直/气复合控制导弹制导控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应对高速再入弹道导弹及其他现代空袭兵器的威胁,要求拦截导弹必须具备精确制导控制能力,以实现直接碰撞杀伤。在高空由于气动舵效率的减弱,传统气动控制响应速度大大降低,而采用姿控式直接侧向力与气动力复合控制则可以显著提高拦截导弹姿态控制系统的响应速度,从而确保在高空对大机动目标的精确拦截。针对姿控式直接侧向力与气动力复合控制导弹制导控制系统的工作特点,研究有效的制导控制方法具有重要的理论意义和实际工程价值。本文以大气层内姿控式直接侧向力与气动力复合控制导弹为背景,对直/气复合控制导弹的制导控制问题进行了深入的研究。
     首先,根据姿控脉冲发动机的配置,建立了直接侧向力模型,并基于侧向喷流干扰效应的数学描述,建立了直接侧向力与气动力复合控制导弹运动学和动力学模型,为直接侧向力与气动力复合控制导弹制导控制系统分析与设计研究奠定了基础。
     其次,通过对姿控脉冲发动机工作特性的分析,给出了姿控脉冲发动机阵列点火逻辑需要满足的基本原则;通过分析直接侧向力作用下的弹体姿态动态响应过程,给出了姿控脉冲发动机消耗量的计算方法;结合对气动力姿态控制特性的分析,揭示了直接侧向力与气动力复合控制特性。
     再次,研究了基于模型输出预测和自抗扰控制的直接侧向力与气动力复合控制导弹姿态控制系统设计方法。针对直/气复合控制导弹姿态控制系统的特点,提出了将非线性模型预测方法与自抗扰控制方法结合的姿态控制策略,设计了姿控脉冲发动机阵列点火逻辑,在分析直接侧向力有限约束集的基础上,提出了直/气复合控制导弹姿态控制系统设计方法,并分析了复合控制系统的稳定性。
     然后,研究了直接侧向力与气动力复合控制导弹末制导律设计方法。考虑复合控制导弹末制导系统的特点,分析了末制导系统工作过程,在此基础上,考虑姿态控制系统时间常数的变化,设计了基于预测脱靶量的复合控制导弹末制导律,分析了末制导系统稳定性针,并针对所设计的末制导系统,利用有限时间广义H2方法,对由目标CA机动、Singer机动和Weaving机动所引起的末端脱靶量进行了分析。
     最后,将上述研究成果应用到某型大气层内姿控式直接侧向力与气动力复合控制导弹的制导控制设计中,完成了基于模型预测和自抗扰控制的姿态控制设计和基于预测脱靶量的末制导系统设计,并进行了六自由度仿真分析,验证了本文提出方法的有效性。
To cope with threatens of high-speed reentry of ballistic missiles and other modern air weapons, it is necessary for intercept missiles to have guidance and control ability of high precision, up to hit-to-kill. Dynamic responses of traditional aerodynamic control deteriorate significantly in high altitude as a result of efficiency decline in control fins. Instead, dual attitude control of intercept missiles, consisting of attitude-control-type lateral jets and aerodynamic control fins, can significantly improve the dynamic responses, based on which, precise interception can be attained against high-altitude, high-speed and large maneuvering targets. According to the characteristics of guidance and control systems of missiles with dual control, researches on suitable guidance and control methods are of great importance in both theory and engineering. In this context, the dissertation focuses intensively on the guidance and control problems of endo-atmospheric missiles with dual control.
     First, mathematical model is established according to the configuration of lateral pulse jets in the attitude control system. Kinematic and dynamic equations of the missile with dual control of lateral jets and fins are constructed based on the mathematical description of turbulent effects on lateral jet interactions. These provide the foundations for the analysis and the design in the sequel.
     Second, through the analysis of characteristics of a lateral pulse jet, basic principles for the operation of pulse jets array are given. Through the analysis of dynamic responses of missile attitude while lateral jets are applied, an algorithm for calculating pulse jets consumption is presented. Dual control characteristics are analyzed based on the characteristics of aerodynamic control.
     Third, attitude control design methods of missiles with dual control are investigated based on model predictive control and active disturbance rejection control. Based on the control characteristics, control strategy, that combines nonlinear model prediction control with active disturbance rejection control, is presented, and corresponding design frame is constructed. Then operation logic of pulse jets array is designed. By the analysis of finiteness of constraint set, attitude control system design method of the dual control is given, and the stability of the closed-loop system is analyzed.
     Fourth, terminal guidance law of the missiles with dual control is investigated. Descriptions of predicted miss distance and maximum correction distance of terminal guidance are given. By comparing the two distances, switching principle is given, by which time instant can be decided to switch the control from aerodynamic control to dual control. Then, time constants of the attitude control system in different control mode are considered in terminal guidance law design. Finally, by utilizing generalized H2 method in finite time horizon, miss distance analysis is conducted in the presence of control switching. In the analysis, target maneuvering is considered.
     At last, the obtained results are applied to the design of guidance and control laws of certain type of endo-atmospheric missiles with dual control. the attitude control system and end-game guidance system are designed based on model prediction control and active disturbance rejection control. Simulation is conducted in a 6-degree-of freedom model architecture. The simulation results justify the proposed theories and methods.
引文
1徐品高.新一代防空导弹提高制导控制精度的需求与技术途径.战术导弹技术. 2002, (3): 1-8.
    2徐品高.现代国土防空末端防御防空导弹的关键技术.现代防御技术. 2004, 32(4): 1-9.
    3徐品高.现代防空体系对防空导弹的需求分析.现代防御技术. 2002, 30(5): 1-8.
    4 Svetlov B T, Golubev N C. Surface-to-Air Missile Design. Beijing: China Astronautics Publishing House. 2004: 236~239.
    5 E. Walters, J. Butler. Extended Range Interceptor Flight Test Program. AIAA SDIO Annual Interceptor Technology Conference. 1992: 1-9.
    6 R. Herman, J. Butler. Subsystems for Extended Range Interceptor Missile. AIAA SDIO Annual Interceptor Technology Conference. 1992: 1-7.
    7 Francis Mard. Design, Manufacture and Test of Composite Case for Erint-1 Solid Rocket Motor. AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit. 1993: 1-11.
    8 Y. Yamaguchi, H. Tsu, H. Fujisada, et al. Aster Instrument Design and Science Objectives. 32nd Aerospace Sciences Meeting and Exhibit. 1994, 1-7.
    9 A. Filatyev, O. Yanove. Aster Program Package for the Thorough Trajectory Optimization. GNC, Conference, 2001: 1-11.
    10 K.A. Wise, D.J. Broy. Agile Missile Dynamics and Control. AIAA, Guidance, Navigation and Control Conference, San Diego. 1996: 1-14.
    11李玉林,刘庆鸿.复合控制拦截弹的稳定控制系统数学模型的建立.战术导弹控制技术. 2006, 3:8-12.
    12万自明,李玉林,黄荣度.空气动力和直接侧向力复合控制的拦截弹飞行力学及稳定回路模型.现代防御技术. 2003, 31(2): 18-22.
    13邹晖,陈万春,殷兴良.具有侧向脉冲推力的旋转导弹建模与控制研究.系统工程与电子技术. 2005, 27(4): 687-691.
    14李玉林,杨树兴.先进防空导弹直接力/气动力复合控制关键技术分析.兵工学报. 2007, 28(12): 1523-1527.
    15李玉林,刘庆鸿.直接力/气动力复合控制拦截弹的飞行控制系统设计.弹箭与制导学报. 2006, 26(4): 7-10.
    16 Allen Spencer. Optimal Control Thruster Location for Endo-atmospheric Interceptors. 2nd Annual AIAA SDIO Interceptor Technology Conference. 1993: 1-13.
    17 W.R. Chadwick. Augmentation of High-altitude Maneuver Performance of a Tail-controlled Missile Using Lateral Thrust. Virginia: Naval Surface Warfare Center, ADA328973, 1997: 1-8.
    18魏明英.大气层内燃气动力与气动力复合控制方法探讨.现代防御技术. 2006, 34(1): 24-28.
    19郑咏岚,李国雄.小型脉冲发动机在现代防空导弹中的应用途径研究.现代防御技术. 2008, 36(1): 31-35.
    20杨锐,徐敏,陈士橹.动能拦截弹姿控发动机组合点火算法研究.西北工业大学学报. 2006, 24(1): 15-18.
    21朱京.姿控发动机点火逻辑研究.现代防御技术. 2007, 35(3): 42-45.
    22王晓东,李芸,谢晓瑛.具有侧向脉冲推力的动能拦截弹姿控发动机组合点火研究.现代防御技术. 2007, 35(6): 41-44.
    23沈明辉,陈磊,吴瑞林,周伯昭.大气层内动能拦截弹脉冲矢量发动机点火控制算法研究.宇航学报. 2007, 28(2): 278-281.
    24 P. K. Menon, V. R. Iragavarapu. Adaptive Techniques for Multiple Actuator Blending. AIAA, 1998: 1-12.
    25 Yong Seok Choi, Ho Chul Lee and Jae Weon Choi. Autopilot Design for Agile Missile with Aerodynamic Fin and Side Thruster. SICE Annual Conference in Fukui, 2003: 1476-1481.
    26 Ho Chul Lee, Jae Weon Choi and Taek Lyul Song. Agile Missile Autopilot Design via Time-Varying Eigenvalue Assignment. 8th International Conference on Control, Automation, Robotics and Vision. 2004: 1832-1837.
    27 Mario Innocenti, Ajay Thukral. A Blending Strategy for Missile Autopilots Using the Simplex Method. Proceeding of the American Control Conference. 1996: 2163-2167.
    28周锐.基于模糊逻辑的导弹复合控制系统优化设计.控制与决策. 2006, 21(7): 825~828.
    29周锐,王军.导弹气动力/直接力自适应控制分配及优化设计.航空学报. 2007, 28(1): 187-190.
    30刘忠,梁晓庚,曹秉刚.基于动态逆和能量原则的导弹直接力-气动力复合控制.西安交通大学学报. 2006, 40(7): 798-802.
    31董朝阳,景韶光,王青等.敏捷性导弹的双网络逆动态模糊神经网络控制.宇航学报. 2001, 22(5): 39-43.
    32陈宇,董朝阳,王青,张明廉.基于自适应模糊滑模退步控制的直接力/气动力复合控制导弹自动驾驶仪设计.航空学报. 2007, 28(增刊): S140-S145.
    33吴振辉,董朝阳.直接力/气动力复合控制导弹自适应模糊滑模控制.北京航空航天大学学报. 2007, 33(9): 1051-1055.
    34董朝阳,王枫,高晓颖,王青.基于自适应滑模与模糊控制的导弹直接力/气动力复合控制系统优化设计.航空学报. 2008, 29(1): 165-169.
    35王枫,袁飞,王青,张明廉.直接力控制导弹的拟人自动驾驶仪设计.系统仿真学报. 2008, 20(22): 6226-6229.
    36王进,陈万春,殷兴良.具有脉冲姿控发动机的导弹控制策略设计.系统工程与电子技术. 2008, 30(9): 1724-1729.
    37王进,陈万春,殷兴良.大气层内拦截弹脉冲姿控发动机快响应控制.北京航空航天大学学报. 2007, 33(4): 397-400.
    38 Ajay Thukral, Mario Innocenti. A Sliding Mode Missile Pitch Autopilot Synthesis for High Angle of Attack Maneuvering. IEEE Transactions on Control Systems Technology. 1998, 6(3): 359-371.
    39展建超,杨军,谭震.基于变结构控制的气动力/直接力切换控制设计.弹箭与制导学报. 2009, 29(2): 83-86.
    40周荻,邵春涛.大气层内拦截弹直接侧向力/气动力混合控制系统设计.宇航学报. 2007, 28(5): 1205-1209.
    41邵春涛,周荻.大气层内拦截弹采样系统H∞混合灵敏度设计.系统工程与电子技术. 2009, 31(5): 1138-1141.
    42 W. H. Kwon, S. Han. Receding Horizon Control. Springer. 2005: 1-12.
    43 C. C. Chen, L. Shaw. On Receding Horizon Feedback Control. Automatica. 1979, 18(3): 349-352.
    44 D. Q. Mayne, H. Michalska. Receding Horizon Control of Nonlinear Systems. IEEE Transactions on Automatic Control. 1990, 35(5): 814-824.
    45 T. Jitpraphal, B. Burchett, M Costello. A Comparison of Different Guidance Scheme for a Direct Fire Rocket with Pulse Jet Control Mechanism. AIAAAtmospheric Flight Mechanics Conference and Exhibit. 2001:1-12.
    46 A. Calise, H EI-Shirbiny. An Analysis of Aerodynamic Control for Direct Fire Spinning Projectiles. Proceedings of the 2001 AIAA Guidance, Navigation, and Control Conference. 2001: 1-10.
    47 H. Myung, H. Bang. Nonlinear Predictive Attitude Control of Spacecraft Under External Disturbances. Journal of Spacecraft. 2003, 40(5): 696-699.
    48 John T. Wen, Sanjeev Seereeram, David S. Bayard. Nonlinear Predictive Control Applied to Spacecraft Attitude Control. Proceedings of the American Control Conference. 1997, 1899-1903.
    49 J. J. Recadens, Q. P. Chu, J. A. Mulder. Robust Model Predictive Control of a Feedback Linearized System for a Lifting-body Re-entry. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2005: 1-33.
    50 S. E. Talole, S. B. Phadke. Predictive Homing Guidance using Time Delay Control. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2005: 1-9.
    51 J. Abonyi, L. Nagy, F. Szeifert. Fuzzy Model-Based Predictive Control by Instantaneous Linearization. Fuzzy Sets and Systems. 2001, 120: 109-122.
    52 J. Roubos, R. Babuska, et al. Predictive Control by Local Linearization of a Takagi-Sugeno Fuzzy Model. IEEE International Conference on Fuzzy Systems Proceedings. 1998, 1:37-42.
    53 Van Den Boom, T. J. J. On Feedback Linearization in LMI-Based Nonlinear MPC. Proceedings of the American Control Conference. 1998, 3: 1684-1688.
    54 L. Giarre, D. Bauso, et al. LPV Model Identification for Gain Scheduling Control: An Application to Rotating Stall and Surge Control Problem. Control Engineering Practice. 2006, 14: 351-361.
    55 Ali E., Zafiriou E. On the Tuning of Nonlinear MPC Algorithms. Proceedings of American Control Conference. 1993: 786-790.
    56席裕庚,王凡.非线性系统预测控制的多模型方法.自动化学报. 1996, 22(4): 456-461.
    57 Mutha R. K., Cluett W. R., Penlidis A. Nonlinear Model-Based Predictive Control of Control Nonaffine Systems. Automatica. 1997, 33(5): 907-913.
    58 Sommer S. Model-Based Predictive Control Methods Based on Nonlinear and Bilinear Parametric System Descriptions. Advances in Model-Based Predictive Control. 1994: 193-204.
    59 Wang Wei. Generalized Predictive Control of Nonlinear Systems of theHammerstein form. Control Theory and Applicaitons. 1994, 11(6): 672-680.
    60 Genceli H., Nikoaou M. Design of Robust Constrained Model-Predictive Controllers with Volterra Series. AICHE Journal. 1995, 41(9): 2098-2107.
    61 Doyle F. J., Ogunnaike B. A., Pearson R. K. Nonlinear Model-Based Control using Second-Order Volterra Modes. Automatica. 1995, 31(5): 697-714.
    62 M. Lepetic, I. Skrjanc, et al. Predictive Functional Control Based on Fuzzy Model: Magnetic Suspension System Case Study. Engineering Applications of Artificial Intelligence. 2003, 16: 425-430.
    63 H. Zhang, Z. Bien. A Multivariable Fuzzy Generalized Predictive Control Approach and Its Performance Analysis. Proceedings of the American Control Conference. 1998, 4: 2276-2280.
    64 X. Zhao, G. Rong, et al. A Nonlinear Model Predictive Control Strategy Based on Dynamic Fuzzy Model Using Two-Step Optimization Method. Proceedings of the
    3rd World Congress on Intelligent Control and Automation. 2000, 5: 3213-3217.
    65 D. L. Yu, J. B. Gomm. Implementation of Neural network Predictive Control to a Multivariable Chemical Reactor. Control Engineering Practice. 2003, 11: 1315-1323.
    66王寅,荣冈,王树青.基于T-S模糊模型的非线性预测控制策略.控制理论与应用. 2002, 19(4): 599-603.
    67 M. Pottmann, D. E. Seborg. A Nonlinear Predictive Control Strategy Based on Radial Basis Function Models. Computers and Chemical Engineering. 1997, 21(9): 965-980.
    68 M.Jalili-Kharaajoo. Predictive Control of a Continuous Stirred Tank Reactor Based on Neuro-Fuzzy Model of the Process. SICE 2003 Annual Conference. 2003, 3: 3277-3282.
    69朱学峰. CSTR的非线性预测控制.华南理工大学学报(自然科学版). 1995, 23(6): 7-16.
    70 J.Q. Han. From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics. 2009, 56(3): 900-90.
    71韩京清.从PID技术到“自抗扰控制”技术.控制工程. 2002, 9(3): 13-18.
    72韩京清,黄远灿.二阶跟踪微分器的频率特性.数学的实践与认识. 2003, 33(3): 71-74.
    73韩京清.非线性跟踪微分器.系统科学与数学. 1994, 14(2):177-183.
    74黄焕袍,韩京清.安排过渡过程是提高闭环系统“鲁棒性、适应性和稳定性”的一种有效方法.控制理论与应用. 2001, 18(8):89-94.
    75韩京清.一类不确定对象的扩张状态观测器.控制与决策. 1995, 10(1): 85-88.
    76黄远灿,韩京清.扩张状态观测器用于连续系统辨识.控制与决策. 1998, 13(4):381-384.
    77韩京清,候增广.利用跟踪微分器构造未知函数的寻优器和求根器.控制与决策. 2000, 15(3):365-367.
    78熊治国,孙秀霞.自抗扰控制器在超机动飞行快回路控制中的应用.控制与决策. 2006, 21(4):477-480.
    79陈新龙,杨涤.自抗扰控制技术在某型导弹上的应用.飞行力学. 2006, 24(1):81-83.
    80 J.B. Su, W.B. Qiu. Calibration-Free Robotic Eye-Hand Coordination Based on an Auto Disturbance Rejection Controller. IEEE Transactions on Robotics. 2004, 20(5):899-907
    81 H. Huang, L. Wu, et al. A new synthesis method for Unit Coordinated Control System in Thermal Power Plant—ADRC Control Scheme. International conference on Power System Technology. Singapore, Nov, 2004:133-138
    82 J. Frank. On Motion Control Design and Tuning Techniques. American Control Conference. Boston, June, 2004:716-721
    83韩京清,张文革.大时滞系统的自抗扰控制器.控制与决策. 1999, 14(4): 354-358.
    84陈万春,聂蓉梅,刘佳琪等. PAC3爱国者拦截弹末制导精度仿真研究.飞航导弹. 1999, 7: 57-62.
    85沈明辉,陈磊,吴瑞林,周伯昭.大气层内动能拦截器的脱靶量分析.宇航学报. 2007, 28(1): 49-52.
    86李玉林,万自明.直接力/气动力复合控制拦截弹末制导精度研究. 2008, 36(2): 55-60.
    87朱隆魁,汤国建,余梦伦.直接力/气动力复合控制防空导弹脱靶量仿真.系统仿真学报. 2008, 20(23): 6563-6568.
    88葛致磊,周军.基于直接力控制的导弹高精度末制导律设计方法研究.系统仿真学报. 2007, 19(23): 5463-5465.
    89朱隆魁,汤国建,余梦伦.一种大气层内拦截弹自适应滑模制导律研究.飞行力学. 2008, 26(3): 64-67.
    90 T. Jitpraphal, B. Burchett, M Costello. A Comparison of Different Guidance Scheme for a Direct Fire Rocket with Pulse Jet Control Mechanism. AIAA Atmospheric Flight Mechanics Conference and Exhibit. 2001:1-12.
    91 A. Calise, H EI-Shirbiny. An Analysis of Aerodynamic Control for Direct Fire Spinning Projectiles. Proceedings of the 2001 AIAA Guidance, Navigation, and Control Conference. 2001: 1-10.
    92闫斌斌,闫杰.一种气动力/直接力复合控制导弹的直接力引入时机设计方法.弹箭与制导学报. 2007, 27(5): 11-12.
    93李玉林,万子明,黄荣度等.大气层内复合控制拦截弹切换时间的探讨.现代防御技术. 2002, 30(5): 30-35.
    94李玉林,刘庆鸿.燃气动力/空气动力复合控制拦截弹的制导精度研究.战术导弹控制技术. 2004. 3: 17-23.
    95 R. P. Roger.The Aerodynamics of Jet Thruster Control for Supersonic/Hypersonic Endo-Interceptors: Lessons Learned. 37th AIAA Aerospace Sciences Meeting and Exhibit. 1999: 1-13.
    96 S. F. Gimelshein. Modeling of the Interaction of Side Jet with a Rarefied Atmosphere. AIAA Aerospace Sciences Meeting and Exhibit. 2001: 1-17.
    97 Louis A. Cassel. Applying Jet Interaction Technology. Journal of Spacecraft and Rockets. 2003, 40(4): 523-537.
    98 D. Zhou, C. Mu, W. Xu. Adaptive Sliding-Mode Guidance of a Homing Missiles. Journal of Guidance Control and Dynamics, 1998, 21(6): 882-890.
    99 D. Zhou, C. Mu, T. Shen. Robust Guidance Law with L2 Gain Performance. Transactions of the Japan Society for Aeronautical and Space Science, 2001, 44(144): 82-88.
    100 M. Chilali, P. Gahinet. H∞Design with Pole Placement Constraints: An LMI Approach. IEEE Transactions on Automatic Control. 1996, 41(3): 358-367.
    101 Denggao Ji, Yu Yao, Fenghua He. Finite-time H2 performance analy-sis considering target maneuvers and guidance loop dynamics. The 2nd International Symposium on Systems and Control in Aerospace and Astronautics. 2008: 1~4.
    102 C. Kenney and R. Leipnik, Numerical integration of the differential matrix riccati equation[J]. IEEE Transactions on Automatic Control. 1985, 30(10): 962-970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700