D, Development of a Continuous Ion Exchange System for Protein Recovery Using Liquid-Solid Circulating Fluidized Bed, [Dissertation], 2001
    [37] Trivedi U, Bassi A S, Zhu J X, Continuous enzymatic polymerization of phenol in a liquid-solid circulating fluidized bed, Powder Technology,2006,169:61~70
    [38]林宗虎,气液固多相流测量,北京:中国计量出版社,1998
    [39]景山,王金福,金涌等,热示踪法测量循环环流化床中颗粒循环速度,化学反应工程与工艺,1999,15(3):322~326
    [40]杨小林,严敬,PIV测速原理与应用,西华大学学报(自然科学版),2005,24(1):19~20,36
    [41]王铁峰,王金福,三相循环流化床中气泡大小及其分布的实验研究,化工学报,2001,52(3):197~203
    [42] Yang W G, Wang J F, Chen W, etal, Liquid-phase flow structure and backmixing characteristics of gas-liquid-solid three-phase circulating fluidized bed, Chemical Engineering Science, 1999,54, 5293~5298
    [43]胡宗定,王一平,工程电导测试技术,天津:天津大学出版社,1990,22~28
    [44]胡宗定,王一平,用电导法进行气-液-固三相流化床各相局部含率的测定,天津大学学报,1984,1,17~22
    [45] Levenspiel O, Chemical Reaction Engineering, 2nd, New York: John Wiley & Sons, Inc. 1972
    [46] Van A P, Blanchard C, Wesselingh J A, Mixing of particles in liquid fluidized beds,Chem. Eng. Res. Des. 1984,62 : 214~222
    [47] Renganathan.T, Krishnaiah.K, Liquid phase mixing in 2-phase liquid-solid inverse fluidized bed, Chemical Engineering Journal, 2004, 98, 213~218
    [48] Yang W G, Wang J F, Chen W, etal, Liquid-phase flow structure and backmixing characteristics of gas-liquid-solid three-phase circulating fluidized bed, Chemical Engineering Science, 1999, 54, 293~5298
    [49] Liang W G, Yu Z Q , Jin Y, etal, Synthesis of Linear Alkyl benzene in a Liquid-Solid Circulating Fluidized Bed Reactor, J. Chem. Technol. Biotechnol, 1995,62: 98~102
    [50] Di Felice R, Hydrodynamics of Liquid Fludization, Chem. Eng. Sci, 1995,50: 1213~1245
    [51] Lan Q D, Zhu J X, Bassi A S, Margaritis A, Zheng Y, Rowe G E, Continuous protein recovery using a liquid-solid circulating fluidized bed ion-exchange system, modeling and experimental studies, J Chem Eng, 2000,78:858~866
    [52] Lan Q D, Bassi A, Zhu J X, etal, Continuous Protein Recovery with a Liquid-Solid Circulating Fluidized-Bed Ion Exchanger, AlChE, 2002,48(2):225~261
    [53] Lan Q D, Bassi A S, Zhu J X, Continuous Protein Recovery from Whey UsingLiquid-Solid Circulating Fluidized Bed Ion-Exchange Extraction, Biotechnology and Bioengineering, 2002, 78(2),34~39
    [54] Alexander R, Hermann H, Internally circulating fluidized bed for continuous adsorption and desorption, Chemical Engineering and Processing,1995,521~527
    [55]刘明言,杨扬,薛娟平等,气液固三相流化床反应器测试技术,过程工程学报,2005,5(2):217~222
    [56]安晓冬,液固流化床流动结构的研究及分形重构:[学位论文],天津:天津大学,2006
    [57]曹长青,气-液-固三相流化床反应器的实验研究与数学模拟,[博士论文],天津:天津大学,2005
    [58]曹长青,刘明言,王一平等,液体黏度对气液固逆流三相湍动床动力学行为影响,化工学报,2005,56(4):627~631
    [59]刘重芳,吴志荣,方青汉.银杏叶总黄酮提取工艺探讨,中成药,1992,(7),7~8
    [60]庄向平,银杏叶中总黄酮含量的测定和提取方法,中草药,1992,23(3):122~124
    [61]李吉来,于留荣,曾宇珠,薄层扫描法测定银杏叶中总黄酮醇试的含量,中国中药杂志,1996,21(2):106~108
    [62]胡敏,姜发堂,张声华,三种测定银杏叶提取物中总黄酮的方法比较,食品与发酵,1997,23(4):40~43
    [63]王英强,梁红,冯颖竹,广东产银杏叶总黄酮含量变化,中草药,2001,24(4):247~248
    [64]朱炳辰,化学反应工程(第三版),北京:化学工业出版社,2000,128~131
    [65]陈炳和,许宁,化学反应过程与设备,北京:化学工业出版社,2003,67~70
    [66] Han S J, Zhou J, Jin Y, etal, liquid dispersion in gas-liquid-solid circulating fluidized beds, Chemical Engineering Journal, 1998, 70, 9~14
    [67] Tong X D, Xue B, Sun Y, Modeling of expanded-bed protein adsorption by taking into account the axial particle size distribution ,Biochemical Engineering Journal 2003,16(3):265~272
    [68]唐丽华,游本刚,刘扬,正交实验设计优化AB-8树脂对珍珠菜总黄酮的吸附条件,抗感染药学,2006,3(3):102~104
    [69]桂双英,周亚球,正交实验法优选人参总皂苷的提取工艺,时珍国医国药,2003,14(10):591~59
    [70] Yang C, Tsao G T, Packed-Bed Adsorption Theories and Their Applications to Affinity Chromatography, Advances in Biochemical Engineering25,A.Fiechter,Ed.,Springer-Verlag, New York,1982,1~18
    [71] Cussler E L, Diffusion Mass Transfer in Fluid Systems, Cambridge: Cambridge University Press, 1997, 98:206~207
    [72]莫建军,熊春华,吴香梅,大孔膦酸树脂吸附钐的性能及其机理,稀土,1996,17(3):1~5
    [73]熊春华,舒增年,4-氨基吡啶树脂吸附铬(Ⅵ)的研究,有色金属,2000,52(3):66~69
    [74]熊春华,吴香梅,大孔膦酸树脂对镉(Ⅱ)的吸附性能及其机理,环境科学学报,2000,20(5):627~630
    [75] Boyd G E , Adamson A W , Myers L S, Understanding Chemistry Physics, J Am. Soc, 1947,69:2836

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700