中国黄酒中氨基甲酸乙酯控制策略及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“民以食为天,食以安为先。”发酵饮料酒中存在微量氨基甲酸乙酯(EC),对人体健康有潜在不利影响。各酿造酒中,黄酒的EC问题较为突出。在分析探讨各种EC含量控制策略过程中,以黄酒适用肠杆菌(Enterobacter sp.)R-SYB082尿素降解酶,形成从源头上控制中国黄酒中EC的有效措施,同时结合材料科学与技术,形成采用功能性材料进行黄酒中EC直接去除的技术,首次建立了对底物尿素和产物EC含量的集成控制策略,使中国黄酒中EC达到限量要求,对丰富中国黄酒的酿造科学和安全性理论与技术有重要的意义和价值。主要结果如下:
     (1)针对目前黄酒中EC传统检测方法存在的耗时、不够稳定、需有机溶剂等问题,基于顶空-固相微萃取-气质联用技术(HS-SPME-GC-MS),建立了自动化、快速简便测定黄酒中EC的方法。以氨基甲酸丙酯(nPC)为内标,添加NaCl至0.39g mL-1酒样,采用聚丙烯酸酯(PA)萃取头70℃下萃取45min。此法解决了黄酒中复杂化合物易形成干扰的问题,无需繁琐的预处理过程,自动快速高效,连续分析中单个样品的平均总需时,从国际标准SPE(固相萃取)法的2h以上缩短到只要57min,相对标准偏差小于2.89%,检测限低至1.19μg L-1,且无有机溶剂危害,推荐作为黄酒中EC含量测定的标准方法之一。
     (2)针对Enterobacter sp. R-SYB082尿素降解酶活力低的问题,通过优化发酵策略,包括优化初糖浓度为40g L-1、通入CO2提高反应器的厌氧水平等,Enterobacter sp.R-SYB082的尿素降解酶活从1100U L-1优化提高到2303U L-1,并放大至30L规模获得相似酶活。此Enterobacter sp. R-SYB082酶具有好的稳定性,且通过自然冷藏及CO2气体介入成功获得激活。该酶在黄酒中的尿素去除率(66.47%),比广泛使用的日本商业脲酶(去除率58.79%)高。该酶对黄酒中底物尿素的有效降解,从源头上实现了对EC的控制。
     (3)开展了对Enterobacter sp. R-SYB082尿素降解酶克隆表达的研究。通过基因比较发现,Enterobacter sp. R-SYB082酶是一种酸性脲酶同功酶——脲基乙醇酸酰胺水解酶(UAH)而非脲酶,该酶能实现黄酒中待去除底物尿素及产物EC的联合控制,具有很好的应用特性与工业开发前景。首次报道了脲酶缺陷型菌株以此酶介导的全新氮同化代谢途径。并成功构建了具有自主知识产权的工程菌BL21-pET28-allA,获得该酶的活性表达。
     (4)基于定向去除技术和分子间作用原理,从各种吸附性材料中优选得特异性功能材料L,以直接去除黄酒中EC。并对去除机制进行研究发现:其强碱性[-N+R3]基团对EC的离子交换作用,是EC定向减除的主要动力。经定向修饰和复配后,再经酒样的特殊工艺微调处理,其能选择性地有效减除黄酒中的EC。此减除为吸热过程,实际应用中温度需高于20℃效果更佳。应用L材料动态处理的较合适速度为0.25BV h-1,对于EC含量在300μg L-1以内的黄酒,能降至50μg L-1以下,达到限量要求;且处理后酒体的风味与原酒接近。
     配合Enterobacter sp. R-SYB082尿素降解酶对尿素的降解,和功能性材料对EC的终端定向减除,可以实现中国黄酒中尿素含量降至10mg L-1以内,以及EC含量在300μg L-1以内的黄酒降至50μg L-1以下,两者综合,首次建立了从底物到产物对黄酒中EC含量的集成控制策略。为中国黄酒中EC含量的降低,提供了实用、便捷的新途径,具有保障食品安全、利于应对国外技术壁垒的特殊含义。也为其他饮料酒中EC的控制,提供了一条新思路。
“To the people foodstuff is all-important. To the foodstuff safe is all-important.” Traceethyl carbamate (EC) in fermented alcoholic beverages is known to be carcinogenic. Amongvarious fermentated alcoholic beverages in China, the EC problem that Chinese rice winefaces is tough as a result of its specific process. During the research on several EC preventiveactions, an effective measure was developed to scavenge urea precursor, basing on the acidurea-degrading enzyme from Enterobacter sp. R-SYB082. In addition, a creative andconvinent technique using functional materiasl was provided for directly removing EC fromChinese rice wine. An integrated strategy for the control of urea and EC was established forthe first time for satisfying the EC limitation requirement. These are vital and valuable forenriching fermenting technology and safety theory on Chinese rice wine. The main resultswere shown as follows:
     (1) In the determination of EC in Chinese rice wine, the time-consuming extractionprocedures, the global uncertainty and solvent-requirement represent the major disadvantagesof the present techniques. And an automated procedure using headspace solid-phasemicroextraction (HS-SPME) followed by gas chromatographic-mass specometric (GC-MS)detection is developed for fast determination of EC in Chinese rice wine. Using propylcarbamate (n-PC) as internal standard, the optimised HS-SPME extraction is45min at70Cwith Polyacrylic (PA) fibre after the addition of NaCl to0.39g mL-1. The HS-SPME-GC-MSprocedure overcame the matrix interference from Chinese rice wine. And the procedurerequires little operator effort, which is suitable for the automated, rapid, convenient, andinexpensive determination of EC in Chinese rice wine. One sample only takes altogether57min in continuous detection, which is much faster than over2h that of the standardSPE-GC-MS method. The relative standard deviation and limits of detection are lower than2.5%and1.19μg L-1, respectively. And this solvent-free procedure is recommended as one ofthe standard procedures for the determination of EC in Chinese rice wine.
     (2) The urea-degrading enzyme of Enterobacter sp. R-SYB082suffers from low yields.And the production of the enzyme was optimized from1100U L-1to2303U L-1by anapproach which includes the optimization of initial glucose concentration to40g L-1, theelevation of anaerobic level of the reactor by charging CO2. A similar level was obtainedwhen scaled up to30L fermentor. Interestingly, Enterobacter sp. R-SYB082enzyme withgood stability was in vitro naturally activated by simple cold storage (4°C) or theparticipation of CO2. The urea-degrading enzyme of Enterobacter sp. R-SYB082offeredadvantages in terms of the rate of urea removal in Chinese rice wine. The urea removal rate of66.47%was higher than that of the widely used Japanese commercial acid urease (58.79%).The reduction of urea content in Chinese rice wine succeeded to control the content of ethylcarbamate from headstream.
     (3) Cloning and expressinon of Enterobacter sp. R-SYB082enzyme were performed. Theurea-degrading enzyme of Enterobacter sp. R-SYB082was found to be ureidoglycolateamidohydrolase (UAH) inferred through gene comparisons, a isoenzyme to acid urease other than a urease. The enzyme is promising for industrial application thanks to being able toeffectively degrading both urea and EC. And to our knowledge, the nitrogen assimilationpathway with UAH was newly found in urease-negative E. coli independent of urease. Thegene was cloned and functionally expressed in recombinant E. coli strain BL21-pET28-allAwith independent intellectual property.
     (4) A specific L-material was selected from various absorptive materials based ondirectional removing technology and intermolecular action principle, for the direct removal ofEC from Chinese rice wine. The ion-exchange action of the strong base group,[-N+R3], mainlydrives the directional removal of EC. After directionally modification and mixing, with theaddition of a fine adjustment process on Chinese rice wine sample, the material was able toeffectively remove EC from Chinese rice wine. The removal went with heat absorption, andthe temperature should be kept higher than20C when the removal was conducted. Thesuitable flow rate for dynamic adsorption is0.25BV h-1. For Chinese rice wine samples withEC contents lower than300μg L-1, a EC content below50μg L-1was achieved, meeting theEC limitation requirement while maintaining most of the components in Chinese rice wine.
     After the combination of urea degradation by Enterobacter sp. R-SYB082enzyme and ECdirectional removal by functional materials, the urea content in Chinese rice wine wasreduced to the level less than10mg L-1, and for Chinese rice wine samples with EC contentslower than300μg L-1, an EC content below50μg L-1can be achieved. By both treatments, anintegrated strategy for the control of urea and EC in Chinese rice wine was established for thefirst time. These results provided a brand new applicable and convinent approach for reducingEC content in Chinese rice wine, which implies great significance for ensuring food safety,and coping with foreign technical barrier. The results also provide a new idea for the controlof EC in other alcoholic beverages.
引文
1. Ough C S. Ethylcarbamate in fermented beverages and foods. I. Naturally occurringethylcarbamate [J]. Journal ofAgricultural and Food Chemistry,1976,24(2):323-328.
    2. Schmeltz I, Chiong, K. G., Hoffmann, D.J. Formation and determination of ethyl carbamatein tobacco and tobacco smoke [J]. Journal ofAnalytical Toxicology,1978,(2):265-268.
    3. Nettleship A, Henshaw P, Meyer H. Induction of pulmonary tumors in mice with ethylcarbamate [J]. Journal of The National Cancer Institute,1943,(4):309-319.
    4. Haddow A, Sexton W A. Influence of carbamic esters (urethanes) on experimental animaltumours [J]. Nature,1946,(157):500-503.
    5. Salaman M H, Roe F J. Incomplete carcinogens: ethyl carbamate (urethane) as an initiatorof skin tumour formation in the mouse [J]. British Journal of Cancer,1953,7(4):472-481.
    6. Berenblum I, Haran N. The initiating action of ethyl carbamate (urethane) on mouse skin[J]. British Journal of Cancer,1955,9(3):453-456.
    7. Tannenbaum A, Silverstone H. Urethan (Ethyl carbamate) as a multipotential carcinogen [J].Cancer Research,1958,18(10):1225-1231.
    8. Kaye A M. Urethan carcinogenesis and nucleic acid metabolism: In Vitro interactions withenzymes [J]. Cancer Research,1968,28(6):1041-1046.
    9. Prodi G, Rocchi P, Grilli S. In Vivo interaction of urethan with nucleic acids and proteins [J].Cancer Research,1970,30(12):2887-2892.
    10. Williams K, Kunz W, Petersen K, et al. Changes in mouse liver RNA induced by ethylcarbamate (urethane) and methyl carbamate [J]. Journal of Cancer Research and ClinicalOncology,1971,76(1):69-82.
    11. L froth G G T. Diethyl pyrocarbonate: formation of urethane in treated beverages [J].Science,1971,(174):1248-1250.
    12. Ough C S. Ethylcarbamate in fermented beverages and foods. II. Possible formation ofethylcarbamate from diethyl dicarbonate addition to wine [J]. Journal of Agricultural andFood Chemistry,1976,24(2):328-331.
    13. Faktor V M. Urethane inhibition of DNA synthesis in the hepatocytes of the regeneratingliver in mice [J]. Tsitologiia,1985,27(10):1145-1149.
    14. Neft R E, Conner M K, Takeshita T. Long-term persistence of ethyl carbamate-inducedsister chromatid exchanges in murine lymphocytes [J]. Cancer Research,1985,45(9):4115-4121.
    15. Takeshita T, Conner M K. Persistence of cyclophosphamide-induced damage in bonemarrow as indicated by sister chromatid exchange analysis [J]. Carcinogenesis,1985,6(8):1097-1102.
    16. Pound A W, Lawson T A. Carcinogenesis by carbamic acid esters and their binding toDNA[J]. Cancer Research,1976,36(3):1101-1107.
    17. JECFA. Summary and conclusions of the sixty-fourth meeting of the Joint FAO/WHOExpert Committee on Food Additives (JECFA)[C]. Joint FAO/WHO expert committeeon food additives sixty-fourth meeting; Rome;2005.31-40.
    18. Weber J, Sharypov V. Ethyl carbamate in foods and beverages: a review [J].Environmental Chemistry Letters,2009,7(3):233-247.
    19. IARC. Alcoholic beverage consumption and ethyl carbamate (Urethane)[C]. IARCMonographs Working Group experts meeting; Lyon;2007.1-5.
    20. Lachenmeier D W, Lima M C P, Nobrega I C C, et al. Cancer risk assessment of ethylcarbamate in alcoholic beverages from Brazil with special consideration to the spiritscachaca and tiquira [J]. Bmc Cancer,2010,10:266-280.
    21. Lachenmeier D W, Kanteres F, Kuballa T, et al. Ethyl carbamate in alcoholic beveragesfrom Mexico (Tequila, Mezcal, Bacanora, Sotol) and Guatemala (Cuxa): market surveyand risk assessment [J]. International Journal of Environmental Research and PublicHealth,2009,6(1):349-360.
    22. FSA. Food contact materials, contaminants and irradiation-update bulletin May2011;2011.
    23. EFSA. Ethyl carbamate and hydrocyanic acid in food and beverages. Scientific Opinion ofthe Panel on Contaminants [J]. The EFSAJournal,2007,(551):1-44.
    24.鄧紹平.氨基甲酸乙酯與酒類[N].食物安全焦点.2009.10,(39):1-2.
    25. EFSA. Opinion of the Scientific Committee on a request from EFSA related to aharmonised approach for risk assessment of substances which are both genotoxic andcarcinogenic [J]. The EFSAJournal,2005,(282):1-31.
    26. Lachenmeier D W, Schoeberl K, Kanteres F, et al. Is contaminated unrecorded alcohol ahealth problem in the European Union? A review of existing and methodological outlinefor future studies [J]. Addiction,2011,106:20-30.
    27. Delledonne D, Rivetti F, Romano U. Developments in the production and application ofdimethylcarbonate [J].Applied Catalysis A: General,2001,221(1-2):241-251.
    28. Wang D, Yang B, Zhai X, et al. Synthesis of diethyl carbonate by catalytic alcoholysis ofurea [J]. Fuel Processing Technology,2007,88(8):807-812.
    29.顾国贤.酿造酒工艺学[M].第二版ed.北京:中国轻工业出版社,1996.
    30. Kitamoto K, Oda K, Gomi K, et al. Genetic engineering of a sake yeast producing no ureaby successive disruption of arginase gene [J]. Applied and Environmental Microbiology,1991,57(1):301-306.
    31. Butzke C E, Bisson L F. Ethyl carbamate preventative action manual. In: U.S. Food andDrug Administration CffsaAn, editor. Washington, DC: University of California Press;1997.1-13.
    32. Schehl B, Senn T, Lachenmeier D W, et al. Contribution of the fermenting yeast strain toethyl carbamate generation in stone fruit spirits [J]. Applied Microbiology andBiotechnology,2007,74(4):843–850.
    33. Whitney P A, Magasanik B. The induction of arginase in Saccharomyces cerevisiae [J].Journal of Biological Chemistry,1973,248(17):6197-6202.
    34. An D, Ough C S. Urea excretion and uptake by wine yeasts as affected by various factors[J]. American Journal of Enology and Viticulture,1993,44(1):34-40.
    35.任江伟.黄酒中氨基甲酸乙酯生成动力学的研究[D].无锡:江南大学,2007.
    36. Haque M R, Bradbury J H. Total cyanide determination of plants and foods using thepicrate and acid hydrolysis methods [J]. Food Chemistry,2002,77:107-114.
    37. Vetter J. Plant cyanogenic glycosides [J]. Toxicon,2000,(38):11-36.
    38. Aresta M, Boscolo M, Franco D W. Copper(II) Catalysis in Cyanide Conversion intoEthyl Carbamate in Spirits and Relevant Reactions [J]. Journal of Agricultural and FoodChemistry,2001,49(6):2819-2824.
    39. Bruno S N F, Vaitsman D S, Kunigami C N, et al. Influence of the distillation processesfrom Rio de Janeiro in the ethyl carbamate formation in Brazilian sugar cane spirits [J].Food Chemistry,2007,104(4):1345-1352.
    40. Matsudo T, Aoki T, Abe K, et al. Determination of ethyl carbamate in soy sauce and itspossible precursor [J]. Journal ofAgricultural and Food Chemistry,1993,41(3):352-356.
    41.周建弟,丁关海,郑志强.酸性脲酶分解黄酒中尿素特性的研究[J].中国酿造,2006,(11):45-46.
    42. Larcher R, Nicolini G, Bertoldi D. Application of differential pH technique to thedetermination of urea in Italian wines [J]. Vitis,2007,46(3):148-153.
    43. Esti M, Fidaleo M, Moresi M, et al. Modeling of urea degradation in white and rose winesby acid urease [J]. Journal ofAgricultural and Food Chemistry,2007,55(7):2590-2596.
    44. Iida Y, Hara N, Matsumoto K, et al. Spectrophotometric microdetermination of urea inrice wine by using an immobilized acid urease column FIA system [J]. IEEJ Transactionson Sensors and Micromachines,2003,123(8):306-312.
    45.向井伸彦,木曽邦明.酒類の安全性に関する調査(第4報)-カルバミン酸エチルの分析-[J].日本酿造协会杂志,2005,100(10):705-714.
    46.赵光鳌,刘吉泉.酒中致癌物氨基甲酸乙酯的研究[J].食品与发酵工业,1988,(5):70-72.
    47.袁身淑,刘杨岷,王林祥,等.饮料酒中氨基甲酸乙酯测定方法的研究[J].无锡轻工业学院学报,1991,10(3):7-14.
    48.易蕴玉,帅桂兰,赵凤妹,等.酸性脲酶反应动力学研究[J].无锡轻工大学学报,1998,17(2):47-49.
    49.仝峰.成品黄酒中氨基甲酸乙酯去除的研究[D].无锡:江南大学,2007.
    50.徐晨.酒用酸性脲酶产生菌的选育及发酵条件优化[D]:江南大学,2007.
    51. Yang L Q, Wang S H, Tian Y P. Purification, properties, and application of a novel acidurease from Enterobacter sp.[J]. Applied Biochemistry and Biotechnology,2010,160(2):303-313.
    52.王玉美,田亚平,赵光鳌,等.肠杆菌酸性脲酶的提取及基本特性[J].食品工业科技,2007,(4):178-180.
    53.杨鲁强,王松华,田亚平,等.酒用酸性脲酶的纯化及其N端序列的测定[J].食品与生物技术学报,2008,27(6):93-97.
    54.王美苓.酒精性飲料中胺基甲酸乙酯之簡易快速氣相層析法.台湾:嘉南藥理學院;1988.
    55.邓富全;马孙.用二维色谱技术直接定量测定白酒中氨基甲酸乙酯[J].分析测试学报,1996,(5).
    56.周英田,孙咏梅,邓峰.毛细管色谱/质谱选择离子监测法测定酒精饮料中氨基甲酸乙酯[J].色谱,1996,14(3):190-192.
    57.王利平,刘杨岷,袁身淑.固相微萃取气质联用分析黄酒中的氨基甲酸乙酯[J].江苏食品与发酵,2003,(4):3-6.
    58.钟其顶,姚亮,熊正河.采用GC/MS和HPLC-FLD2种方法测定黄酒中的EC含量[J].食品与发酵工业,2007,33(3):115-119.
    59.李华,冯丽丹,梁新红,等.固相萃取结合GC/MS法测定葡萄酒中氨基甲酸乙酯[J].食品与生物技术学报,2008,27(1):62-66.
    60.张雪娜,叶长文,邹更,等.基于基质修饰的多次顶空固相微萃取-气相色谱法检测酒精饮料中的氨基甲酸乙酯[J].色谱,2011,(8):701-705.
    61.陈宜宜,张文悦,瞿素莲.黄酒中尿素的测定[J].环境污染与防治,1996,(3):34-36,46.
    62.王立媛,冯靓,吴平谷,等.分光光度法测定黄酒中尿素含量[J].中国卫生检验杂志,2010,(11):3059,3061.
    63.吴伟祥,全文海,闵航,等.黄酒用脲酶产生菌的分离与选育[J].浙江大学学报(农业与生命科学版),1996,22(2):177-180.
    64.刘颖,蔡丽玲,卜向阳.一株产酸性脲酶细菌的分离与鉴定[J].嘉兴高等专科学校学报,2000,13(4):9-11.
    65.王松华.一种酸性脲酶的纯化及产生菌的鉴定与分析[D].无锡:江南大学,2008.
    66.王松华,田亚平.产酸性脲酶菌株的筛选、鉴定及其脲酶的应用初探[J].生物技术通报,2008,(6):175-178.
    67.周建弟,郑志强,丁关海.酸性脲酶分解黄酒中尿素的酶解特性研究[J].中国黄酒,2011,(3):24-26.
    68. Andrich L, Esti M, Moresi M. Urea degradation in some white wines by immobilized acidurease in a stirred bioreactor [J]. Journal of Agricultural and Food Chemistry,2010,58(11):6747-6753.
    69. Mobley H L T, Island M D, Hausinger R P. Molecular biology of microbial ureases [J].Microbiological Reviews,1995,59(3):451-480.
    70. Sumner J B. The isolation and crystallization of the enzyme urease [J]. Journal ofBiological Chemistry,1926,69:435-441.
    71. Dixon N E, Gazzola C, Blakeley R L, et al. Jack bean urease (EC3.5.1.5). Ametalloenzyme. Asimple biological role for nickel?[J]. Journal of the American ChemicalSociety,1975,97(14):4131-4133.
    72. Stevens D F, Ough C S. Ethyl Carbamate Formation: Reaction of Urea and Citrulline withEthanol in Wine Under Low to Normal Temperature Conditions [J]. American Journal ofEnology and Viticulture,1993,44(3):309-312.
    73. Kobashi K, Kobayashi T, Kusai K, et al., Inventors; Nagase&Co LTD (JP), NagaseSeikagaku Kogyo KK (JP), Assignee. Method for producing acid urease, and use thereofpatent EP0280398.1988.1988.1.25.
    74.柿本茂八,隅野靖弘,铃木节工, Inventors;酸性脲酶及其生产.日本patent88104235.1989.
    75. Fidaleo M, Esti M, Moresi M. Assessment of urea degradation rate in model winesolutions by acid urease from Lactobacillus fermentum [J]. Journal of Agricultural andFood Chemistry,2006,54(17):6226-6235.
    76. Kodama S. Optimal conditions for effective use of acid urease in wine [J]. Journal of FoodScience,1996,61(3):548-552.
    77. Miyagawa K, Sumida M, Nakao M, et al. Purification, characterization, and application ofan acid urease from Arthrobacter mobilis [J]. Journal of Biotechnology,1999,68(2-3):227-236.
    78.刘颖,蔡丽玲.酸性脲酶产生菌200L1产酶及发酵条件的研究[J].嘉兴学院学报,2001,13(6):76-77.
    79. Krajewska B. Ureases I. Functional, catalytic and kinetic properties: Areview [J]. Journalof Molecular Catalysis B, Enzymatic,2009,59(1-3):9-21.
    80. Sangari F J, Seoane A, Rodriguez M C, et al. Characterization of the urease operon ofBrucella abortus and assessment of its role in virulence of the bacterium [J]. Infection andImmunity,2007,75(2):774-780.
    81. Mora D, Maguin E, Masiero M, et al. Characterization of urease genes cluster ofStreptococcus thermophilus [J]. Journal ofApplied Microbiology,2004,96(1):209-219.
    82. Skouloubris S, Thiberge J M, Labigne A, et al. The Helicobacter pylori ureI protein is notinvolved in urease activity but is essential for bacterial survival in vivo [J]. Infection andImmunity,1998,66(9):4517-4521.
    83. Chen Y Y M, Clancy K A, Burne R A. Streptococcus salivarius urease: Genetic andbiochemical characterization and expression in a dental plaque Streptococcus [J]. Infectionand Immunity,1996,64(2):585-592.
    84. Dupuy B, Daube G, Popoff M R, et al. Clostridium perfringens urease genes are plasmidborne [J]. Infection and Immunity,1997,65(6):2313-2320.
    85. Ciurli S, Safarov N, Miletti S, et al. Molecular characterization of Bacillus pasteurii UreE,a metal-binding chaperone for the assembly of the urease active site [J]. Journal ofBiological Inorganic Chemistry,2002,7(6):623-631.
    86. Heimer S R, Welch R A, Perna N T, et al. Urease of Enterohemorrhagic Escherichia coli:Evidence for regulation by Fur and a trans-acting factor [J]. Infection and Immunity,2002,70(2):1027-1031.
    87. Zhu J Q, Teng C H, Chang C F, et al. Cloning and characterization of a Helicobacterbizzozeronii urease gene cluster [J]. DNASequence,2002,13(6):321-331.
    88. Koper T E, El-Sheikh A F, Norton J M, et al. Urease-encoding genes inammonia-oxidizing bacteria [J]. Applied and Environmental Microbiology,2004,70(4):2342-2348.
    89. Kakinuma Y, Iida H, Sekizuka T, et al. Molecular characterisation of urease genes fromurease-positive thermophilic campylobacters (UPTC)[J]. British Journal of BiomedicalScience,2008,65(3):148-152.
    90.金凤燮.生物化学[M].北京:中国轻工业出版社,2004.
    91. Park H D, Shin M C, Woo I S. Antisense-mediated inhibition of arginase (CAR1) geneexpression in Saccharomyces cerevisiae [J]. Journal of Bioscience and Bioengineering,2001,92(5):481-484.
    92. Coulon J, Husnik J I, Inglis D L, et al. Metabolic engineering of Saccharomycescerevisiae to minimize the production of ethyl carbamate in wine!!![J]. AmericanJournal of Enology and Viticulture,2006,57(2):113-124.
    93.王德良,王晓娟,傅力,等.复合诱变选育低产尿素黄酒酵母[J].酿酒科技,2009,(8):17-21,24.
    94. Kitamoto K, Oda-Miyazaki K, Gomi K, et al. Mutant isolation of non-urea producingsake yeast by positive selection [J]. Journal of Fermentation and Bioengineering,1993,75(5):359-363.
    95. Ordu a R M d, Liu S Q, Patchett M L, et al. Ethyl carbamate precursor citrullineformation from arginine degradation by malolactic wine lactic acid bacteria [J]. FEMSMicrobiology letters,2000,183(1):31-35.
    96. Kobashi K, Takebe S, Kobayashi T, et al., Inventors;ウレタナーゼおよびその製造法patent JP19880131139.1989.12.05.
    97. Kobashi K, Takebe S, Sakai T. Urethane-hydrolyzing enzyme from Citrobacter sp.[J].Chemical&Pharmaceutical Bulletin,1990,38(5):1326-1328.
    98. Kobashi K, Takebe S, Kobayashi T, et al., Inventors; Nagase Seikagaku Ko (Nags),Assignee. Acidic urethanase1991.07.31.
    99. Sumino Y, Kakimoto S, Akiyama S i, Inventors; Takeda Chemical Industries, Ltd.(Osaka,JP) Assignee. Quality improvement of alcoholic liquors by enzymatic decomposing ofethyl carbamate.1991.
    100. Zhao C, Kobashi K. Purification and characterization of iron-containing urethanase fromBacillus licheniformis [J]. Biological&Pharmaceutical Bulletin,1994,17(6):773-778.
    101. Mohapatra B R, Bapuji M. Characterization of urethanase from Micrococcus speciesassociated with the marine sponge (Spirastrella species)[J]. Letters in AppliedMicrobiology,1997,25(6):393-396.
    102. Kobayashi T, Kyoichi K, Noboru T, et al., Inventors; Nagase seikagaku kogyo KKAssignee. Method for improving quality of liquor patent JP04325079.1992.11.13.
    103. Nagase S, Kogyo K K, Inventors; Nagase seikagaku kogyo KK, Assignee. Improvingquality of sake patent JP4325079-A.1992.11.13.
    104. Zhao C J, Imamura L, Kobashi K. Urethanase of Bacillus-licheniformis sp isolated frommouse gastrointestine [J]. Chemical&Pharmaceutical Bulletin,1991,39(12):3303-3306.
    105. Kobashi K, Takebe S, Kobayashi T, et al., Inventors; Kobashi, Kyoichi, Nagaseseikagaku kogyo KK, Nagase sangyo KK, Assignee. Urethanase and production thereofpatent JP1300892-A.1989.12.05.
    106. Campbell J R, Crabbe J R, Montgomery M T, et al., Inventors; The United States ofAmerica as represented by the Secretary of the Navy (Washington, DC), Assignee.Pseudomonas chlororaphis microorganism polyurethane degrading enzyme obtained therefrom and method of using enzyme patent5714378.1998.02.03.
    107. Himel D, Calmes J, Norwood D. Enzymatic degradation of polyurethane characterizedby time resolved static scattering; The Proceedings of the Louisiana Academy of Sciences;2000.01.01.
    108. Kambe T, Shigeno Y, Inventors; Japan science&technology agency, Assignee. Newurethanase patent JP2005245266-A.2005.09.15
    109. Akutsu-Shigeno Y, Adachi Y, Yamada C, et al. Isolation of a bacterium that degradesurethane compounds and characterization of its urethane hydrolase [J]. AppliedMicrobiology and Biotechnology,2006,70(4):422-429.
    110. Kambe T, Shigeno Y, Inventors; Japan science&Technology agency, Toshiaki Kambe,Yukie Shigeno, Assignee. Novel urethanase gene patent WO/2006/019095-A1.2006.02.23.
    111. Kambe T, Shigeno Y, Inventors; Novel Urethanase Gene.2006.
    112. Kambe T, Shigeno Y, Inventors; Japan science&technology agency, Assignee. Novelbacteria capable of breaking urethane bond patent EP1621608-B1.2010.12.08.
    113. Fu M L, Liu J, Chen Q H, et al. Determination of ethyl carbamate in Chinese yellow ricewine using high-performance liquid chromatography with fluorescence detection [J].International Journal of Food Science and Technology,2010,45(6):1297-1302.
    114.中华人民共和国国家进出口商品检验局.出口酒类中氨基甲酸乙酯残留量检验方法.北京:中国标准出版社;1993.
    115.牛栋平,陶宁萍,李学惠.固相萃取-气相色谱法测定葡萄酒中的氨基甲酸乙酯[J].上海水产大学学报,2008,17(5):616-619.
    116.李凤华,曹艳平,王锡宁. GC-MS法测定酒中的氨基甲酸乙酯[J].中国卫生检验杂志,2009,(6):1240-1241,1286.
    117. OIV. Compendium of international methods of wine and must analysis.2011ed.2;2011.
    118. AOAC. AOAC official method994.07Ethyl carbamate in alcoholic beverages and soysauce [J]. JAOAC Int,2000.
    119. European-Commission. Commission Regulation (EC) No761/1999of12April1999.Determining Community methods for the analysis of wines: Official Journal of theEuropean Communities;1999.1-4.
    120. Herbert P, Santos L, Bastos M, et al. New HPLC method to determine ethyl carbamate inalcoholic beverages using fluorescence detection [J]. Journal of Food Science,2002,67(5):1616-1620.
    121. Whiton R S, Zoecklein B W. Determination of ethyl carbamate in wine by solid-phasemicroextraction and gas chromatography/mass spectrometry [J]. American Journal ofEnology and Viticulture,2002,53(1):60-63.
    122. Lachenmeier D W, Nerlich U, Kuballa T. Automated determination of ethyl carbamate instone-fruit spirits using headspace solid-phase microextraction and gaschromatography-tandem mass spectrometry [J]. Journal of Chromatography A,2006,1108(1):116-120.
    123. Zhang Y, Zhang J. Optimization of headspace solid-phase microextraction for analysis ofethyl carbamate in alcoholic beverages using a face-centered cube central compositedesign [J]. Analytica Chimica Acta,2008,627(2):212-218.
    124.高年发,刘欠欠,王伟,等.葡萄酒中氨基甲酸乙酯含量的HS-SPME/MPS结合GC/MS自动检测方法的研究[J].中国酿造,2009,(12):107-111.
    125. Horii S, Goto K. Determination of ethyl carbamate in sake using headspace solid phasemicroextraction [J]. Journal of the Institute of Brewing,2010,116(2):177-181.
    126.马娅萍,孙守威,邓富全.用二维色谱技术直接定量测定白酒中氨基甲酸乙酯[J].分析测试学报,1996,(5).
    127. Jagerdeo E, Dugar S, Foster G D, et al. Analysis of ethyl carbamate in wines usingsolid-phase extraction and multidimensional gas chromatography/mass spectrometry [J].Journal ofAgricultural and Food Chemistry,2002,50(21):5797-5802.
    128. Madrera R R, Valles B S. Determination of ethyl carbamate in cider spirits byHPLC-FLD [J]. Food Control,2009,20(2):139-143.
    129. Lachenmeier D W. Rapid screening for ethyl carbamate in stone-fruit spirits using FTIRspectroscopy and chemometrics [J]. Anal Bioanal Chem,2005,382(6):1407-1412.
    130. Perestrelo R, Petronilho S, Camara J S, et al. Comprehensive two-dimensional gaschromatography with time-of-flight mass spectrometry combined with solid phasemicroextraction as a powerful tool for quantification of ethyl carbamate in fortified wines.The case study of Madeira wine [J]. Journal of Chromatography A,2010,1217(20):3441-3445.
    131.梁新红.中国葡萄酒中氨基甲酸乙酯的研究[D]:西北农林科技大学,2007.
    132.冯丽丹.葡萄酒中氨基甲酸乙酯检测方法的研究[D]:西北农林科技大学,2008.
    133.中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会.黄酒.中华人民共和国国家标准.北京:中国标准出版社;2008.
    134. Chen Y-Y M, Burne R A. Analysis of Streptococcus salivarius urease expression usingcontinuous chemostat culture [J]. FEMS Microbiology letters,1996,135:223-229.
    135. Zotta T, Ricciardi A, Rossano R, et al. Urease production by Streptococcus thermophilus[J]. Food Microbiology,2008,25(1):113-119.
    136. Park I S, Hausinger R P. Requirement of carbon dioxide for in vitro assembly of theurease nickel metallocenter [J]. Science,1995,267(5201):1156-1158.
    137. Sengupta S, Jana M L, Sengupta D, et al. A note on the estimation of microbialglycosidase activities by dinitrosalicylic acid reagent [J]. Applied Microbiology andBiotechnology,2000,53(6):732-735.
    138. Weatherburn M W. Phenol-hypochlorite reaction for determination of ammonia [J].Analytical Chemistry,1967,39(8):971-974.
    139. Carmel A V R, Heiwig J R, Inventors; The Dow Chemical Company (Midland, MI),Assignee. Urea determination of biological fluids using diacetylmonoxime reaction.United States patent4040787.1977.
    140. Phadnis S H, Parlow M H, Levy M, et al. Surface localization of Helicobacter pyloriurease and a heat shock protein homolog requires bacterial autolysis [J]. Infection andImmunity,1996,64(3):905-912.
    141. Hawtin P R, Stacey A R, Newell D G. Investigation of the structure and localization ofthe urease of Helicobacter pylori using monoclonal antibodies [J]. Journal of generalmicrobiology,1990,136(10):1995-2000.
    142. Krishnamurthy P C. Helicobacter pylori urease: Significance and mechanism of itssurface association.[D]: The Medical College of Wisconsin.,2001.
    143. Zhao S M, Xu W, Jiang W Q, et al. Regulation of cellular metabolism by protein lysineacetylation [J]. Science,2010,327(5968):1000-1004.
    144. Shiloach J, Rinas U. Glucose and acetate metabolism in E. coli-system level analysis andbiotechnological applications in protein production processes. In: Lee SY, editor. SystemsBiology and Biotechnology of Escherichia coli: Springer Science+Business Media B.V;2009.377-400.
    145. van de Walle M, Shiloach J. Proposed mechanism of acetate accumulation in tworecombinant Escherichia coli strains during high density fermentation [J]. Biotechnologyand Bioengineering,1998,57(1):71-78.
    146. Phue J-N, Noronha S B, Hattacharyya R, et al. Glucose metabolism at high densitygrowth of E. coli B and E. coli K: differences in metabolic pathways are responsible forefficient glucose utilization in E. coli B as determined by microarrays and Northern blotanalyses [J]. Biotechnology and Bioengineering,2005,90(7):805-820.
    147. Negrete A, Ng W-I, Shiloach J. Glucose uptake regulation in E. coli by the small RNASgrS: comparative analysis of E. coli K-12(JM109and MG1655) and E. coli B (BL21)[J]. Microbial Cell Factories,2010,9:75-83.
    148. Sachs G, Weeks D L, Wen Y, et al. Acid acclimation by Helicobacter pylori [J].Physiology,2005,20:429-438.
    149. Koning-Ward T F D, Robins-Browne R M. Contribution of Urease to Acid Tolerance inYersinia enterocolitica [J]. Infection and Immunity,1995,63(10):3790–3795.
    150. Scott D, D. W, C. H, et al. The role of internal urease in acid resistance of Helicobacterpylori [J]. Gastroenterology,1998,114(1):58-70.
    151. Scott D R, Marcus E A, Weeks D L, et al. Expression of the Helicobacter pylori ureIgene is required for acidic pH activation of cytoplasmic urease [J]. Infection andImmunity,2000,68(2):470-477.
    152. Pflock M, Kennard S, Delany I, et al. Acid-induced activation of the urease promoters ismediated directly by the ArsRS two-component system of Helicobacter pylori [J].Infection and Immunity,2005,73(10):6437-6445.
    153. Mora D, Monnet C, Parini C, et al. Urease biogenesis in Streptococcus thermophilus [J].Research In Microbiology,2005,156(9):897-903.
    154. Rektorschek M, Weeks D, Sachs G, et al. Influence of pH on metabolism and ureaseactivity of Helicobacter pylori [J]. Gastroenterology,1998,115(3):628-641.
    155. Scott D R, Marcus E A, Weeks D L, et al. Mechanisms of acid resistance due to theurease system of Helicobacter pylori [J]. Gastroenterology,2002,123(1):187-195.
    156. Stingl K, De Reuse H. Staying alive overdosed: How does Helicobacter pylori controlurease activity?[J]. International Journal of Medical Microbiology,2005,295(5):307-315.
    157. Park I S, Carr M B, Hausinger R P. In vitro activation of urease apoprotein and role ofUreD as a chaperone required for nickel metallocenter assembly [J]. Proceedings of theNational Academy of Sciences USA,1994,91(8):3233-3237.
    158. Soriano A, Colpas G J, Hausinger R P. UreE stimulation of GTP-dependent ureaseactivation in the UreD-UreF-UreG-urease apoprotein complex [J]. Biochemistry,2000,39(40):12435-12440.
    159. McCoy D, Cetin A, Hausinger R. Characterization of urease from Sporosarcina ureae [J].Archives of Microbiology,1992,157(5):411-416.
    160. Burton S G, Cowan D A, Woodley J M. The search for the ideal biocatalyst [J]. NatureBiotechnology,2002,20(1):37-45.
    161. Olson J W, Mehta N S, Maier R J. Requirement of nickel metabolism proteins HypAandHypB for full activity of both hydrogenase and urease in Helicobacter pylori [J].Molecular Microbiology,2001,39(1):176-182.
    162. Quiroz-Valenzuela S, Sukuru S C K, Hausinger R P, et al. The structure of ureaseactivation complexes examined by flexibility analysis, mutagenesis, and small-angleX-ray scattering [J]. Archives of Biochemistry and Biophysics,2008,480(1):51-57.
    163. Nakano M, Iida T, Honda T. Urease activity of enterohaemorrhagic Escherichia colidepends on a specific one-base substitution in ureD [J]. Microbiology,2004,150:3483-3489.
    164. D'Orazio S E, Collins C M. Characterization of a plasmid-encoded urease gene clusterfound in members of the family Enterobacteriaceae [J]. Journal of Bacteriology,1993,175(6):1860-1864.
    165. Laemmli U K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. Nature,1970,227:680-685.
    166.汪家政,范明.蛋白质技术手册[J].北京科学出版社,2000.
    167. Labigne A, Cussac V, Courcoux P. Shuttle cloning and nucleotide sequences ofHelicobacter pylori genes responsible for urease activity [J]. Journal of Bacteriology,1991,173(6):1920-1931.
    168. Maeda M, Hidaka M, Nakamura A, et al. Cloning, sequencing, and expression ofthermophilic Bacillus Sp strain Tb-90urease gene-complex in Escherichia-Coli [J].Journal of Bacteriology,1994,176(2):432-442.
    169. Collins C M, Falkow S. Genetic analysis of Escherichia coli urease genes: evidence fortwo distinct loci [J]. Journal of Bacteriology,1990,172(12):7138-7144.
    170. Grant R B, Penner J L, Hennessy J N, et al. Transferable urease activity in Providenciastuartii [J]. Journal of Clinical Microbiology,1981,13(3):561-565.
    171. Ostroff S M, Tarr P I, Neill M A, et al. Toxin genotypes and plasmid profiles asdeterminants of systemic sequelae in Escherichia coli O157:H7infections [J]. Journal ofInfectious Diseases,1989,160(6):994-998.
    172. Kulasekara B R, Jacobs M, Zhou Y, et al. Analysis of the genome of the Escherichia coliO157:H72006spinach-associated outbreak isolate indicates candidate genes that mayenhance virulence [J]. Infection and Immunity,2009,77(9):3713-3721.
    173. Kim G Y, Lee M H. Cloning and characterization of the urease gene cluster ofStreptococcus vestibularis ATCC49124[J]. Journal of Microbiology and Biotechnology,2006,16(2):286-290.
    174. Usui K, Iida H, Ueno H, et al. Genetic heterogeneity of urease gene loci inurease-positive thermophilic Campylobacter (UPTC)[J]. International Journal of Hygieneand Environmental Health,2006,209(6):541-545.
    175. Kakinuma Y, Iida H, Sekizuka T, et al. Cloning, sequencing and characterization of aurease gene operon from urease-positive thermophilic Campylobacter (UPTC)[J]. JournalofApplied Microbiology,2007,103(1):252-260.
    176. Hu L T, Mobley H L T. Expression of catalytically active recombinant Helicobacterpylori urease at wild-type levels in Escherichia coli [J]. Infection and Immunity,1993,61(6):2563-2569.
    177. Bosse J T, Macinnes J I. Genetic and biochemical analyses of Actinobacilluspleuropneumoniae urease [J]. Infection and Immunity,1997,65(11):4389-4394.
    178. Werner A K, Romeis T, Witte C-P. Ureide catabolism in Arabidopsis thaliana andEscherichia coli [J]. Nature Chemical Biology,2010,6(1):19-21.
    179. Todd C D, Tipton P A, Blevins D G, et al. Update on ureide degradation in legumes [J].Journal of Experimental Botany,2006,57(1):5-12.
    180. Witte C P. Urea metabolism in plants [J]. Plant Science,2011,(180):431-438.
    181. Munoz A, Raso M, Pineda M, et al. Degradation of ureidoglycolate in French bean(Phaseolus vulgaris) is catalysed by a ubiquitous ureidoglycolate urea-lyase [J]. Planta,2006,(224):175-184.
    182. Winkler R G, Blevins D G, Polacco J C, et al. Ureide catabolism of soybeans: II. pathwayof catabolism in intact leaf tissue.[J]. Plant Physiology,1987,83(3):585-591.
    183. Winkler R G, Blevins D G, Randall D D. Ureide catabolism in soybeans: III.ureidoglycolate amidohydrolase and allantoate amidohydrolase are activities of anallantoate degrading enzyme complex [J]. Plant Physiology,1988,86(4):1084-1088.
    184. Estermaier LM, Sieber AH, Lottspeich F, et al. Biochemischer abbau von cyanamid unddicyandiamid [J]. Angewandte Chemie,1992,104(5):655-658.
    185. Raymond S, Tocilj A, Ajamian E, et al. Crystal structure of ureidoglycolate hydrolase(AllA) from Escherichia coli O157:H7[J]. Proteins: Structure, Function, andBioinformatics,2005,61(2):454-459.
    186. Dixon N E, Riddles P W, Gazzola C, et al. Jack bean urease (EC3.5.1.5). V. On themechanism of action of urease on urea, formamide, acetamide, N-methylurea, and relatedcompounds [J]. Canadian Journal of Biochemistry,1980,58(12):1335-1344.
    187. Novagen EMD. Novagen pET system manual [M].11th ed. Darmstadt, Germany,2005.1-80.
    188. Hirel P H, Schmitter M J, Dessen P, et al. Extent of N-terminal methionine excision fromEscherichia coli proteins is governed by the side-chain length of the penultimate aminoacid [J]. Proceedings of the National Academy of Sciences USA,1989,86(21):8247-8251.
    189. Lathrop B K, Burack W R, Biltonen R L, et al. Expression of a group II phospholipaseA2from the venom of Agkistrodon piscivorus in Escherichia coli: Recovery andrenaturation from bacterial inclusion bodies [J]. Protein Expression and Purification,1992,3(6):512-517.
    190. Tobias J W, Shrader T E, Rocap G, et al. The N-End Rule in Bacteria [J]. Science,1991,254(5036):1374-1377.
    191. Sauvonnet N, Pugsley A P. Identification of two regions of Klebsiella oxyfocapullulanase that together are capable of promoting P-lactamase secretion by the generalsecretory pathway [J]. Molecular Microbiology,1996,22(1):1-7.
    192. Wells X E, Lees E M. Ureidoglycolate amidohydrolase from developing french beanfruits (Phaseolus vulgaris [L.].)[J]. Archives of Biochemistry and Biophysics,1991,287(1):151-159.
    193. Cusa E, Obradors N, Baldoma L, et al. Genetic analysis of a chromosomal regioncontaining genes required for assimilation of allantoin nitrogen and linked glyoxylatemetabolism in Escherichia coli [J]. Journal of Bacteriology,1999,181(24):7479-7484.
    194. Todd C D, Polacco J C. Soybean cultivars ‘Williams82’ and ‘Maple Arrow’ produceboth urea and ammonia during ureide degradation [J]. Journal of Experimental Botany,2004,55(398):867-877.
    195. Kanamori T, Kanou N, Atomi H, et al. Enzymatic characterization of a prokaryotic ureacarboxylase [J]. Journal of Bacteriology,2004,186(9):2532-2539.
    196. Buranasilp K, Charoenpanich J. Biodegradation of acrylamide by Enterobacteraerogenes isolated from wastewater in Thailand [J]. Journal of Environmental Sciences,2011,23(3):396-403.
    197. Di Marzo V.'Endocannabinoids' and other fatty acid derivatives with cannabimimeticproperties: Biochemistry and possible physiopathological relevance [J]. Biochimica etBiophysica Acta,1998,1392(2-3):153-175.
    198. Kurahashi Y, Ueda N, Suzuki H, et al. Reversible hydrolysis and synthesis ofanandamide demonstrated by recombinant rat fatty-acid amide hydrolase [J]. Biochemicaland Biophysical Research Communications,1997,237(3):512-515.
    199. McKinney M K, Cravatt B F. Structure and function of fatty acid amide hydrolase [J].Annual Review of Biochemistry,2005,74:411-432.
    200. Kobayashi M, Fujiwara Y, Goda M, et al. Identification of active sites in amidase:Evolutionary relationship between amide bond-and peptide bond-cleaving enzymes [J].Proceedings of the NationalAcademy of Sciences USA,1997,94(22):11986-11991.
    201. Pignatello J J, Xing B. Mechanisms of slow sorption of organic chemicals to naturalparticles [J]. Environmental Science&Technology,1996,30(1):1-11.
    202. Vanderborght B M, Van Grieken R E. Enrichment of trace metals in water by adsorptionon activated carbon [J]. Analytical Chemistry,1977,49(2):311-316.
    203. McMurrough I, Madigan D, Smyth M R. Adsorption by polyvinylpolypyrrolidone ofcatechins and proanthocyanidins from beer [J]. Journal of Agricultural and FoodChemistry,1995,43(10):2687-2691.
    204.侯虎,赵雪,张朝辉,等.大孔聚苯乙烯吸附树脂对鳕鱼排免疫活性肽的脱盐[J].过程工程学报,2010,10(5):899-904.
    205.钱庭宝,刘维琳,李金和.吸附树脂及其应用[M].北京:化学工业出版社,1990.795.
    206. Stucker V, Ranville J, Newman M, et al. Evaluation and application of anion exchangeresins to measure groundwater uranium flux at a former uranium mill site [J]. WaterResearch,2011,45(16):4866-4876.
    207. Bowes B D, Lenhoff A M. Protein adsorption and transport in dextran-modifiedion-exchange media. III. Effects of resin charge density and dextran content on adsorptionand intraparticle uptake [J]. Journal of chromatographyA,2011,1218(40):7180-7188.
    208. Marinho R S, Silva C N, Afonso J C, et al. Recovery of platinum, tin and indium fromspent catalysts in chloride medium using strong basic anion exchange resins [J]. Journal ofHazardous Materials,2011,192(3):1155-1160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700