复合肥料的造粒技术及颗粒特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要通过团聚造粒技术研究以碳酸钙、脱硫石膏、腐植酸为载体的复合肥造粒,旨在通过粉状肥料的颗粒化,减缓肥料的溶解速度和释放速度,提高化肥利用率。
     本章以碳酸钙为载体,硫酸为黏结剂,研究氮磷钾复合肥的造粒技术参数及颗粒形貌分析。结果表明,碳酸钙用量为2-5%,硫酸(密度1.5-1.7)用量是原料质量的2-4%,造粒温度为60-80℃为最佳造粒参数。电子扫描电镜(SEM)分析表明,颗粒表面粘附的晶体,使颗粒与外界环境隔离,有效降低板结率。另外该工艺条件简单、生产易操控,属于清洁型、环境友好型工艺。
     本章以脱硫石膏为载体,研究了氮钾肥复合肥的造粒技术参数及颗粒形貌分析。结果表明,用碳酸钙为造粒剂时,用量约2-4%,以脱硫石膏为造粒剂需添加高含量的造粒剂如16%,导致颗粒化肥养分的降低和生产成本的增加。因此,对于脱硫石膏改性后直接应用于氮钾肥的造粒仍有待研究。
     本章改进了传统圆盘造粒技术,并通过田间试验研究了不同含量腐植酸与无机肥配施对玉米生物性状、产量、经济效益、氮素利用率及土壤肥力的影响。结果表明:随着腐植酸含量的增加,玉米穗长、穗围、秃尖长、百粒重均有不同显著变化;产量、产投比较CK和NPK施肥呈增长趋势;腐植酸与无机复混肥配施还可显著增加玉米根、茎秆和籽粒中的氮含量,促进根和茎秆中的氮向籽粒中转移,氮素利用率较NPK单施提高11.93-23.37%;并在改良土壤方面具有重要意义。
This paper had mainly researched on the compound fertilizergranulation as the carrier of calcium carbonate, desulfurizationgypsum and humic acid through the granulation technology. It aimedto slow down the dissolution rate and release rate to improve fertilizerutilization ratio by powder fertilizer granulation.
     This chapter mainly studied on NPK compound fertilizergranulation technology parameters and particle morphology analysisas the carrier of calcium carbonate, sulfuric acid as coherent agent.The results showed that the best granulation parameters was calciumcarbonate dosage of 2-5%, sulfuric acid (the density between 1.5 and1.7) of the raw material 2-4%, granulation temperature of 60-80℃.Electronic scanning electron microscope(SEM) analysis showed thatthe particle surface adhesion crystal grain, which made the particlesand external environment isolation and reduced the rate ofcompaction. In addition, the process conditions is simple, easyhandling, belonging to clean type and environmental technology.
     This chapter mainly studied on NK compound fertilizergranulation technology parameters and particle morphology analysisas the carrier of desulfurization gypsum. The results show that the dosage is about 2-4% when calcium carbonate as granulation agent,but for desulfurization gypsum it is need to add high content ofgranulation agent, such as 16%, resulting in the reduction of particlechemical fertilizer nutrients and the increased the cost of production.So it should be researched that the desulfurization gypsum be directlyapplied in modified nitrogen and potassium fertilizer granulation.
     This chapter improved the traditional granulation techniques andthe effects of humic acid combined with inorganic fertilizers on cornyield and soil fertility were studied in the field condition. The resultshowed that: the corn ear length, ear diameter, barren tip length,kernel weight had different degree change with the quantity of humicacid fertilizer being added. The yield, value cost ratio weresignificantly increased in the three humic acid-inorganic fertilizertreatments when compared with CK and NPK treatment. In addition,the HA+NPK treatments can ameliorate physical properties of soiland promote the transfer of nitrogen from root and stem to the grain,and the nitrogen use efficiency was increased by 11.93%-23.37% inthree humic acid-inorganic fertilizer treatments than that of NPKtreatments.
引文
[1]曾喜柏,李菊梅.中国不同地区化肥施用及其对粮食生产的影响[J].中国农业科学, 2004, 37(3):387-392.
    [2]胡荣根,赵艳洲.安徽省化肥施用现状及提高利用率对策[J].安徽农学通报, 2007, 13(4): 54-57.
    [3] [美]史蒂文森F J,等.农业土壤中的氮[M].闵九康,等译.北京:科学出版社, 1989, 380.
    [4]李明哲.农田化肥施用污染现状与对策[J].河北农业科学, 2009, 13(5): 68-67.
    [5]张杨珠.稀土、微肥和硝化抑制剂对叶菜类蔬菜硝酸盐和亚硝酸盐含量及其他品质的影响(D).湖南:湖南农业大学, 2004.
    [6] Wallace A.. Soil acidification from use of too much fertilizer [J]. Soil Sci.Plant Anal., 1994, 5(1):87-92.
    [7]王小萍.中国土地退化防治文集[C].北京:中国科学技术出版社, 1990, 355-360.
    [8]奚振帮.中国土壤科学的现状与展望[M].南京:江苏科学技术出版社, 1991: 104-110.
    [9]杨柳林,桑利民,孙吉茹,等.我国肥料利用现状及提供化肥利用率的方法[J].山西农业科学,2011, 39(7): 690-692.
    [10]朱兆良,文启孝.中国土壤氮素[ M].江苏科学技术出版社, 1992, 213-249.
    [11]张浩,王正银.缓释/控释肥料研究进展[J].黑龙江农业科学, 2002, (5): 18-20.
    [12]孙先良.盲目过量施肥的危害及新型肥料的开发[J].中氮肥, 2005, (6): 1-3.
    [13] Sterling M.S., Ashley K.I., Bautusta A.B.. Slow-release fertilizer for rehabilitating oligotrophicstreams: A physical characterization [J]. Water Qual. Res. J. Can., 2000, 35(1): 73-94.
    [14]王月祥.高分子缓释化肥的制备及肥效研究(D).山西:中北大学, 2009.
    [15]郝万晨.缓释肥料的开发[J].应用化工, 2003, 32(5): 8-10.
    [16]付桂珍,杨三汉,邱红胜.缓释长效复合肥的开发与应用前景[J].安徽化工, 2008, 34(4): 9-12.
    [17]彭辉,陈战红,赵静红,等.缓释/控释肥料的研究进展[J].吉林农业, 2009, 18: 55-57.
    [18]郑晓梅,谈克政.我国复合肥文献研究综评[J].农业图书情报, 2001, (4): 64-66.
    [19]窦京平.我国复合肥行业的现状和未来发展[J].磷肥与复肥, 2009, 24(1): 3-6.
    [20]汤建伟,许秀成,王好斌,等.复合肥行业现状及缓释肥市场前景(A);第十一届全国化肥市场(红日阿康)研讨会(C); 2006.
    [21]汪家铭.国内三种基础复合肥生产技术进展[J].石化技术, 2006, 13(4): 57-58.
    [22]陈明良,朱东明.复混肥生产技术综述[J].化肥工业, 2002, 29(6): 10-14.
    [23]吴密主编.化肥生产核心技术、工艺流程与质量检测标准实施手册.北京:电子工业出版社,2002, 1796-1770.
    [24]周代红,李灿华,何翼云,等.包膜型缓释/控释复合肥造粒工艺分析[J].化工进展, 2004, 23(2):216-218.
    [25]刘军,丁德承.喷浆造粒干燥技术[J].硫磷设计, 1999, (1): 38-42.
    [26]段立松.氨酸法在复合肥料中的生产应用[J].磷肥与复肥, 2009,24(1):53-54.
    [27] Dalman L.H.. Temary systems of urea and acid. Amer. Chem. Soc., 1934, 56: 549-553.
    [28]武四海.一种尿基复合肥的生产方法[P].中国专利: 200410039219.9, 2007-11-14.
    [29]石学勇,张彦旭.硫酸脲氨化法生产尿基复合肥工艺技术及应用[J].化肥工业, 2011, 38(4):13-15
    [30]王光龙,侯翠红,张宝林.脲硫酸复肥新技术的研究进展[J].化肥工业, 2002, 29(6): 4-8.
    [31] Butensky M., Hyman D.. Rotary drum granulation. An experimental study of the factors affectinggranule size [J], Ind. Eng. Chem. Fundam, 1971, 10:212-219.
    [32] Tardos G.I., Irfan-Khan M., Mort P.R.. Critical Parameters and limiting conditions in bindergranulation of fine powders [J], Powder Technol., 1997, 94: 245-258.
    [33] Rowe R.C.. Binder-substrate interactions in granulation: a theoretical approach based on surface freeenergy and polarity [J], Int. J. Pharm. 1989, 52: 149-154.
    [34] Ennis B.J., Tardos G.I., Pfeffer R.. A microlevel-based characterization of granulation phenomena[J].Powder Technol., 1991, 65: 257-272.
    [35] Gluba T.. The effect of wetting liquid droplet size on the growth of agglomerates during wet drumgranulation [J]. Powder Technol., 2003, 130(1-3): 219-224.
    [36] Mort P.R.. Scale-up of binder agglomeration processes [J]. Powder Technol., 2005, 150(2): 86-103.
    [37] Aulton M.E., Banks M.. Influence of the hydrophobicity of the powder mix on fluidised bedgranulation. International Conference on Powder Technology in Pharmacy, Basel, Switzerland,Powder Advisory Centre, 1979.
    [38] Jaiyeoba K.T., Spring M.S.. The granulation of ternary mixtures:the effect of the wettability of thepowders [J]. J. Pharm. Pharmacol. 1980, 32: 386-388.
    [39] Gluba T., Heim A., Kochanski B.. Application of the theory of moments in the estimation of powdergranulation of different wettabilities [J]. Powder Handl. Process., 1990, 2: 323-326.
    [40] Rowe R.C.. Binder-substrate interactions in granulation: a theoretical approach based on surface freeenergy and polarity [J]. Int. J. Pharm. 1989, 52: 149-154.
    [41] Iveson S.M., Litster J.D.. Growth regime map for liquid-bound. Granules [J]. AIChE J. 1998, 44:1510-1518.
    [42] Taros G.I., Irfan K.M.. Critical parameters and control condition in binder granulation [J]. PowderTechnol., 1997, 94: 245-258.
    [43]尹晓鹏.有机废弃物制备无机有机肥转盘造粒工艺研究(D).天津:天津大学, 2004.
    [44] Iveson S.M., Wauters P.A.L.. Growth regime map for liquid-bound granules: further development andexperimental validation [J]. Powder Technol., 2001, 117: 83-97.
    [45] Adetayo A.A., Litster J.D., Desai M.. The effect of process parameters on drum granulation offertilizers with broad size distributions [J]. Chem. Eng. Sci., 1993, 48(23): 3951-3961.
    [46] Cheng H.J., Hsiau S.S.. The study of granular agglomeratio mechanism [J]. Powder Technol., 2010,199: 272-283.
    [47] Vonk P., CPF G., Ramaker J.S., et al. Growth mechanisms of high-shear pelletisation [J]. Int. J.Pharm., 1997, 157: 93-102.
    [48] Ramaker J.S., Jelgersma M.A., Vonk P., et al. Scale-down of a high shear pelletisation process: flowprofile and growth kinetics [J]. Int. J. Pharm., 1998, 166: 89-97.
    [49] Tardos G.I., Irfan-Khan M., Mort P. R.. Critical parameters andlimiting conditions in bindergranulation of fine powders [J]. Powder Technol., 1997, 94: 245-258.
    [50] Kenningley S.T., Knight P.C., Marson A.D.. An investigation into the effects of binder viscosity onagglomeration behaviour [J]. Powder Technol., 1997, 91: 95-103.
    [51] Hoornaert F., Wauters P A L, et al. Agglomeration behaviour of powders in a lodige mixer. Granulator[J]. Powder Technol., 1998, 96: 116-128.
    [52] Sch fer T., Mathiesen C.. Melt pelletization in a high shear mixer:VIII. Effects of binder viscosity [J].Int. J. Pharm., 1996, 139: 125-138.
    [53]李彦明.新型堆肥有机复混肥造粒粘结剂的研制与应用[D].北京:中国农业大学, 2005.
    [54]王光龙,张保林,侯翠红.硫酸-尿素系统的物理化学性质[J].化学研究与应用, 2003, 15(4):547-549
    [55] Dalman L.H.. Temary systems of urea and acid [J]. Amer. Chem. Soc., 1934, 56: 549-553
    [56]张煜,杨成武,曹建新,等.凹凸棒粘土的吸附特性及应用研究进展[J].现代机械, 2009, (3):94-96.
    [57]殷雷.尿基NPK复合肥装置的工艺分析[J].硫磷设计与粉体工程, 2005, 5: 16~18.
    [58]王方群,原永涛,齐立强.脱硫石膏性能及其综合利用[J].粉煤灰综合利用, 2004, (1): 41-44.
    [59]彭志辉,季建新,林芳辉,等.烟气脱硫石膏及其建材资源化研究[J].重庆环境科学, 2000, (12):26-32.
    [60]宋庆芳,白金贵.火电厂脱硫石膏资源化利用途径[J].山西能源与节能, 2008, (4): 24-29.
    [61]林少敏,黄利榆,陈少瑾.处理工艺对脱硫石膏晶体形态的影响研究[J].河北化工, 2008, 31(12):16-17.
    [62]胡术刚,李云娣,吕宪俊.烟气脱硫石膏综合利用技术研究与展望[J].有色矿冶, 2006, (22):46-48.
    [63] Tzouvalas G., Rantis G., Tsimas S.. Alternative calcium-sulfate-bearing materials as cement retarders.Part II: FGD gypsum [J]. Cem. Concr. Res., 2004, (34): 2119-2125.
    [64] Guo X. L., Shi H. S.. Thermal treatment and utilization of flue gas desulphurization gypsum as anadmixture in cement and concrete [J]. Constr. Build. Mater. 2008, 22(7): 1471-1476.
    [65] Van de Walle, Richard H.. (Columbia, MD), Smith. David (Kearneysville, WV). Binder for thegranulation of fertilizers such as ammonium sulfate [P], US 198700000599, 1988.
    [66]谢红波,曹杨,曹凤霞,等.脱硫石膏综合利用现状及其抹面材料的研制[J].再生资源研究.2006, (06): 28-31.
    [67] Bradley W.F.. The structure scheme of attapulgite [J]. Am. Mineral, 1940, 25(6): 405-410.
    [68]钱运华,金叶玲,吴洁,等.凹凸棒石黏土填充橡胶研究[J].非金属矿, 2000, 23(6): 25-26.
    [69]杨利营,盛京.凹凸棒粘土的研究开发与应[J].江苏化工, 2001, 29(6): 33-35.
    [70]许洪兴.复合肥生产中的调理剂[J].磷肥与夏肥, 2005, 20(4): 50-54.
    [71]刘伟华,杨克锐.不同电价阳离子对α-半水石膏水化性能的影响[J].新型建筑材料, 2007, 10:29-31.
    [72] Tesárek P., DrchalováJ., Kolísko J., et al. Flue gas desulfurization gypsum: study of basic mechanical,hydric and thermal properties [J]. Constr. Build. Mater., 2007, 21(7): 1500-1509.
    [73]巨晓棠,潘家荣,刘学军,等.北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究[J].植物营养与肥料学报, 2003, 9(3): 262-270.
    [74]刘守龙,童成立,吴金水,等.等氮条件下有机无机肥配比对水稻产量的影响探讨.土壤学报,2007, 44(1): 106-112.
    [75] Stockdale E. A., Lampkin N. H., Hovi M., et al. Agronomic and environmental implications of organicfarming systems [J]. Advances in Agronomy, 2001, 70: 261-262.
    [76]彭华伟,刘国顺,吴学巧,等.生物有机肥对烤烟氮磷钾积累、吸收和含量的影响[J].中国烟草
    [77]科学, 2008, 29(1): 25-29.
    [78]谢迎新,王小明,冯伟,等.无机肥与有机肥配施对冬小麦旗叶光合性状和产量的影响[J].河南农业大学学报, 2010, 44(2): 117-125.
    [79]曾宪成.腐植酸与食品源头安全[J].腐植酸, 2005, (4): 1-10.
    [80]白玲玉,陈世保,华珞,等.腐植酸与Cd、Zn的络合特性研究[J].核农学报, 2000, 14(1): 44-48.
    [81]王曰鑫,栗丽.腐植酸对化学肥料的增效作用研究[J].腐植酸, 2007, (2): 22-27.
    [82] Quilty J.R., Cattle S.R.. Use and understanding of organic amendments in Australian agriculture: areview. Soil Research, 2011, 49, 1-26.
    [83] Eyheraguibel B., Silvestre J., Morard P.. Effects of humic substances derived from organic wasteenhancement on the growth and mineral nutrition of maize [J]. Bioresource Technol., 2008, 99 (10):4206-4212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700