清洁型脲硫酸复肥研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据我国磷复肥生产工艺的特点,针对现行磷复肥生产过程中存在的问题,对脲硫酸分解磷矿制备磷复肥的工艺技术进行了系统的研究,具体研究内容如下:
     1.针对脲硫酸复肥制备的理化基础,对脲硫酸酸解反应体系的有关基础数据如脲硫酸的密度、粘度、反应热、比热容、熔点、相变热等进行了测定与关联,发现脲硫酸溶液的粘度(η)与温度(T)之间存在如下关系:
     脲硫酸体系的粘度与酸解剂配比间呈非单调变化关系;不同配比的脲硫酸溶液,当加入第1mol尿素于1mol硫酸中时,混合过程放热速率最大,当加入尿素达到一定量后,混合过程不再放热。
     2.针对湿法磨矿的特点,在考察系统液相平衡的基础上,利用尿素系小分子,分子间的静电结合力弱,在动态中有与水相似的性质,开发出了用于清洁型脲硫酸复肥生产的矿浆减水技术和清洁型脲硫酸分解磷矿制备磷复肥的新工艺技术,实验考察了脲硫酸复肥生产新工艺中影响磷矿分解率的各种因素,如酸解剂用量与配比、反应温度、搅拌强度、磷矿粉细度、活化剂加入等,并优化出了工艺技术条件。
     3.利用两级吸收装置采用氟离子选择性电极法,研究了脲硫酸分解磷矿过程中影响氟逸出率的各种因素,结果表明酸解剂配比是最主要的影响因素;进而从氟硅酸溶液蒸气压、pH值、反应温度等方面分析尿素加入对氟逸出率的影响;通过X-ray衍射分析发现反应过程中尿素与氟硅酸溶液的反应产物为氟硅酸脲,确定了氟的赋存形式。同时指出降低氟逸出率的主要原因在于脲合质子中较强的O…H…O氢键的络合效应,抑制了氟硅酸的分解。在优化工艺条件下,氟逸出率可降至7%以下。
     4.利用X-ray衍射分析和化学分析方法对脲硫酸分解磷矿过程进行了系统研究,认为脲硫酸酸解磷矿的主反应过程包括两个阶段:
     第一阶段为脲硫酸分解磷矿生成尿素磷酸和四尿素硫酸钙,第二阶段为磷酸分解磷矿生成尿素磷酸二氢钙,尿素和一部分磷酸二氢钙生成尿素磷酸和磷酸氢钙(这是产品中枸溶性磷的主要形式)。
    
     郑州大学博士学位论文
     整个反应过程中,氟的行为:
     月万+及凡分HZSi凡
     4CO(刀万2)2+HZSi凡一{[(N万2)2 co]ZH}2召氓
     5.根据酸解磷矿过程的反应原理,对第一阶段脉硫酸分解磷矿反应动力学进
    行了研究,得到脉硫酸分解磷矿第一阶段反应动力学方程为:
    ;=华二554.61。xp(一擎).。,】0809
     口了大l
     第一阶段反应为一级反应,与硫酸分解磷矿第一阶段反应速率相比,加入尿
    素使第一阶段反应速率减慢。
     在MSMPR结晶器中对硫酸钙结晶动力学进行了研究,结果表明,脉硫酸代
    替硫酸的酸解体系,使CaSO;起晶时间明显延长(延长50%以上),晶体生长速
    率加快,悬浮液密度增加50%以上。活化剂的加入,使成核速率减小,成长速率
    增大,晶习发生改变,晶形变粗。
     6.以保康矿为基础,对脉硫酸分解磷矿的宏观反应动力学进行了研究,得到
    在磷矿粒度为0.1 10”n们n刃.174们以们以,反应温度为339K一359K和酸解剂配比为尿素:
    硫酸=2 .0一3.6:1(mol)的条件下,服硫酸分解磷矿过程的宏观动力学方程为:
    生。(寻牛)一刀玉=,34362exp〔理参旦)q。一凡一
    1 IUU一式,I式I
     该方程能比较满意地描述这一过程的动力学关系,为工艺条件的优化和反应
    器的设计提供了理论依据。
Based on the current status of fertilizer industry in China, a new cleaning process of compound fertilizer by decomposing phosphate rock with urea-sulfuric acid (USC in brief) is proposed and a systematic theory study is performed. The principal results are as follow:
    1. Basic data of the system, such as density, viscosity, enthalpy of solution of urea at different mole ratio in sulfuric acid, specific heat, melting point, phase transformation heat of urea-sulfuric acid are determined. It is found that the viscosity (77) of urea-sulfuric acid solution has the correlation with temperature (T):
    η = η0+A1*exp(-T/T1)
    Because of the complexation reaction between urea and sulfuric acid, the viscosity changed irregularly with the composition.
    When the first mole urea is fed in 1 mol H2SO4, the enthalpy of solution is the maximum (51.92KJ/mol H2SO4), then with more urea fed, enthalpy of solution decreased obviously.
    2. Due to the widely application of the process of decomposing phosphate rock slurry with concentrated sulfuric acid in superphosphate in China, a new technique of decreasing phosphate rock slurry water is put forward. The factors affecting the phosphate rock decomposing rate, such as the reaction temperature, mole ratio of urea sulfuric acid, stirring speed, size of phosphate rock and consumption of acid, are studied and optimized
    3. On the two-stage fluorine absorption apparatus with a fluorine ionic selective electrode, the fluorine emission law is studied. The action of urea is the most important factor for the fluorine emission rate. In order to evaluate the effect of urea, the vapor pressure of H2SiF6, pH value of urea-sulfuric acid are measured. AXRD analysis on the product indicates that a new complex [CO(NH2)2H]2SiF6 is formed in the reaction system. There is O...H...O bond in the complexation between CO(NH2)2 and H2SiF6 which slowers the decomposition reaction of H2SiF6 and brings on the low fluorine emission rate. With the new process, fluorine emission rate is less than 7%, the operation environment greatly improved and the cost of fluorine absorption economized.
    4. Based on the X-ray diffraction study and chemical analysis, the reaction principle of the urea sulfuric acid decomposing PR is put forward. It is deduced that the
    
    
    main reaction combines two stages. In first stage, urea sulfuric acid decomposing phosphate rock CaSO4 4CO(NH2)2 and CO(NH2)2 H3PO4 are formed; In the 2nd stage, Ca(H2PO4)2 CO(NH2)2 mainly formed and some CaHPOA and .CO(NH2)2 H3PO4 also occurred.
    In the whole reaction ,the existence state of fluorine may be as follows:
    5. According to the reaction principle, the reaction kinetics of decomposing phosphate rock with urea sulfuric acid at the first stage is studied by using chemical pure agent. A reaction kinetic equation is obtained:
    
    Comparing with the traditional process of decomposing PR with sulfuric acid, the rate of action is lowered by urea and reaction order about one order.
    In a MSMPR crystallizer, the crystallizing experiment is carried out. The crystal forming time is prolonged by 50% because of addition of urea, but the growth rate of crystals increased. When an active agent (APA) is used, the density of suspension is increased by more than 50%, the crystal shape becomes wider, the nuclear forming rate decreased and the growth rate increased.
    6. Through the experiments with reaction temperature 339K-359K, PR size 0.110-0.174mm, mole ratio of urea to sulfuric acid is 2.0:1 to 3.6:1, a macro kinetics equation of decomposing Baokang PR with urea-sulfuric acid is established:
    The study results could be used as a basis for the design of reactor and the optimization of process operation indices in practice.
引文
[1] 奚振邦.化肥与农业.磷肥与复肥,2003,18(2):5-10.
    [2] 许秀成.二十一世纪化肥展望.磷肥与复肥,2002,17(5):1-5.
    [3] 江善襄等.磷酸、磷肥和复混肥料.化学工业出版社.1999,3.
    [4] 张宝林.功能性复混肥料生产工艺技术.河南科技出版社.2003,7.
    [5] 张永志.浅谈我国复混肥料(复合肥料)工业、磷肥与复肥,2002,17(3):1-3.
    [6] [苏联]BH.科契考夫编.磷肥手册.陈嘉桢译.北京:化学工业出版社,1998.
    [7] Frazier, A. W., Lehr, J. R., and Smith J. P., Urea-monocalcium phosphate, a component of mixed fertilizers. J. Agri. Food Chem. 15(2):345-347 (Mar-Apr 1967).
    [8] "Fertilizer Manual", International Fertilizer Development Center UNIDU, P. 262(Dec 1979).
    [9] Misra, N. P., Surendra Mohan, Singh J. P., and Varma. S. "A New Granulation Process for TSP-Urea Based NP/NPK fertilizers". Fertilizer news 36(May 1985).
    [10] 徐静安.复混肥和功能性肥料生产工艺技术.北京:化学工业出版社,2000.
    [11] 贡长生.绿色化学.现代化工,2002,22(1):8-14.
    [12] 孙先良.绿色化肥与新型化肥的发展.现代化工,2001,21(8):1-5.
    [13] 侯翠红,张宝林,王光龙,蒋登高.尿素硫酸复肥生产新工艺研究,化工矿物与加工.2002.31(9):14-16.
    [14] P. Achard, FR2670202-A1[P]. 1990-12-05.
    [15] Limousin P. A new route for urea-phosphate fertilizer. Phosphorous & Potassium, 1994,(191):27-33.
    [16] 李惠跃.无氟排放的新型硫基氮磷复肥生产工艺.化肥工业,1998,25(3):23-25.
    [17] 罗洪波.尿基NP复肥新工艺开发研究.磷肥与复肥,1999(6):10-11.
    [18] 夏永妹等.尿素过磷酸钙复肥生产工艺.化工矿物与加工,2001(11):14-15
    [19] 刘代俊,张允湘,钟本和等.尿基过磷酸钙复合肥新工艺研究.磷肥与复肥,2000,15(6):13-14
    [20] 陈天朗等.“干法”硫尿磷肥.磷肥与复肥,1996,6:12-13
    [21] 郑起,李惠跃,葛建国等.尿素过磷酸钙的新工艺研究.上海化 32,2000,5:24-28.
    [22] M.L.切彼列韦茨基等.过磷酸钙生产的物理化学原理.化学工业出版社,1960.
    [23] Treushchenkv, N. N. Belyakov, V, A. Pozin, M. E. Interaction of the components
    
    of phosphate ores with dilute sulfuric acid solutions. Journal of Applied Chemistry of the USSR, 1987,8:1573-1576.
    [24] Pozin M. E, Belov, V. N, Guller, B.D et al. Calculation of certain parameters of decomposition of native phosphates by sulfuric acid. Journal of Applied Chemistry of the USSR, 1985,9:1929-1931.
    [25] 罗洪波,蒋绍志,钟本和等.硫酸脲分解磷矿反应机理探讨.高校化学工程学报 2003,17(6):673-678.
    [26] 朱丙辰.化学反应工程.化学工业出版社.2000.4.
    [27] 王应虎,应卫勇,孙文粹等.三氯化铁溶液浸期锌精矿的动力学模型.高校化学工程学报,1994,8(4):338-343.
    [28] 袁明亮,梅贤功,陈荩.菱锰矿浸出的动力学模型.中南工业大学学报,1995,26(3):338-342.
    [29] 张成刚,郑少华,杜长山等.钛铁矿硫酸浸出动力学研究.化学反应工程与工艺.2000,16(4):319-324.
    [30] Abdel-Aal, Kinetics of sulfuric acid leaching of low-grade zinc silicate ore. Hydrometallurgy 2000,55(3),:338-342.
    [31] Ma. Z, ER. C. Rate process and mathematical modeling of the acid leaching of a manganese carbonate ore. Hydrometallurgy. 1991,27:125-138.
    [32] Van der sluis S, eta. The digestion of phosphate ore in phosphoric acid. Ind. Eng Chem Res. 1987,26(12):2501-2505
    [33] 黄隐华,张允湘,丁炜等,硝酸分解磷矿的宏观动力学研究.化学研究与应用,2002,14(2):153-156.
    [34] 陈学玺,陈永.磷矿在盐酸中的溶解动力学.化学反应工程与工艺,2000,16(4):389-395.
    [35] 崔益顺,硫酸分解开阳磷矿动力学特性研究.四川轻化工学院学报,2001,14(4):34-36
    [36] 涂敏端,周进.硫磷混酸分解磷矿反应动力学研究.化学工程,1995,23(1):62-66.
    [37] 霍丹群,涂敏端,侯长军.硫磷混酸分解清平矿第二阶段酸解特性研究.化学反应工程与工艺,1996,12(4):410-413.
    [38] Said S. Elnashaie, Tariq F. Al-Fariss, Salah M, Abdel Razik. Investigation of
    
    Acidulation and coating of Saudi phosphate rocks. Ⅰ Batch Acidulation. Ind. Eng. Chem. Res. 1990,29:2389-2401.
    [39] Sergey V. Dorozhkin. Fundamentals of the wet-process phosphoric acid production. Ⅰ Kiretics and mechanism of the phosphate rock dissulotion. Ind. Eng. Chem. Res. 1996,35:4328-4335.
    [40] 张太明,黄隐华,张允湘等.金河磷矿在磷酸中的溶解动力学.四川联合大学学报.1997.1(3):26-31.
    [41] 严永华,刘期崇,夏代宽等.磷酸分解磷矿石的动力学.高校化学工程学报.1998,12(3):265-270.
    [42] 夏代宽,付红梅,王建华.磷酸分解磷矿化学反应过程研究.硫磷设计与粉体工程.2002,1:1-4.
    [43] 李成蓉,钟本和,张允湘.金河磷矿在硫磷混酸中的溶解动力学.化工学报,1998,49(3):335-341.
    [44] 汤建伟,钟本和,许秀成等.微波作用下促进磷矿分解反应的研究.化工矿物与加工,2001,30(5):13-17.
    [45] 汤建伟,钟本和,许秀成等.微波作用下硫酸和磷酸的扩散渗透性研究.磷肥与复肥,2003,18(3):8-11.
    [46] 辛厚文.分形理论及其应用.中国科学技术大学出版社.1993.
    [47] 马光华.颗粒/流体反应的分数维模型.化工学报,1999,50(2):222-227.
    [48] 陶东平.粗糙表面化学反应动力学模型.金属学报.2001,37(10):1073-1078
    [49] 刘成伦,徐龙君.鲜学福等.非均相化学反应的类分形动力学.化学世界.2001,5:265-267.
    [50] 朱建军,林西平,韶辉.气固相非催化反应缩核模型的分形分析.石油化工.1998,27(7):497-502.
    [51] 刘代俊.磷块岩的分形特征和反应活性.化学反应工程与工艺.1999,15(1):97-102.
    [52] 刘代俊等.磷酸复杂系统液固相反应动力学(Ⅰ).化工学报.2000,51(6):620-625.
    [53] 刘代俊等.磷酸复杂系统液固相反应动力学(Ⅱ).化工学报.2001,52(1):28-33.
    [54] Toshiaki et al. Crystal Growth of CaSO_4 · 2H_2O in Hydrochloric Acid Solution. Asahi Garasu Kenhyu Hokoku, 1961,11:123-140..
    [55] Gilbert R. Tr. Crystallization of gypsum in wet-process phosphoric acid. Ind Eng
    
    chem process dev. 1966,(5):388-391.
    [56] Adami A. Ridge M.J. Observations calcium sulphate dihydrate formed in media rich in phosphoric acid. Ⅰ, Precipitation of calcium sulphate dihydrate. J. Appl Chem. 1968,18:361-365.
    [57] Sangwal K. Effect of impurity on the process of crystal growth. J. Crystal Growth. 1993,128:1236-1244.
    [58] 李军,王建华,钟本和等.Al~(3+)对二水硫酸钙结晶动力学影响的研究,成都科技大学学报.1996,2:53-58.
    [59] 马三剑.二水石膏在硫磷酸和硫酸水溶液中的结晶动力学.苏州城建学院学报,1994,7(2):39-46.
    [60] 林治华,杜力.湿法磷酸中的杂质对二水硫酸钙结晶影响的研究.渝州大学学报,1995,12(2):64-69.
    [61] 周贵云,张允湘,钟本和.改性剂对硫酸钙结晶习性及过滤性能的影响.化学世界,1994,(12):632-634.
    [62] 张宝林,侯翠红,王光龙.活化疏松剂对酸解磷矿反应过程中结晶的影响.化工矿物与加工.2003.6:6-8
    [63] 汤建伟,钟本和,许秀成等.微波作用下的结晶过程分析.化工矿物与加工,2002,31(11):7-11.
    [64] 袁一.尿素.化学工业出版社,1997.
    [65] 汤桂华,赵增泰,郑冲.硫酸.化学工业出版社.1997.4
    [66] Jim Gregory. Urea-sulfuric acid fertilizer breakthrough. Fertilizer International No. 381. March/April 2001:38-40.
    [67] Lawrence. H. Dalman, Ternary Systems of urea and acids. J. Amer. Chem. Soc. 1934,56:549-553
    [68] 张逢星,杨琴,崔斌等.普钙—脲—水复合肥料体系的等温溶度研究.物理化学学报,2000,16(1):27-30
    [69] Yakubdzhanove Ya, Kanymova A, Adylova. A. Zh. Obshch. Khim, 1997,47(12):2653
    [70] William F linke, Solubility of Inorganic and metal-organic Compounds. 4th Ed. Washington D.C. American Chemical Society 1965, vol 1,685
    [71] 赵天源等.水盐体系相图.化工出版社.1999.
    
    
    [72] 分析化学手册.化学工业出版社.1997,1:254-273.
    [73] 张成孝.化学测量实验.科学出版社.1999.
    [74] 何超琼.等温型氧弹量热计原理及使用与维护.计量技术.1994.3.
    [75] 程灏.贝克曼温度计的基点及其调整.煤质技术.2002,5:48.
    [76] 罗质华.量热实验中散热修正的探讨.广东教育学院学报.1999,19(3):6-10.
    [77] 张雅明等.溴化钠在正丙醇—水混合溶剂中溶解热和溶剂化热.物理化学学报.1994,10(10):903-907
    [78] 刘少武,齐焉,刘东等.硫酸工作手册.东南大学出版社.2001.4
    [79] 余洛汀,陈天朗等.硫酸脲相变储热的实验研究,化学研究与应用.1997,4(9):343-347
    [80] 分析化学手册.第八分册.热分析.化学工业出版社,2001.
    [81] 南化公司设计院编.普通过磷酸钙工艺设计手册,化学工业出版社,1981
    [82] 孙来九,郭人民编著.过磷酸钙和混复肥料的生产.西北大学出版社.1981
    [83] 《化肥工业译丛》1992,2;953 自《XnM nPom》1991.No.5:24-26.
    [84] ZL98 11570814.张宝林,汤建伟,侯翠红等.
    [85] 化学工业部化肥司.中国磷肥工业协会组织编写.磷肥和复合肥料生产分析规程.化学工业出版社.1993,11
    [86] 马风云等.新型高效减水剂用于过磷酸钙生产的研究.磷肥与复肥,1997.1:16-20.
    [87] 陈五平.无机化工工艺学(三)、化学肥料.北京:化学工业出版社.1996
    [88] J.R.Lehr, Nature of Impuries in Phosphoric acid, Vol.1, Part Ⅱ (A.V.Slack.Ed.), Marcel Dekker,New York, 1968,p.637.
    [89] J.R.Lehr, Fluorine Chemical Redistribution in Relation to Gypsum Storage Pond System,TVA,March, 1978.
    [90] William Frazier, James R. Lehr and Ewell F. Dillard, Chemical behavior of fluoride in the production of wet process phosphoric acid. National fertilizer development center, TVA,Muscle shoals,Ala.
    [91] Vander Sluis, Sietse Fluoride Distribution Coefficients in wet Phosphoric acid processes.Industrial & Engineering Chemistry Research,Mar. 1988;527-536
    [92] 吴佩芝.湿法磷酸.化学工业出版社.1987.
    [93] Pitter P. Forms of Occurrence of Fluorine in Drinking Water, Water
    
    Res.,1985,19(3):281-284.
    [94] Parthasarathy N.,Buffie J. et al, Study of Interaction of Polymeric Aluminium Hydroxide with Fluoride, Can.J.Chem.,1986,64(1):24-30
    [95] Saha, S. Treatment of Aqueous Effluent for Fluoride Removal.Water Res.,1993,27(8);1347-1350
    [96] 中华人民共和国标准 GB/T1872-1995
    [97] K Srinivasan, G.. A Rechnitz. Activity Measurements with a Fluoride Selective Membrane Electrode. Analytic Chemistry. 1968,40(3):509-512
    [98] 湖南化工研究所编.钙镁磷肥生产分析方法.北京:石油化学工业出版社, 1976
    [99] [日]山添文雄.越野正义,藤井国博等,韩长极,付玉根等译.肥料分析方法,化学工业出版社,1983
    [100] Josef Vesely. Karel Stulik. The Effect of Solution Acidity on the Response of the Lanthanum Trifluoride Single-crystal Electrode. Analytica Chimica acta, 1974,73:157-166
    [101] 张允湘,冯余清,应健康等.料浆法制磷铵的生产与操作.成都科技大学出版社.1987.
    [102] 中华人民共和国标准.GB/T1872-1995磷矿石和磷精矿中氟含量的测定.离子选择电极法.
    [103] 俞政一.氟对萃取磷酸性质的影响.磷肥与复肥.1996,4:21-25.
    [104] 南开大学化学系物理化学教研室编.物理化学实验.南开大学出版社.1991
    [105] John.A.Dean Lange's Handbook of Chemistry,15th Ed.世界图书出版社.
    [106] 张宜华.精通Matlab 5.清华大学出版社,1999.
    [107] 陈桂明,戚红雨,潘伟.Matlab数理统计.科学出版社.2002.
    [108] 周公度、段莲运,结构化学基础,北京大学出版社,1997.10.
    [109] 张泽莹、邵美成、徐段杰等,科学通报,27,658(1982).
    [110] 黄恩才,刘国际.化学反应工程.化学工业出版社,1996,1.
    [111] 李绍芬.化学反应工程.化学工业出版社.1986.
    [112] 张濂,许志美,袁向前著.化学反应工程原理.华东理工大学出版社.2000.
    [113] 罗雄麟,李瑞丽.复杂反应速率常数的实验估计.石油学报,1996,12(3):61-66.
    [114] 郝宁,高盘良,韩德刚.实验数据的非线性最小二乘法计算机模型.计算机与
    
    应用化学.1998,15(1)
    [115] 陈世荣,夏树屏,高世扬.通用动力学参数计算程序的实现及应用.陕西师范大学学报(自然科学版).2001,29(2).
    [116] 天津大学,物理化学教研室编.物理化学,高等教育出版社.1982.
    [117] 夏少武.活化能及其计算.高等教育出版社.1993,3.
    [118] Mullin,J.W. Crystallization.2nd Ed. Butterworths(1972).
    [119] McCabe,W.D.,J.C.Smith, Unit Operation of Chemical Engineering.3rd Ed. McGraw-Hill(1976).
    [120] 丁绪淮等.工业结晶.北京:化学工业出版社,1985.
    [121] 周治安等编.化工设备设计基础.北京:化学工业出版社,1996.
    [122] 《化工设备设计手册》编写组编.材料与零部件(上).上海人民出版社,1973
    [123] 上海市化工局设计室编.化工设备设计手册(一).1972.
    [124] E·B·哈姆斯基[苏联],化学工业中的结晶.北京:化学工业出版社,1984.
    [125] 安藤淳平.化学肥料的研究,成都科技大学出版社.1983.
    [126] Smith J.M. Chemical Engineering Kinetics,3ra Edition ,New York:McGraw-Hill Book Company, 1981.
    [127] 1949,19(10):1843-1852.
    [128] 闫大桂,闫尚安.工科研究生应用数学基础.高等教育出版社,施普林格出版社,2001.9.
    [129] 孙培勤,刘大壮.实验设计数据处理与计算机模拟.河南科学技术出版社.2001,7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700