脲硫酸复肥工艺优化及工业化的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
清洁型脲硫酸复肥生产工艺能够直接利用中低品位的磷矿生产NPK复合肥,因其生产工艺简单、产品性能优良且在生产过程中无“三废”排放,具有较好经济效益、社会效益和环境效益。本文针对清洁型脲硫酸复肥生产工艺技术进行了深入系统的研究,主要对脲硫酸溶液的物性数据如密度、粘度进行了测定与关联,对脲硫酸溶液分解磷矿的工艺条件进行了优化,制备了脲硫酸复肥并对其氮素缓释性能进行了研究。
     1脲硫酸溶液密度、粘度的测定与关联。采用比重瓶法测定了组成为(尿素:硫酸:水(摩尔比)=X:1:Y;X=0.5、1、1.5、2、2.5、3、3.5,Y=1、2)的脲硫酸溶液在283.15K-363.15K范围内的密度;采用旋转粘度计测定了组成为(尿素:硫酸:水=X:1:Y;X=1、1.5、2、2.5、3、3.5,Y=1、2)的脲硫酸溶液在288.15K-363.15K范围内的粘度。实验结果表明:
     脲硫酸溶液组成一定时,溶液的密度随温度的增加而减小;温度一定时,脲硫酸溶液的密度随尿素的摩尔分率的增加而减小,随水的摩尔分率增加而减小。脲硫酸溶液的密度(p/g·cm3)与溶液中尿素摩尔分率m和溶液体系的温度(T/K)之间的关系满足如下方程:
     脲硫酸溶液组成一定时,溶液的粘度随温度的升高而减小。溶液粘度减小的过程可以分为三个阶段:粘度急剧减小阶段、粘度缓慢减小阶段、粘度基本不变阶段。温度一定时,溶液的粘度随尿素的摩尔分率增加呈现先增大后减小趋势,随水的摩尔分率的增加而减小。脲硫酸溶液的粘度(η/mPa·s)与温度(T/K)之间的关系可以由如下方程拟合:
     2脲硫酸溶液分解磷矿工艺条件的优化。考察了脲硫酸溶液分解中、低品位的磷矿过程中:反应时间、反应温度、搅拌速度、矿粉粒度、酸解剂用量、酸解剂配比、活化剂的使用等对磷矿转化率的影响,获得了脲硫酸溶液分解磷矿较优的工艺条件。在优化的工艺条件下,脲硫酸溶液分解磷矿的转化率能够达到94%左右,工艺条件的优化为脲硫酸复合肥的工业化实施提供了依据。
     3脲硫酸复肥的制备及氮素缓释性能的研究。采用圆盘造粒法制备了两种养分规格的脲硫酸复肥,以考察脲硫酸复肥的缓释性能。本文采用水溶出率法对普通复合肥料和脲硫酸复肥的养分释放特性进行评价,实验结果表明与普通的复合肥料相比脲硫酸复肥具有一定的缓释效果。脲硫酸复肥中的氮素有两种形态即:络合态和非络合态,其中络合态氮是以络合物CaSO4·XCO(NH2)2的形式存在,脲硫酸复肥中有缓释性的就是这部分络合态的氮。
Clean process of urea-sulfuric acid compound fertilizer technology can produce NPK fertilizers directly with low grade phosphate rock has great economic, social and environmental benefits due to its simple process, excellent performance and no "three wastes" discharge.In this paper, clean process of urea sulfuric acid compound fertilizer technology was systematically studied. Physical properties of urea-sulfuric acid, such as density and viscosity, were measured and related; The technology conditions of decomposing phosphate rock with urea sulfuric-acid were optimized; Urea-sulfuric acid compound fertilizer were prepared and the slow release properties of nitrogen were also studied.
     1 Determination and correlation of densities and viscosities of solutions with urea-sulfuric acid. Densities data of the solution (urea:sulfuric acid:water=X:1:Y; X=0.5,1,1.5,2,2.5,3,3.5,Y=1,2) were measured by Gay-Lussac type pycnometers at the temperature range of (283.15 to 363.15) K. Viscosities data of the solution (urea:sulfuric acid:water=X:1:Y; X=1,1.5,2,2.5,3,3.5,Y=1,2) were measured by rotational viscometer at the temperature range of (288.15 to 363.15) K.The results show that:
     When the composition of the solutions with urea-sulfuric acid is constant, the density decreases with increasing temperature. When the temperature is constant, the density of the solutions decreases with increasing mole fraction of urea and the mole fraction of water.It is found that the density (ρ/g·cm-3) of urea-sulfuric acid has the correlation with mole fraction of urea and temperature(T/K):
     When the composition of the solutions with urea-sulfuric acid is constant, the viscosity decreases with increasing temperature. The processs of viscosity can be divided into three phases:sharply decreasing phase, slowly decreasing phase, stable phase. When the temperature is constant, as the mole fraction of urea increases, the viscosity increases at first, but then decreases;The viscosity decreases with the increasing mole fraction of water. It is found that the viscosity (η/mPa·s) of urea-sulfuric acid has the correlation with temperature(T/K):
     2 The technology optimization of decomposition of low grade phosphate rock using urea-sulfuric acid. The influencing factors, such as reation time, reation temperature, stirring speed, consumption of urea-sulfuric acid, particle size of phosphorus rock, composition of acidolysis agent and consumption of active addition agent have been investigated in the acidification by urea sulfuric acid for low grade phosphate rock and the better process conditions have been obtained. Under the optimized process conditions, conversion rate can be up to 94% or so. Optimized process conditions provide a basis for the industrialization of producing compound fertilizer with urea-sulfuric acid.
     3 Preparation of urea-sulfuric acid compound fertilizer and determination on nitrogen slow release properties. Two standard urea-sulfuric acid compound fertilizers of different nutrient specifications, were prepared by disc granulation. In order to evaluate the nitrogen slow release effects of commercialized compound fertilizer and prepared urea-sulfuric acid compound fertilizer, water-immersion rate method was adopted. Results show that urea-sulfuric acid compound fertilizer has better slow release capability than commercialized compound fertilizer. Nitrogen in urea-sulfuric acid compound fertilizer is of two types:one is complex state and the other is non-complex state. Furthermore, the complex nitrogen, which has the ability of slow releasing, exists as CaSO4·XCO(NH2)2 in urea-sulfuric acid compound fertilizer.
引文
[1]M. Hossain, V. P.Singh. Fertilizer use in Asian agriculture:implications for sustaining food security and the environment[J]. Nutrient Cycling in Agroecosystems 2000,57:155-169
    [2]刘刚.我国化肥行业产品质量状况及形势与对策(上)[J].化肥工业,2004,31(4):11-13
    [3]谢道云.农业可持续发展的重要条件是科学施肥[J].安徽农学通报,2006,12(7):185-186
    [4]马文奇,张福锁,张卫锋.关乎我国资源、环境、粮食安全与可持续发展的化肥产业[J].资源科学,2005,27(3):33-40
    [5]车永喜.科学施肥与农业可持续发展概述[J].青海农林科技,2003,2:30-31
    [6]陈防,鲁剑巍,万开元.有机无机肥料对农业环境影响述评[J].长江流域资源与环境,2004,13(3):258-261
    [7]葛鑫,戴其根,霍中洋等.农田氮素流失对环境的污染现状及防治对策[J].耕作与栽培,2003,1:45-47
    [8]Wenyuan Huang, Richard G. Heifener, Harold Taylor etc. Timing Nitrogen Fertilizer Application to Reduce Nitrogen Losses to the Environment[J]. Water Resources Management 2000,14:35-58
    [9]原俊琴.提高化肥利用率增加农业生产潜力[J].农产品加工,2006,7:61-62
    [10]Jian Chen, Xuliang Zhang, Huijun Xie, Zhihui Bai. Associated impact of inorganic fertilizers and pesticides on microbial communitise in soils[J]. World J Microbiol Biotechnol,2007,23:23-29
    [11]Qing Chen, Xiaosheng Zhang, Hongyan Zhang, Peter Christie. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region[J]. Nutrient Cycling in Agroecosystems,2004,69:51-58
    [12]R.L. Yadav, D.S. Yadav, R.M. Singh & A Kumar. Long term effects of inorganic fertilizer inputs on crop productivity in a rice-wheat cropping system[J]. Nutrient Cycling in Agroecosystems,1998,51:193-200
    [13]Faculty of Agronomy Sciencds Ghent (Belgium). Effect of Soil Enrichment with Mineral Elements and Fertilizers on Surface Water and Plants[J]. Qual. Plant. Mater. Veg. ⅩⅫ, 1972,1:37-53
    [14]A.R. Mosier, Zhu Zhaoliang. Changes in patterns of fertilizer nitrogen use in Asia and its consequences for N2O emissions from agricultural systems [J]. Nutrient Cycling in Agroecosystems,2000,57:107-117
    [15]Karen E. Dobbie, Keith A. Smith. Impact of different forms of N fertilizer on N2O emissions from intensive grassland[J]. Nutrient Cycling in Agroecosystems,2003,67:37-46
    [16]C. Henault, X. Devis, J.L. Lucas, J.C.Germon. Influence of different agricultural practices (type of crop, form of N-fertilizer) on soil nitrous oxide emissions[J]. Biol Fertil Soils, 1998,27:299-306
    [17]韦立峰.浅谈水体富营养化的成因及其防治[J].中国资源综合利用,2006,24(8):25-27
    [18]S.S. Malhi, J.T.Harapiak, R. Karamanos. Distribution of acid extractable P and exchangeable K in a grassland soil as affected by long-term surface application of N、P and K fertilizers[J]. Nutrient Cycling in Agroecosystems,2003,67:265-272
    [19]王激清,刘全清,马文奇,江荣风,张福锁.中国养分资源利用状况及调控途径[J].资源科学,2005,27(3):47-53
    [20]Wenyuan Huang, Richard G. Heifener, Harold Taylor and Noel D. Uri. Using Insurance to Enhance Nitrogen Fertilizer Application to Reduce Nitrogen Losses to the Environment[J]. Environmental Monitoring and Assesment,2001,68:209-233
    [21]张永志.浅谈我国复混肥料工业[J].磷肥与复肥,2002,17(3):1-3
    [22]Z.L. Zhu, D.L. Chen. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environmen and best management strategies[J]. Nutrient Cycling in Agroecosystems,2002,63:117-127
    [23]方天翰.复混肥料生产技术手册[M].北京:化学工业出版社,2003(第一版):7-8
    [24]孙先良.绿色化肥与新型化肥的发展[J].现代化工,2001,21(8):1-5
    [25]伍宏业,许秀成.关于发展化肥工业,提高我国粮食增产潜力的建议[J].化学工业,2008,27(8):13-18
    [26]高永峰.国内(外)化肥工业的发展及展望[J].磷肥与复肥,2007,22(5):1-5
    [27]李冬光,许秀成,张艳丽.灌溉施肥技术[J].郑州大学学报(工学版),2002,23(1):78-81
    [28]侯翠红,王光龙,张宝林.脲硫酸复肥新工艺减少氟逸出的研究[J].化工环保,2003,23(5):249-252
    [29]J. Gregory. Fertilizer International.2001March/April 38:138-39
    [30]章斯规,精细化学品手册,北京:化学工业出版社,1996,2121.
    [31]王光龙,张芳军,张宝林.固体硫酸脲的研究[J].郑州大学学报(工学版),2006,27(4):32-25
    [32]王光龙,侯翠红,张宝林.尿素硫酸溶液粘度的研究[J].化肥工业,2002,29(1):17-19
    [33]余洛汀,陈天朗.硫酸脲相变储热的实验研究[J].化学研究与运用,1997,9(4):343-347
    [34]王光龙,张保林,侯翠红.硫酸-尿素系统的物理化学性质[J].化学研究与应用,2003,15(4):547-549
    [35]Cui-hong Hou, Guang-long Wang. Enthalpy of Solution and Viscosity ofMixtures of Urea and Sulfuric Acid [J]. Journal of Chemical and Engineering Data,2003,48:1099-1103
    [36]陈天朗,范红松.“干法”硫尿磷肥[J].磷肥与复肥,1996,(6):12-13
    [37]刘建雄.我国磷矿资源特点及开发利用建议[J].化工矿物与加工,2009,3:36-39
    [38]高永峰.我国磷矿资源特点及开发利用建议[J].化学工业,2007,25(11):1-6
    [39]涂瑞敏,霍丹群.用添加剂提高磷矿酸解反应速度的研究[J].磷肥与复肥,1996,(5):16-18
    [40]张丽,张宝林.活化疏松剂对酸解磷矿反应过程的影响[J].化工矿物与加工,2003,2:14-16
    [41]王光龙,侯翠红,张保林.尿素对硫酸钙结晶过程影响的研究[J].高校化学工程学报,2003,17(3):339-343
    [42]郭敏.超声波对磷矿酸解强化作用的研究[M].[硕士学位论文].成都:四川大学,2007
    [43]汤建伟.微波电磁场对磷矿酸解液固反应影响的研究[M].[博士学位论文].成都:四川大学,2003
    [44]崔益顺.人工添加剂对磷矿反应特性的影响[J].无机盐工业,1997,39(3):28-30
    [45]P.Aehard, FR670202-AI[P].1990-12-05.
    [46]LimousinP. A new route for urea-phosphate fertilizer PhosPhorous& Potassium [J].1994, (191):27-33
    [47]陈天朗,吕其平.“干法”生产含磷复肥工艺的工业性试验[J].磷肥与复肥,2009,24(3):45-47
    [48]罗洪波.尿基NP复肥新工艺开发研究[J].磷肥与复肥,1999,(6):10-11
    [49]李惠跃.无氟排放的新型硫基氮磷复肥生产工艺[J].化肥工业,1998,25(3):23-25
    [50]夏永妹,钟耀荣,樊春升.尿素过磷酸钙复肥生产工艺[J].化工矿物与加工,2001,11:14-15
    [51]刘代俊,张允湘,钟本和.尿基过磷酸钙复合肥新工艺研究[J].磷肥与复肥,2000,15(6):13-14
    [52]王光龙,侯翠红,张宝林.脲硫酸复肥技术新进展[J].化肥工业,2002,29(6):3-6
    [53]刘代俊,邱礼有.利用磷铁尾矿直接生产复合肥的MUSP新工艺[J].磷肥与复肥,2009,24(4):18-19
    [54]罗洪波,蒋绍志,钟本和,张允湘.硫酸脲分解磷矿反应机理探讨[J].高校化学工程学报,2003,17(6):673-678
    [55]Van der sluis S, eta. The digestion of phosphate ore in phosphoric acid.Ind.EngChemRes [J].1987,26 (12):2501-2505
    [56]丁炜,刘期崇,张允湘.硝酸分解磷矿的宏观动力学研究[J].硫磷设计与粉体工程,200,2:2-8
    [57]涂敏端,周进.硫磷混酸分解磷矿反应动力学研究[J].化学工程,1995,23(1):62-66
    [58]SaidS.ElnashaieTariq F.Al-Fariss, Salah M, Abdel Razik. Investigation ofAcidulationand coating of Saudi phosphate rocks[J]. Bateh Aeidulation.Ind.Eng1990,29:2389-2401
    [59]SergeyV, Dorozhkin. Fundamentals of thewet-process phosphoric acid produefion.I Kiretics and meehanism of the phosphate rock dissulotion[J]. Ind.Eng.Chem.Res.1996, 35:4328-4335
    [60]严永华,刘期崇,夏代宽,王建华.磷酸分解磷矿石的动力学研究[J].高校化学工程学报,1998,12(3):265-270
    [61]夏代宽,付红梅,王建华.磷酸分解磷矿化学反应过程研究[J].硫磷设计与粉体工程,2002,1:1-4
    [62]蒋绍志,罗洪波,张允湘,钟本和.硫酸脲分解磷矿反应动力学[J].化学反应工程与工艺,2004,20(3):235-238
    [63]侯翠红,王光龙,张宝林.脲硫酸分解磷矿过程第一阶段反应动力学研究[J].化学工程,2007,35(7):31-33
    [64]侯翠红,王光龙,张宝林.脲硫酸分解磷矿宏观动力学研究[J].化学工程,2007,35(1):28-31
    [65]汤桂华,赵增泰,郑冲.硫酸[M].北京:化学工业出版社,1997.25-27
    [66]孙友助,东荣强.尿磷复合肥的研制[J].河北工业科技,2000,17(3):28-32
    [67]Limousin P. Phosphorous & Potassium,1994, (191):27-33
    [68]王光龙,侯翠红,张宝林.尿素硫酸溶液粘度的研究[J].化肥工业,2002,29(1):17-19
    [69]R. Sadeghi, M.T. Zafarani-Moattar. J. Chem. Thermodyn,2004,36:665-670
    [70]ML切彼列韦茨基等.过磷酸钙生产的物理化学原理[M].北京:化学工业出版社,1960
    [71]Limousin P. A new route for urea-phosphate fertilizer[J]. Phosphorous&Potassium,1994, (191):27-33
    [72]T.F.ALFariss, S.S.E.H.Elnashaie. Comparison between acidulation by sulfuric acid and by phosphoric acid for Saudi phosphate rock[J]. Fertilizer Research,1991, (29):209-227
    [73]杨宗璐,鲍慈光,阎智英.表面活性剂对结晶过程影响的研究进展[J].云南化工,1994,(3):25-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700