钾长石共酸提钾的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国这样一个钾资源非常缺乏的国家,能够合理利用以钾长石为主的非水溶性钾矿资源,具有非常重要的经济意义。本文主要研究了低温条件下钾长石共酸提钾的工艺,采用纯试剂模拟磷矿与钾长石共酸提钾,在排除磷矿反应活性、成矿原因等因素导致结果差异的情况下,对磷矿的普遍适用性进行研究,并初步探讨钾长石共酸提钾过程的机理与动力学,将钾长石系统钾含量分析的两种方法做了对比,以硫酸脲代替硫酸作为酸解液,与钾长石反应,对该体系工艺进行了优化。
     通过采用纯化学试剂模拟磷矿与钾长石共同反应,分析各种组分对钾的溶出率的影响,初步探讨其过程机理,实验结果为:各因素对钾溶出率的影响顺序由大到小为:氟化钙质量、氧化镁氧化钙质量比、磷酸三钙质量,较优化的各成分比例为:钾长石:磷矿0.8:1、磷矿:磷酸三钙:氟化钙1:0.5:0.1,氧化镁和氧化钙质量比在1:1时钾溶出率比较理想。在常见磷矿氟含量范围内,钾的溶出率随氟含量的增大呈现单调增长的趋势。
     通过对磷矿的普遍性的探讨可得出,钾长石提钾机理分为两步:第一步为模拟磷矿和硫酸反应产生氢氟酸将钾长石结构破坏;第二步为钙镁离子进入钾长石内部发生置换反应进行钾的提取。动力学分析表明:用纯试剂与钾长石共酸提钾的过程与磷矿同钾长石共酸体系提钾的动力学分析相一致,此反应既不是简单的物理控制过程或化学反应控制,而是属于固相扩散控制过程。
     鉴于该工艺系统的特殊性,对钾含量分析的两种方法在这种体系中的适用性进行对比实验,通过对所得样品分别进行两种方法的分析,结果表明四苯硼钠重量法测得的结果比容量法测得的结果偏高,重量法测钾比较准确,平行实验之间的差距很小。EDTA加入量对重量法和容量法分析结果的影响均较大,重量法中若EDTA的量偏少,就会引起实验结果偏大,在溶出率较高(大于95%)的情况下,若EDTA加入量不足,甚至可能出现溶出率大于100%的情形,容量法中EDTA加入量不足会导致滴定至变色后,过一段时间又恢复至先前的颜色,使结果分析失败。
     基于酸法工艺的现状和对该系统机理探讨的基础上,从节能环保的角度出发,通过对硫酸脲溶液与钾长石反应工艺条件优化,分别考察了反应时间、反应温度、硫酸用量与质量分数,尿素硫酸比对钾溶出率的影响,获得了硫酸脲与钾长石反应的较优的工艺条件,虽然与钾长石-磷矿-硫酸体系相比,钾长石-磷矿-硫酸脲体系所得到的钾溶出率有所降低,但具有使硫酸与磷矿反应缓和,氟含量排放减少,降低环境污染,降低能耗的优点。
In our country it is very lack of potassium mineral resources, so the rational use of non-water-soluble potassium mineral resources especially the potash feldspar has a very important economic significance. This paper mainly studies research about potassium extraction from potash feldspar with acids at the low temperature, using the pure chemical reagents to imitate phosphorite for potassium extraction from potash feldspar with acids, in the case of exclusion of reactivity,metallogenic reason of phosphorite etc on leads to the results of differences, study the universal applicability of the phosphorite, conducted a preliminary study on the mechanism and kinetics of the process of extracting potassium from potash feldspar, the two methods of the potassium content analysis of potash feldspar system are compared, instead of sulfuric acid as the acid hydrolyzate, and K-feldspar reaction to sulfuric acid urea,the system process was optimized.
     Through the use of pure chemical reagents and potash feldspar reaction, analysis of the effect about various components on the dissolution rates of potassium, the mechanism of the process is preliminary discussed, the experimental results:the order of descending of various factors on the potassium dissolution rates is:the quality of calcium fluoride, mass ratio of magnesium oxide and calcium oxide, the quality of tricalcium phosphate, more optimized composition ratio is:K-feldspar: phosphorite0.8:1,phosphorite:tricalcium phosphate:calcium fluoride1:0.5:1, the mass ratio of magnesium oxide and calcium oxide is1:1. Within the scope of the common fluoride content of phosphorite, the dissolution rate of potassium showing monotone increasing trend with increasing fluoride content.
     Through the discussion of the universality of phosphorite it can obtain that:the mechanism of potassium extraction from potash feldspar can be divided into two steps:the first step is the reaction of phosphorite and sulfuric acid which produces hydrofluoric acid and then hydrofluoric acid destroy potassium feldspar's structural; the second step is the replacement reaction that calcium and magnesium ions into the potash feldspar internal replaces potassium ions. Dynamics analysis shows that:use pure reagent or phosphorite for potassium extraction from potash feldspar with acids the dynamics analysis is consistent, neither a simple physical control process or chemical reaction control, but belongs to the solid-phase diffusion-controlled process.
     Given the special nature of the process, the comparative experiment is conducted for the applicability of such a system of potassium content analysis,through the analysis with two methods of the samples, the results show that the measured results of the sodium tetraphenylborate gravimetric method is higher than the volumetric method's, the sodium tetraphenylborate gravimetric method is more accurate, the gap between the parallel experiment is very small. The addition amount of EDTA has a bigger impact on the analysis results of gravimetric method and volumetric method, if the addition amount of EDTA is less than normal gravimetric method, it will cause larger experimental results, when the dissolution rate is higher (more than95%), if the addition amount of EDTA is insufficient, perhaps even the dissolution rate is greater than100%, if the addition amount of EDTA is not enough for volumetric method, it can lead to the end color return to the previous color after a period of time and then the analysis is failure,
     Based on the status of the acid process and mechanism discussion of the system, starting from the point of view of energy saving and environmental protection, through the optimization of the process conditions of the urea solution of sulfuric acid and potassium feldspar reaction, reaction time, reaction temperature, amount of sulfuric acid and the mass fraction of urea, mole ratio of urea and sulfuric acid were investigated to the influence potassium dissolution rate, access to the optimal process conditions,compared with the system of potash feldspar-phosphorite-sulfuric acid, though the dissolution rate of the system of potash feldspar-phosphorite-urea sulfuric acid decreased, it has some advantages such as:the reaction of sulfuric acid and phosphorite became ease, the emission of fluorine, content environmental pollution and the energy consumption are reduced.
引文
[1]苗世顶.利用非水溶性钾矿制取电子级碳酸钾的实验研究[D].[硕士学位论文].北京:中国地质大学,2004
    [2]鲍荣华,亓昭英.世界钾盐资源及供需形势[J].中国农资.2010(08):40-45
    [3]马鸿文,苏双青,刘浩等.中国钾资源与钾盐工业可持续发展[J].地学前缘.2010(01):294-310
    [4]商朋强,熊先孝,李博昀.中国钾盐矿主要矿集区及其资源潜力探讨[J].化工矿产地质.2010(1):1-8
    [5]魏成广.我国钾肥生产发展现状及消费需求[J].新农业.2010(04):41-43
    [6]胡汉声,王志铿,魏义瀚等,UG法综合利用明矾石的研究[J],无机盐工业,1982,(9):8-12
    [7]韩效钊,徐超,张兴法等.热分解法综合利用明矾石工艺研究[J].矿冶工程,2002,22(1):72-75
    [8]衷水平,阮仁满,邹来昌等,CN 101787433 A
    [9]王瑞永,彭钦华,廖斌.明矾石精矿酸浸生产明矾试验研究[J].化工矿物与加工,2011(09):13-15
    [10]陈履安.某些含钾岩石直接农业应用大有可为[J].中国地质,1996,(6):15-16
    [11]连宾.硅酸盐细菌GY92对伊利石的释钾作用[J].矿物学报,1998,(2):234-237
    [12]夏庆芳.伊利石试制钾氮肥和硫酸铝[J].浙江化工,1979(01):6-7
    [13]王玉国.伊利石综合利用的试验研究[J].化学世界,2001(12):624-626
    [14]罗功成,廖立兵,王素萍.伊利石活化钾及其机理的探讨[J].辽宁工程技术大学学报,2002(02):160-163
    [15]饶东生.硅酸盐物理化学[M].北京:冶金工业车版社,1980
    [16]南京大学地质系岩矿教研室.结晶学与矿物学[M].北京:地质出版社,1978:488-489
    [17]于漧.不溶性钾资源制钾肥研究现状[J].化工矿物与加工,2002(8):1-3
    [18]蓝计香,颜勇捷.钾长石中钾的加压浸取方法[J].高技术通讯,1994:26-28
    [19]赵恒勤,胡宠杰.钾长石的高压水化学法浸出[J].中国锰业,2002,20(1):27-29
    [20]刘杰,韩跃新,印万忠.富钾页岩的高压水热化法提取钾研究[J].矿冶,2008,7(4):31-35
    [21]聂轶苗,马鸿文,刘贺,等.水热条件下钾长石的分解反应机理[J].硅酸盐学报,2006,34(7):847-850
    [22]亚历山大罗夫.硅酸盐细菌[M].叶维青译.北京:科学出版社,1955
    [23]陈华葵,陈廷伟.硅酸盐细菌和形态生理及其对磷钾矿物的分解能力[J].微生物,1960(3):104-]12
    [24]李凤汀.郝正然,杨则缓,等.硅酸盐细菌HM8841菌株解钾作用的研究[J].微生物学报,1997,37(1):79-81
    [25]盛下放,黄为一,殷永娴.硅酸盐菌剂的应用效果及其解钾作用的初步研究[J].南京农业大学学报,2000,23(1):43-46
    [26]盛下放,黄为一,曹晓英.硅酸盐细菌NBT菌株解钾效能及对钾的吸持作用[J].植物营养与肥料学报,2001,7(4):459-466
    [27]盛下放,黄为一.硅酸盐细菌NBT菌株释钾条件的研究[J].中国农业科学,2002,35(6):673-677
    [28]Yuan L, Fang D H, Wang Z,H,etal.Bio-mobilization of Potassium from clay minerals:I. By ectomycorrhizas [J]. Pedosphere,2000,10(4):339-346
    [29]Yuan L, Huang J G, Li X L, etal. Biological mobilization of Potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots [J]. Plant and Soil,2004,262:351-361
    [30]Glowa K R,Arocena J M,Massieotte H B. Extraetion of Potassium and/or Magnesium from Selected Soil Minerals by Piloderma [J].Geomicrobiology Joumal,2003,20(2):99-11
    [31]潘牧.一株嗜热真菌对含钾矿物的降解作用研究[D].贵阳:贵州大学,2006
    [32]乔繁盛.我国利用钾长石的研究现状及建议[J].湿法冶金,1998(2):22-28
    [33]王光龙.热法磷钾肥的研究[J].河南化工,3,17(1989)
    [34]邱龙会,金作美,王励生.钾长石热分解生成硫酸钾的实验研究[J].化肥工业,2000,27(3):19-21,61
    [35]邱龙会,王励生,金作美.钾长石-石膏-碳酸钙热分解烧成物中硫酸钾的浸取过程[J].高校化学工程学报,2000,14(5):465-469
    [36]彭清静.用硫一氟混酸从钾长石中提钾的研究[J].吉首大学学报,1996,17(2):62-65
    [37]黄理承,韩效钊,陆亚玲等.硫酸分解钾长石的探讨[J].安徽化工,2011,37(1):37-39
    [38]杨波.硫磷混酸分解钾长石磷矿制氮磷钾复合肥料[J].陕西化工,1992(4):373-375
    [39]丁喻.常压低温分解钾长石制钾肥新工艺[J].湖南化工,1996,26(4):3-4
    [40]韩效钊,胡波,肖正辉等.钾长石与磷矿共酸浸提钾过程实验研究[J].化工矿物与加工2005(9):1-3
    [41]郭德月,韩效钊,王忠兵等.钾长石—磷矿—盐酸反应体系实验研究[J].磷肥与复肥2009,24(6):14-16
    [42]孟小伟,王光龙.钾长石提钾工艺研究[J].化工矿物与加工,2010(12):22-24
    [43]韩效钊,阎勇,胡波等.钾长石与磷矿磷酸反应机理研究[J].磷肥与复肥,2007,22(5):19-22
    [44]柯亮,石林,陈定盛.钾长石-硫酸钙-碳酸钙体系提钾添加剂的实验研究[J].非金属矿,2007,30(5):12-14
    [45]聂轶苗,马鸿文,刘贺等.水热条件下钾长石的分解反应机理[J].硅酸盐学报,2006,34(7):846-850,867
    [46]许秀成,钙镁磷肥发展前景综述[J].磷肥与复肥,2006,21(3):17-22
    [47]郭峰,袁孝淳.钾长石热分解及还原的热力学分析[J].化肥工业,1988,15(1):29-33,64
    [48]郭峰等.高炉条件下钾长石还原动力学和机理研究[J].化工冶金1989,7(4):21-30
    [49]冯武威,马鸿文.中温分解钾长石的热力学分析与实验[J].硅酸盐学报,2004,32(7):789-790
    [50]戚龙水,马鸿文,苗世顶.碳酸钾助熔焙烧分解钾长石热力学实验研究[J].2004(1):73-75
    [51]邱龙会,王励生,金作美.钾长石热分解热力学分析和△GT计算[J].化肥工业1997,24(6):29-32
    [52]邱龙会,王励生,金作美.钾长石矿热分解过程的研究[J].高等学校化学学报,1998,19(3):345-349
    [53]邱龙会,王励生,金作美.钾长石-石膏-碳酸钙热分解过程动力学实验研究[J].高校化学工程学报,2000,14(3):258-263
    [54]陈定盛,石林.钾长石-硫酸钙-碳酸钙热分解体系的再探索[J].化工矿物与加工,2006(6):18-21
    [55]石林,陈定盛.钾长石-硫酸钙-碳酸钙体系的热力学分析[J].华南理工大学学报2007,35(5):94-98
    [56]陈定盛,石林.钾长石-硫酸钙-碳酸钙体系的热分解过程动力学研究[J].化肥工业2009,36(2):27-29
    [57]薛彦辉,潘兆科,张桂斋.低温分解钾长石的热力学研究[J].化工矿产地质.2006,28(3):167-170
    [58]韩效钊,姚卫堂,胡波.离子交换法从钾长石提钾[J].应用化学,2003,20(4):373-374
    [59]胡波,韩效钊.钾长石离子交换基础理论及应用研究[D].合肥:合肥工业大学,2005
    [60]韩效钊,胡波,陆亚玲,等.钾长石与氯化钠离子交换动力学[J].化工学报,2006,57(9):2201-220
    [61]韩效钊,姚卫堂,胡波等.离子交换法从钾长石提钾[J].应用化学,2003,20(4):373-375
    [62]陈五平主编.无机化工工艺学:中册—硫酸,磷肥,钾肥.第三版.北京:化学工业出版社,200
    [63]韩效钊,姚卫棠,胡波等.封闭恒温法由磷矿磷酸与钾长石反应提钾机理探讨[J].中国矿业,2003,12(5):56-58
    [64]中国化学矿业协会.钾盐供需形势分析及对策建议[J].化工矿物与加工,2004,(7):1-2
    [65]黄珂,孟小伟,王光龙.钾长石提钾研究的进展[J].磷肥与复肥,2011,26(5):16-19
    [66]郭峰.袁孝淳.钾长石热分解及还原热力学分析[J].化肥工业,1988,15(1):29-33
    [67]邱龙会,王励生,金作美.钾长石矿热分解过程的研究[J].高等学校化学学报,1998,19(3):345-349
    [68]邱龙会,王励生,金作美.钾长石-石膏-碳酸钙热分解过程动力学实验研究[J].高校化学工程学报,2000,14(3):258-263
    [69]彭清静,彭良斌,邹晓勇,等.氯化钙熔浸钾长石提钾过程的研究[J].高校化学程学报,2003,17(2):185-189
    [70]彭清静,邹晓勇,黄诚.氯化钠熔浸钾长石提钾过程[J].过程工程学报,2002,2(2):146-150.
    [71]聂轶苗,马鸿文,刘贺,等.水热条件下钾长石的分解反应机理[J].硅酸盐学报,2006,34(7):846-850,867
    [72]韩效钊,胡波,陆亚玲等.钾长石与氯化钠离子交换动力学[J].化工学报,2006,57(9):2201-2206
    [73]陈定盛,石林.钾长石-硫酸钙-碳酸钙体系的热分解过程动力学研究[J].化肥业,2009,36(2),27-30
    [74]罗洪波,蒋绍志,钟本和等.硫酸脉分解磷矿反应机理探讨[J].高校化学工程学报,2003,17(6):673-678
    [75]谷守玉,王光龙.硫酸分解磷矿第一阶段反应动力学研究[J].化工矿物与加工,2005,7
    [76]侯翠红,王光龙,张宝林等.脲硫酸分解磷矿宏观动力学研究[J].化学工程,2007,1(35)
    [77]马三剑,蒋京东,齐兵等.磷矿粉在酸性水溶液中宏观溶解动力学方程[J].苏州城建环保学院学报,1994,3(7)
    [78]涂敏端,周进.硫磷混酸分解磷矿反应动力学研究[J].化学工:程,1995,23(1):62-66
    [79]朱炳辰主编,上海化工学院等合编.无机化工反应工程[M].北京:化学工业出版社,1981,309-322
    [80]雷常亮.重量法测钾长石里的氧化钾[J].广东化工.1998(5):49-51
    [81]冉广芬等.四苯硼钠—季铵盐容量法快速测钾[J].盐湖研究,2009:39-42
    [82]佟跃.化肥中钾含量测定的注意事项[J].质量论谈,2000:14-15
    [83]王光龙,侯翠红,张宝林.脲硫酸复肥新技术的研究进展[J].化肥工业,2002,29(6):3-6,9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700