用户名: 密码: 验证码:
腐殖酸及其不同级分和铁的络合物对阿特拉津光降解的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐殖酸是自然水体中广泛存在的一类天然有机大分子物质,对环境污染物的迁移转化具有重要影响。光解是持久性有毒污染物在环境水体中经历的重要过程之一,主要以间接光解为主。铁元素也是自然地表水的重要组分,当腐殖酸和Fe(Ⅲ)络合在一起后,必然会潜在的影响共存系统中环境污染物的光解过程。有报道显示,腐殖酸对污染物的光解作用具有多面性,即一些报道证实腐殖酸对光解具有催化作用;而另一些报道显示腐殖酸对光解有抑制作用。本论文首先研究了腐殖酸和铁络合物存在下阿特拉津光降解的机理,以及这个过程中涉及到的铁循环过程和H_2O_2的形成消失规律;然后采用分子排阻色谱(SEC)对腐殖酸进行分级,通过对阿特拉津的光解实验考察不同腐殖酸级分的光敏活性,重点研究腐殖酸不同级分和Fe(Ⅲ)的络合物对阿特拉津光降解的影响。本项研究对正确认识天然地表水中污染物的光解行为,尤其是深入了解和掌握腐殖酸这样一种重要的天然水组分和铁的络合物对污染物光解行为的作用具有重要的意义。主要实验结果如下:
     (1)鉴于腐殖酸这种大分子的结构复杂性和异质性,本研究选择先从腐殖酸光解产物中最小分子之一的柠檬酸分子入手,考察了柠檬酸和铁络合物对阿特拉津光降解的影响。实验发现:氙灯光照下,阿特拉津在Fe(Ⅲ)-柠檬酸溶液系统中的光降解主要是由~·OH引发的;而且Fe(Ⅲ)-柠檬酸体系生成~·OH的能力要高于单独的Fe(Ⅲ)体系(pH 3.5)。随着Fe(Ⅲ)-柠檬酸溶液的pH从3.5升高到8.6,阿特拉津的降解速率迅速降低,这主要归因于铁物种的形成受pH影响很大。光照强度的增强和柠檬酸浓度的增大都有利于Fe(Ⅲ)-柠檬酸体系中阿特拉津的光降解;柠檬酸同时起到配体和还原剂的作用。UV-Vis和FTIR光谱对柠檬酸和Fe(Ⅲ)的络合物表征的结果说明柠檬酸和Fe(Ⅲ)通过配体交换络合在一起。
     (2)氙灯光照下,腐殖酸的存在抑制了溶液中阿特拉津的光降解,腐殖酸浓度越大,对阿特拉津光分解的抑制作用就越明显。而当腐殖酸和Fe(Ⅲ)共存于溶液中时,表现出对阿特拉津光解的促进作用。为了研究腐殖酸和Fe(Ⅲ)的结合作用,采用了SEM、EDX、UV-Vis、FTIR和荧光光谱等表征方法。SEM和EDX给出了腐殖酸和Fe(Ⅲ)络合物的形貌特征:从UV-Vis光谱看出腐殖酸和Fe(Ⅲ)络合后在长波长方向吸收强度有轻微的提高;FTIR光谱表明二者通过配体交换络合在一起,1385 cm~(-1)处为-COO-Fe的峰;由荧光光谱的数据计算得到腐殖酸中有74%的荧光团参与络合,Fe(Ⅲ)-HA络合物条件稳定常数的对数值(logKc)为4.28。
     (3)为了更好的模拟自然环境,给氙灯加上了滤光片,使得透过的光是波长大于290nm的光。氙灯(λ>290 nm)光照60 h,在腐殖酸、Fe(Ⅲ)和Fe(Ⅲ)-HA络合物的溶液(pH 6.1)中,分别有8.5%、25%和56.3%的阿特拉津发生了光降解。分别测定了这些过程中生成的Fe(Ⅱ)和H_2O_2的浓度,结果发现Fe(Ⅲ)-HA络合物的存在明显提高了溶液中Fe(Ⅱ)和H_2O_2的浓度,从而生成更多的~·OH,促进阿特拉津的光降解。光照Fe(Ⅲ)-HA络合物溶液60 h的过程中,Fe(Ⅱ)和总铁的浓度比(Fe(Ⅱ)/Fe(t))在20-32%的范围内,当加入阿特拉津之后,Fe(Ⅱ)和H_2O_2的生成量都有所下降,Fe(Ⅱ)/Fe(t)降到10-22%,Fe(Ⅱ)的浓度几乎降到未加入阿特拉津前的一半,进一步证明腐殖酸和铁的络合物引发~·OH生成是阿特拉津光降解的主要原因。腐殖酸对铁循环和活性自由基的产生起催化作用;随着腐殖酸浓度的提高,Fe(Ⅱ)和H_2O_2的生成呈增加趋势,阿特拉津的降解也随之加速;但当腐殖酸浓度相对较高时,也会对~·OH起到淬灭作用。
     (4)为了研究腐殖酸的结构和其光化学性质之间的关系,采用体积排阻色谱(SEC)对腐殖酸进行分级,得到三个级分,分子量排序为:F_A>F_B>F_C。采用元素分析、~1H NMR、FTIR和荧光光谱各种方法表征,结果表明与级分F_A和F_B相比,小分子量的级分F_C含有较多的含氧官能团,芳香族含量高,荧光响应值大,对Fe(Ⅲ)络合能力强。氙灯(CHF-XM35-150W)照射下,阿特拉津在小分子量级分F_C的作用下降解较快,这可以归因于F_C含有较多的荧光团,具有更好的光敏性。阿特拉津在Fe(Ⅲ)与F_A、F_B、F_C组成的络合体系中的光降解是由~·OH引起的,Fe(Ⅱ)和H_2O_2的生成量在F_C和Fe(Ⅲ)共存的溶液中较多,阿特拉津的降解较快。用Fe(Ⅱ)的生成量来考察三种腐殖酸级分F_A、F_B、F_C的还原性,表明F_C由于具有高的芳香性和含有较多的含氧官能团而表现出最高的还原能力。
     总之,本研究考察了铁循环和H_2O_2的形成在腐殖酸和铁共存体系降解污染物过程中的作用,证明腐殖酸和铁络合物光照作用下产生的~·OH是引发阿特拉津光降解的主要原因;初步确认腐殖酸中的光敏级分为小分子量的级分,芳香结构和含氧官能团相对含量高,与铁络合前后都表现出高于其它级分的光催化降解阿特拉津的能力。本项研究对正确认识腐殖酸的环境行为及持久性有毒污染物的生态风险性具有重要意义和参考价值。
Humic acids (HA), the most widespread organic substances in natural waters, play important roles in the environmental behaviour of organic pollutants. In natural aquatic systems, photochemical processes are important pathways for the transformation of persistent toxic substances (PTS) that are poorly biodegradable. Iron, a ubiquitous element in natural water, is involved in complexation by HA, and the formed Fe(Ⅲ)-HA complex could affect the photodegradation of PTS significantly. Previous studies have shown that humic materials often control many photochemical reactions of PTS in two ways. That is, the presence of HA could either enhance or inhibit the photolysis of organic pollutants. In this work, the photochemical formation of Fe(Ⅱ) and hydrogen peroxide (H_2O_2) coupled with HA was studied to understand the significance of iron cycling in the photodegradation of atrazine under simulated sunlight. Then HA are separated based on the molecular weight, and relationship between the photoinductive activity and the structural properties of HA fractions were investigated with and without Fe(Ⅲ). These works are helpful in understanding the potential and mechanism of PTS photodegradation in natural waters and getting more insights into photosensitizing properties of Fe(Ⅲ)-HA complex. The main results are as following:
     (1) Because of the chemical complexity, variable chemical composition, and polydispersity of HA, citrate is selected as the analogue of HA considering that citrate is one of the small molecules produced from HA photodecomposition. The photodegradation of atrazine in aqueous solutions containing citrate and Fe(Ⅲ) was studied under Xe lamp irradiation. It was found that the presence of Fe(Ⅲ)-citrate complex enhanced the photodegradation rate of atrazine as a result of ~·OH attack. The rate of atrazine degradation was considerably reduced with increasing pH from 3.5 to 8.6, which could attributed to that the pH also controls the iron speciation. Higher light intensity and citrate concentrations lead to increased photodegradation of atrazine. Citrate not only acted as a carboxylate ligand but also a reductant of Fe(Ⅲ). The interaction of Fe(Ⅲ) with citrate was characterized using UV-visible absorption and fourier transform infrared spectroscopy (FTIR), indicating that the hydrogen ions on the carboxyl groups were exchanged for Fe(Ⅲ) ions.
     (2) Under Xe lamp irradiation, atrazine photodegradation was inhibited by the presence of HA at pH 6.1, and the rate decreased with increasing HA concentration. However, the rate for atrazine photolysis was promoted in solutions containing both HA and Fe(Ⅲ). Interactions of Fe(Ⅲ) with HA were characterized by SEM, EDX, UV-Vis and FTIR, revealing that Fe(Ⅲ)-HA complex was formed by ligand exchange between oxygen groups of HA and Fe(Ⅲ). Using fluorecence spectrometry the stability constant (Ax) and the fraction of fluorophores available for complexation (f) were obtained as logKc = 4.28 and f= 74%.
     (3) The Xe lamp in combination with a special glass filter restricting the transmission of wavelengths below 290 nm was used for sunlight simulation. At the irradiation time of 60 h, the photodegradation of atrazine was observed with 8.3%, 25% and 56.3% removal, corresponding to the presence of HA, Fe(Ⅲ) and Fe(Ⅲ)-HA complex, respectively. The formation of Fe(Ⅱ) and H_2O_2 was significantly enhanced by the presence of Fe(Ⅲ)-HA complex, and the subsequent product of Fe(Ⅱ) oxidation by H_2O_2, hydroxyl radical ( ~·OH), was the main oxidant responsible for the atrazine photodegradation. During 60 h of irradiation, the fraction of iron presented as Fe(Ⅱ) (Fe(Ⅱ)/Fe(t)) decreased from 20%-32% in the presence of Fe(Ⅲ)-HA complex to 10%-22% after adding atrazine. The rate of atrazine photodegradation in solutions containing Fe(Ⅲ) increased with increasing HA concentration, suggesting that the complexation of Fe(Ⅲ) with HA accelerated the Fe(Ⅲ)/Fe(Ⅱ) cycling. At a relatively high concentration, HA could act as a scavenger of ~·OH that are produced in the photo-Fenton reaction and hence compete with atrazine for ~·OH.
     (4) HA were separated based on the molecular weight (M_W) and three fractions were obtained following the order of M_W: F_a > F_b > F_C. The characteristic results of elemental analyses, ~1H NMR, FTIR and fluorescence spectra showed that the small size fraction (F_C) was characterized by greater aromaticity, more oxygen groups and higher fluorophore. In addition, F_C are more efficient at binding Fe(Ⅲ) than F_a and F_b. Photodegradation of atrazine under simulated sunlight (CHF-XM35-150W) was much faster in solution containing Fc since the structure of F_C was dominated by more fluorophores. In the presence of Fe(Ⅲ) complexes with F_a, F_b and F_C, ~·OH was responsible for atrazine photodegradation. Due to the higher aromaticity and oxygen groups involved in F_C, more Fe(Ⅱ) and H_2O_2 were generated in solution containing Fe(Ⅲ)-Fc complex, leading to the rapid degradation of atrazine under Xe lamp irradiation. The capacity of electron transfer, estimated from the amount of photoformed Fe(Ⅱ), was also highest for F_C.
     In summary, a better understanding of indirect photodegradation of PTS by ~·OH generated by sunlight interacting with sensitizers (e.g., HA and Fe(Ⅲ)) will contribute to elucidating the potential photochemical process occurring in natural waters; the relationship between the structure and the photoinductive activity of HA in the presence of iron would provide valuable insights into the different role of humic materials on pollutants fate in natural surface waters.
引文
[1] 曹怡,张建成.光化学技术.北京:化学工业出版社,2004.
    
    [2] Zepp R G, Wolfe N L, Gordon J A et al. Dynamics of 2,4-D esters in surface waters: Hydrolysis, photolysis, and vaporization. Environmental Science and Technology, 1975, 9:1144-1150.
    
    [3] Burrows H D, Canle M, Santaballa J A et al. Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology, 2002, 67:71-108.
    
    [4] 谭平,张敬东,郭生练.太阳光对湖泊中有机污染物降解的研究进展.环境污染治理技术 与没备,2003,4(8):13-18.
    
    [5] 邓南圣,吴峰.环境光化学.北京:化学工业出版社,2003.
    
    [6] Zafiriou O C, Joussot-Dubien J, Zepp R G. Photochemistry of natural waters. EnvironmentalScience and Technology, 1984, 18: 358A-371 A.
    
    [7] Lam M W, Tantuco K, Mabury S A. PhotoFate: A new approach in accounting for thecontribution of indirect photolysis of pesticides and pharmaceuticals in surface waters.Environmental Science and Technology, 2003, 37: 899-907.
    
    [8] Russi H, Kotzias D, Korte F. Photoinduced hydroxylation reactions of organic chemicals innatural waters. Nitrates as potential hydroxy radical sources. Chemosphere, 1982, 11: 1041-1048.
    
    [9] Brezonik P L, Fulkeron-Brekken J. Nitrate-induced photolysis in natural waters: Controls onconcentrations of hydroxyl radical photo-intermediates by natural scavenging agents.Environmental Science and Technology, 1998, 32: 3004-3010.
    
    [10] Buxton G V, Greenstock C L, Helman W P et al. Critical review of rate constants for reactionsof hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/CT) in aqueous solution.Journal of Physical and Chemical Reference Data, 1988,17: 513-886.
    
    [11] Haag W R, Hoigne, J. Singlet oxygen in surface waters. 3. Photochemical formation andsteady-state concentrations in various types of waters. Environmental Science and Technology,1986, 20(4): 341-348.
    
    [12] Kotzias D, Hustert K, Wieser A. Formation of oxygen species and their reactions with organicchemicals in aqueous solution. Chemosphere, 1987, 16: 505-511.
    
    [13] Zepp R G, Braun A M, Hoigne J et al. Photoproduction of hydrated electrons from naturalorganic solutes in aquatic environments. Environmental Science and Technology, 1987, 21:485-490.
    
    [14] Anbar M, Bamberek M, Ross A B. National Standard Reference Data Service (National Bureaudocument 343). National Standard Reference Data Service, 1973.
    
    [15] Huang J, Mabury S A. Steady-state concentrations of carbonate radicals in field waters.Environmental toxicology and chemistry, 2000, 19: 2181-2188.
    
    [16] Chen S N, Hoffman M Z. Rate constants for the reaction of the carbonate radical withcompounds of biochemical interest in neutral aqueous solution. Radiation Research, 1973, 56:40-47.
    
    [17] Mill T, Hendry D G, Richardson H. Free-radical oxidants in natural waters. Science, 1980, 207:886-887.
    
    [18] Neta P, Huie R E, Ross A B. Rate constants for reactions of peroxyl radicals in fluid solutions.Journal of Physical and Chemical Reference Data, 1990,19: 413-513.
    
    [19] Zafiriou O, True M. Nitrite photolysis in seawater by sunlight. Marine Chemistry, 1979, 8:9-32.
    
    [20] Zafiriou O, Bonneau R. Wavelength-dependent quantum yield of OH radical formation fromphotolysis of nitrite ion in water. Photochemistry and Photobiology, 1987, 45: 723-727.
    
    [21] Zepp R, Hoigne J, Bader H. Nitrate-induced photooxidation of trace organic chemicals in water.Environmental Science and Technology, 1987, 21: 443-450.
    
    [22] Zellner R, Exner M, Herrmann H. Absolute OH quantum yields in the laser photolysis of nitrate,nitrite and dissolved H_2O_2 at 308 and 351 nm in the temperature range 278-353 K. Journal ofAtmospheric Chemistry, 1990, 10:411-425.
    
    [23] Faust B C. In Aquatic and Surface Photochemistry; Helz G, Zepp R G, Crosby D G, Eds. LewisPublishers: Boca Raton, 1994, pp 3-38.
    
    [24] Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (pH 3-8) ofiron(II) with hydrogen peroxide: the photo-Fenton reaction. Environmental Science andTechnology, 1992, 26: 313-319.
    
    [25] Mopper K, Zhou X. Hydroxyl radical photoproduction in the sea and its potential impact onmarine processes. Science, 1990, 250: 661-664.
    
    [26] Zhou X, Mopper K. Determination of photochemically produced hydroxyl radicals in seawaterand freshwater. Marine Chemistry, 1990, 30: 71-88.
    
    [27] Vaughan P P, Blough N V. Photochemical formation of hydroxyl radical by constituents ofnatural waters. Environmental Science and Technology, 1998, 32(19): 2947-2953.
    
    [28] Haag W R, Hoigne J. Photosensitized oxidation in natural waters via · OH radicals.Chemosphere, 1985, 14: 1659-1671.
    
    [29] Canonica S, Kohn T, Mac M et al. Photosensitizer method to determine rate constants for thereaction of carbonate radical with organic compounds. Environmental Science and Technology,2005, 39(23): 9182-9188.
    
    [30] Warneck P, Wurzing C. Product quantum yield for the 305-nm photodecompsition of NO_3~- inaqueous solution. Journal of Physical Chemistry, 1988, 92: 6278-6283.
    
    [31] Allen J M, Lucas S, Allen S K. Formation of hydroxyl radical ((?)) in illuminated surfacewaters contaminated with acidic mine drainage. Environmental toxicology and chemistry, 1996,15: 107-113.
    
    [32] Chin Y P, Miller P L, Zeng L K et al. Photosensitized degradation of bisphenol a by dissolvedorganic matter. Environmental Science and Technology, 2004, 38: 5888-5894.
    
    [33] White E M, Vaughan P P, Zepp R G. Role of the photo-Fenton reaction in the production ofhydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river ofthe southeastern United States. Aquatic Science, 2003, 65: 402-414.
    
    [34] 展漫军.天然水体成分对双酚A光降解影响的研究:(博士学位论文).南京:南京大学. 2005.
    
    [35] Miller P L, Chin Y P. Photoinduced degradation of carbaryl in a wetland surface water. Journalof Agricultural and Food Chemistry, 2002, 50: 6758-6765.
    
    [36] Stangroom S J, Macleod C L, Lester J N. Photosensitized transformation of the herbicide4-chloro-2-methylphenoxy acetic acid (MCPA) in water. Water Research. 1998, 32: 623-632.
    
    [37] Kochany J, Maguire R J. Photodegradation of quinoline in water. Chemosphere, 1994, 28:1097-1110.
    
    [38] 展漫军,杨曦,鲜放鸣等.双酚A在硝酸根溶液中的光降解研究.中国环境科学,2005, 25(4):487-490.
    
    [39] Vione D, Falletti G, Maurino V. Sources and sinks of hydroxyl radicals upon irradiation ofnatural water samples. Environmental Science and Technology, 2006,40(12): 3775-3781.
    
    [40] Mill T, Richardson H, Hendry D G. Oxidation of organic compounds in aquatic systems: thefree radical oxidation of cumene. Pergamon: New York, 1978, Vol. 1.
    
    [41] Zepp R G, Wolfe G L, Baughman G L et al. Singlet oxygen in natural waters. Nature, 1977, 267:421-423.
    
    [42] Power J F, Sharma D K, Langford C H et al. In Photochemistry of Environmental AquaticSystems. Zika R G, Cooper W J, Eds. ACS Symposium Series 327; American Chemical Society:Washington, DC, 1987, pp 157-173.
    
    [43] Kumamoto Y, Wang J, Fujiwara K. Photoproduction and quenching of hydrated electrons fromdissolved organic matter in natural waters. Bulletin of the Chemical Society of Japan, 1994, 67:720-727.
    
    [44] Breugem P, Noort P V, Verberg S et al. Steady state concentrations of the phototransienthydrated electron in natural waters. Chemosphere, 1986,15(6): 717-724.
    
    [45] Faust B C, Hoigne J. Sensitized photooxidation of phenols by fulvic acid and in natural waters.Environmental Science and Technology, 1987, 21: 957-964.
    
    [46] Cooper W J., Zika R G, Petasne R G. Photochemical formation of H_2O_2 in natural watersexposed to sunlight. Environmental Science and Technology, 1988, 22: 1156-1160.
    
    [47] Khan S U著.吴虎奇译.环境中的腐殖物质[M].北京:科学出版社,1979.
    
    [48] 于天仁.土壤化学原理[M].北京:科学出版社,1987.
    
    [49] Schniter M, Khan S U. Humic Substances in the Environment. New York: MARCEL DEKKERINC., 1972: 23.
    
    [50] Ghabbour E A, Davies G. Understanding humic substances, adavnced methods, properties andapplications. Royal Society of Chemistry, 1999, p255-265.
    
    [51] Francioso O, Sanchez-cortes S, Tugnoli V et al. Characterization of peat fulvic acid fractions bymeans of FTIR, SERS, and H~1, C NMR spectroscopy. Applied Spectroscopy, 1998, 52:270-277.
    
    [52] Ghabbour E A, Davies G. Humic substances: structures, models and functions. Royal Society ofChemistry, 2001, Chap. 4.
    
    [53] 彭安,王文华.水体腐殖酸及其络合物Ⅰ蓟运河腐殖酸的提取和表征.环境科学学报,1981, 1(2):126-139
    
    [54] Wershaw R L, Pinckney D L. NMR characterization of humic acid fractions from different Philippine soils and sediments. Analytica Chimica Acta, 1990, 232: 31-42.
    
    [55] Krosshavn M, Southon T E, Steinnes E. The influence of vegetational origin and degree of humification of organic soils on their chemical composition, determined by solid-state ~(13)C NMR. Journal of Soil Science, 1992, 43: 485-493.
    
    [56] 贺婧,颜丽,杨凯.不同来源腐殖酸的组成利性质的研究.土壤通报,2003,34(4):343-345.
    
    [57] Chin Y P, Aiken G, O'Loughlin E. Molecular weight, polydispersity, and spectroscopicproperties of aquatic humic substances. Environmental Science and Technology, 1994; 28(11):1853-1858.
    
    [58] Rosario-Ortiz F L, Snyder S, Suffet I H.Characterization of the polarity of natural organicmatter under ambient conditions by the polarity rapid assessment method (PRAM)Environmental Science and Technology, 2007,41(14): 4895-4900.
    
    [59] Bauer M, Heitmann T, Macalady D L. Electron transfer capacities and reaction kinetics of peatdissolved organic matter. Environmental Science and Technology, 2007, 41(1): 139-145.
    
    [60] Biers E J, Zepp R G, Ann Moran M.The role of nitrogen in chromophoric and fluorescentdissolved organic matter formation. Marine Chemistry, 2007, 103: 46-60.
    
    [61] Schnizer M. Soil organic matter-the next 75 years. Soil Science. 1991, 151(1): 41-58.
    
    [62] 梁重山,党志.核磁共振波谱法在腐殖质研究中的应用.农业环境保护,2001,20(4): 277-279.
    
    [63] Singhal R M, Soni S P J. Indian Soc. Soil Sci, 1982,31: 182-189.
    
    [64] Schulten H-R.The three-dimensional structure of humic substances and soil organic matterstudied by computational analytical chemistry. Fresenius' Journal of Analytical Chemistry, 1995,351:62-73
    
    [65] 李学垣主编.土壤化学[M].高等教育出版社.2001,5-16.
    
    [66] 吴景贵,席时权,姜岩.土壤腐殖质的分析化学研究进展.分析化学,1997,25(10): 1221-1227
    
    [67] 王春霞,彭安.不同来源腐殖酸的光解及过氧化氢对其影响.环境科学学报,1996,16(3): 270-275.
    
    [68] Gjessing E T, Gjerdahl T. Influence of ultraviolet radiation on aquatic humus. Vatten, 1970, 26: 144-145.
    
    [69] 李君文,子祚斌,高明等.紫外线分解腐殖酸的研究.环境保护,1995,4:45-47.
    
    [70] Nina C, Peter B, Maaret K. Degradation products formed during UV-irradiation of humicwaters. Chemosphere, 1996,33(2): 245-255
    
    [71] Kulovaara M. Light induced degradation of aquatic humic substances by simulated sunlight.International Journal of Environmental Analytical Chemistry, 1996, 62(2): 85-95.
    
    [72] Goldstone J V, Pullin M J, Bertilsson S et al. Reactions of hydroxyl radical with humicsubstances: Bleaching, mineralization, and production of bioavailable carbon substrates.Environmental Science and Technology, 2002, 36(3): 364-372.
    
    [73] Schmitt-Kopplin P, Hertkorn N, Schulten H-R. Structural changes in a dissolved soil humicacid during photochemical degradation processes under O_2 and N_2 atmosphere. EnvironmentalScience and Technology, 1998, 32(17): 2531-2541.
    
    [74] Chiang Y-P, Liang Y-Y, Chang C-N et al. Differentiating ozone direct and indirect reactions ondecomposition of humic substances. Chemosphere, 2006,65(11): 2395-2400.
    
    [75] Sarathy S R, Mohseni M. The impact of UV/H_2O_2 advanced oxidation on molecular sizedistribution of chromophoric natural organic matter. Environmental Science and Technology,2007, 41(24): 8315-8320.
    
    [76] Zepp R G, Schlotzhauer P F, Sink R M. Photosensitized transformations involving electronicenergy transfer in natural waters: role of humic substances. Environmental Science andTechnology, 1985, 19: 74-78.
    
    [77] Bruccoleri A, Pant B C, Sharma D K et al. Evaluation of primary photoproduct quantum yieldsin fulvic acid. Environmental Science and Technology, 1993, 27(5): 889-894.
    
    [78] Aguer J P, Richard C. Influence of the excitation wavelength on the photoinductive properties ofhumic substances. Chemosphere, 1999,38(10): 2293-2301.
    
    [79] 杨曦,王晓书,朱春媚等.磺酰脲类除草剂在环境中的光降解研究-水溶液中的光解动力学. 环境科学,1998.19:29-32.
    
    [80] 王一茹,刘长武,牛成玉等.丁草胺在水体中的光解和稻田中归趋的研究.环境科学学报, 1996,16(4):475-480.
    
    [81] Vialaton D, Richard C, Baglio D et al. Phototransformation of 4-chloro-2-methylphenol inwater: influence of humic substances on the reaction. Journal of Photochemistry andPhotobiology A: Chemistry, 1998,119:39-45.
    
    [82] Vialaton D, Richard C. Phototransformation of aromatic pollutants in solar light: photolysisversus photosensitized reactions under natural water conditions. Aquatic Science, 2002, 64:207-215.
    
    [83] 花日茂,樊德方.丁草胺在不同类型水中的光化学降解.应用生态学报,1999,10(1):57-59.
    
    [84] Sakkas V A, Lambropoulou D A, Albanis T A. Study of chlorothalonil photodegradation innatural waters and in the presence of humic substances. Chemsphere, 2002, 48: 939-945.
    
    [85] Sakkas V A, Lambropoulou D A, Albanis T A. Photochemical degradation study of irgarol 1051in natural waters: influence of humic and fulvic substances on the reaction. Journal ofPhotochemistry and Photobiology A: Chemistry, 2002, 147:135-141.
    
    [86] Zhan M J, Yang X, Xian Q M, Kong L R. Photosensitized degradation of bisphenol A involvingreactive oxygen species in the presence of humic substances. Chemosphere, 2006, 63: 378-386.
    
    [87] Kohn T, Nelson K L. Sunlight-mediated inactivation of MS2 coliphage via exogenous singletoxygen produced by sensitizers in natural waters. Environmental Science and Technology, 2007,41(1): 192-197.
    
    [88] Kohn T, Grandbois M, McNeill K. Association with natural organic matter enhances thesunlight-mediated inactivation of MS2 coliphage by singlet oxygen. Environmental Science andTechnology, 2007, 41(13): 4626-4632.
    
    [89] Kochany J, Maguire R J. Sunlight photodegradation of metolachlor in water. Journal ofAgricultural and Food Chemistry, 1994, 42: 406-412.
    
    [90] Mathene R, Kham S U. Photodegradation of metolachlor in water in the presence of soil mineraland organic constituents. Journal of Agricultural and Food Chemistry, 1996, 44: 3996-4000.
    
    [91] Bachman J, Patterson H H. Photodecomposition of the carbamate pesticide carbofuran: kinetics and the influence of dissolved organic matter. Environmental Science and Technology, 1999, 33: 874-881.
    
    [92] 郑和辉,叶常明.乙草胺在水中的光化学降解动态研究.农药科学与管理,2001,22(6): 12-13.
    
    [93] 花日茂.九种农药对丁草胺在水溶液中光淬灭降解作用.环境科学学报,2000,20(3): 360-364.
    
    [94] 花日茂,樊德方,潘学东等.腐殖质对丁草胺在水中的光解效应研究.安徽农业大学学报, 1999,26(1):63-67.
    
    [95] 花日茂,岳永德,邢建国.腐殖质对乙草胺的光猝灭降解作用的效应.安徽农业大学学报, 2000,27(2):108-111.
    
    [96] Miller G C, Zepp R G. Extrapolating photolysis rates from the laboratoty to the environment.Residue Review, 1983, 85: 89-107.
    
    [97] Aguer J P, Richard C. Transformation of fenuron induced by photochemical excitation of humicacids. Pesticide Science, 1996, 46: 151-155.
    
    [98] Zheng H, Ye C. Photodegradation of acetochlor and butachlor in waters containing humic acidand inorganic ion. Bulletin of Environmental Contamination and Toxicology, 2001, 67:601-608.
    
    [99] Chitsan L, Kuen-Song L. Photocatalytic oxidation of toxic organohalides with TiO_2/UV: Theeffects of humic substances and organic mixtures. Chemosphere, 2007,66(10): 1872-1877.
    
    [100] Villaverde J, Maqueda C, Undabeytia T et al. Effect of various cyclodextrins onphotodegradation of a hydrophobic herbicide in aqueous suspensions of different soil colloidalcomponents. Chemosphere, 2007, 69(4): 575-584.
    
    [101] Stevenson F J. Humus Chemistry, Genesis, Composition, Reactions. 2nd ed. Wiley: Toronto,1994.
    
    [102]韩冬,叶美玲,施良和.水溶性凝胶色谱中的非体积排除效应.色谱,1995,13(6):432-436.
    
    [103] Barth H G. A practical approach to steric exclusion chromatography of water-soluble polymers.Journal of Chromatographic Science, 1980,18: 409-429.
    
    [104] Posner A M. Importance of electrolyte in the determination of molecular weights by 'Sephadex'gel filtration, with especial reference to humic acid. Nature, 1963, 198: 1161-1163.
    
    [105] Gjessing E T. Use of "Sephadex" gel for the estimation of molecular weight of humic substancesin natural water. Nature, 1965,208: 1091-1092.
    
    [106] Senesi N. Binding mechanisms of pesticides to soil humic substances. Science of The TotalEnvironment, 1992,123/124:63-76.
    
    [107]凌婉婷,徐建民,高彦征,汪海珍.溶解性有机质对土壤中有机污染物环境行为的影响.应 用生态学报,2004,15(2):326-330.
    
    [108] Chiou C T, Porter P E, Schmedding D W. Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental Science and Technology, 1983, 17(4): 227-231.
    
    [109] Maxin C R, Gel-Knabner I K. Partitioning of polycyclic aromatic hydrocarbons (PAH) towater-soluble soil organic matter. European Journal of Soil Science, 1995, 46: 193-204.
    
    [110] Wen B, Zhang J-j, Zhang S-z et al. Phenanthrene sorption to soil humic acid and different huminfractions. Environmental Science and Technology, 2007,41(9): 3165-3171.
    
    [111] Klaus U, Mohamed S, Volk M et al. Interaction of aquatic substances with anilazine and itsderivatives: The nature of the bound residues. Chemosphere, 1998, 37(2): 341-361.
    
    [112] Lee D Y, Farmer W J. Dissolved organic matter interraction with napropamide and four othernonionic pesticides. Journal of Environmental Quality, 1989, 18: 468-474.
    
    [113] Senesi N C, Testini J, Miano T M Interaction mechanism between humic acids of differentorigin and nature and electron donor herbicides: A comparative IR and ESR study. OrganicGeochemistry, 1987, 11: 25-30.
    
    [114] Sposito G, Martin-Neto L, Yang A. Atrazine complication by soil humic acids. Journal ofEnvironmental Quality, 1996, 25: 1203-1209.
    
    [115]徐建,杨欣,戴树桂等.涕灭威在水体悬浮颗粒物上的吸附行为.环境科学,2003,24(2): 87-91.
    
    [116] Prosen H, Zupancic-Kralj L The interaction of some pesticides and herbicides with humic acids.Chromatographis Supplement, 2000, 51: 155-164.
    
    [117] Henry V M. Association of hydrophobic organic contaminants with soluble organic matter:Evaluation of the database of K_(doc) values. Advances in Environmental Research, 2002, 6:577-593.
    
    [118] Thorn K A, Arterbum J B, Mikita M A. Nitrogen-15 and carbon-13 NMR investigation ofhydroxylamine-derivatized humic substances. Environmental Science and Technology, 1992,26(1): 107-116.
    
    [119] Guthrie E A, Bortiatynski J M, van Heemst J D H et al. Determination of [13C] pyrenesequestration in sediment microcosms using flash pyrolysis-GC-MS and ~(13)C NMR.Environmental Science and Technology, 1999, 33(1): 119-125.
    
    [120] Chiou C T, Malcolm R L, Brinton T I et al. Water solubility enhancement of some organicpollutants and pesticides by dissolved humic and fulvic acids. Environmental Science andTechnology, 1986, 20(5): 502-508.
    
    [121] Barriusu E U, Calvet R. Dissolved organic matter and adsorption-desorption of dimefuron,atrazine and cargetamide by soil. Journal of Environmental Quality, 1992, 21: 359-367.
    
    [122] Pusino A, Liu W, Gessa C I. Effect of melal-binding ability on the adsorption of acifluorfen onsoil. Journal of Agricultural and Food Chemistry, 1993, 41(3): 502-505.
    
    [123] Khan S U, Can J. Interaction of humic acid with bipyridylium herbicides. Soil Science, 1973,53(2): 199-204.
    
    [124] Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for noniomcorganic compounds. Science, 1979,206(16): 831-832.
    
    [125]李克斌,王琪全,刘维屏.除草剂苯达松与腐殖酸作用机理的研究.上海环境科学,1998, 17(5):18-20.
    
    [126] Thurman E M, Malcolm R L. Preparative isolation of aquatic humic substances. Environmental Science and Technology, 1981,15: 463-466.
    
    [127] Gledhill M, van den Berg C M G. Determination of complexation of iron (Ⅲ) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Marine Chemistry, 1994,47: 41-54.
    
    [128] Mantoura R F C, Dickson A, Riley J P. The complexation of metals with humic materials in natural waters. Estuarine and Coastal Marine Science, 1978, 6: 387-408.
    
    [129] 王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用.黄金,2003,24(1):74-76.
    
    [130]陈静生.水环境化学.等教育出版,北京:1987:P143.
    
    [131] Fukushima M, Tanaka S, Nakamura H. Copper(Ⅱ) binding abilities of molecular weightfractionated humic acids and their mixtures. Analytica Chimica Acta, 1996, 322: 173-185.
    
    [132] Jackson B P, Ranville J F, Bertsch P M et al. Characterization of colloidal and humic-bound Niand U in the "dissolved" fraction of contaminated sediment extracts. Environmental Science andTechnology, 2005, 39: 2478-2485.
    
    [133] Evanko C R, Dzombak D A. Influence of structural features on sorption of NOM-analogueorganic acids to goethite. Environmental Science and Technology, 1998, 32(19): 2846-2855.
    
    [134]蒋疆,王果,陈芳育等.草炭溶解态有机物质与Cu~(2+)、Cd~(2+)络合稳定性的研究.土壤与环境, 2002,11(2):116-120.
    
    [135] Sedlak D L, Hoigne J. The role of copper and oxalate in the redox cycling of iron in atmosphericwaters. Atmosphere Environment, 1993, 27A: 2173-2185.
    
    [136] Maruthamuthu P, Huie R E. Ferric ion assisted photooxidation of haloacetates. Chemosphere,1995, 30(11): 2199-2207.
    
    [137] Deng N, Wu F, Tian S et al. Photodegradation of dyes in aqueoussolutions containing Fe(III)-hydroxy complex II. Solar photodegradation kinetics. Chemosphere, 1997, 34(12): 2725-2735.
    
    [138] Larson R A, Schlauch M B, Marley K A. Ferric ion promoted photodecomposition of triazines.Journal of Agricultural and Food Chemistry, 1991, 39(11): 2057-2062.
    
    [139]周丹娜,吴峰,邓南圣.不同形态Fe(Ⅲ)盐水解产物的光化学性质及其对有机物光降解作 用的研究进展.水处理技术,1998,24(5):254-258.
    
    [140] Zuo Y, Hoigne J. Formation of hydrogen peroxide and depletion of oxalic acid in atmosphericwater by photolysis of iron(Ⅲ)-oxalato complexes. Environmental Science and Technology,1992,26: 1014-1022.
    
    [141] Faust B C, Zepp Richard G. Photochemistry of aqueous iron(Ⅲ)-polycarboxylate complexes:roles in the chemistry of atmospheric and surface waters. Environmental Science andTechnology, 1993, 27(12): 2517-2522.
    
    [142] Zuo Y. Kinetics of photochemical/chemical cycling of iron coupled with organic substances incloud and fog droplets. Geochimica et Cosmochimica Acta, 1995, 59(15): 3123-3130.
    
    [143] Hug S J, Laubscher H-U, James B R. Iron(Ⅲ) catalyzed photochemical reduction ofchromium(Ⅵ) by oxalate and citrate in aqueous solutions. Environmental Science andTechnology, 1997,31(1): 160-170.
    
    [144] Hislop K A, Bolton J R.The photochemical generation of hydroxyl radicals in theUV-vis/ferrioxalate/H_2O_2 system. Environmental Science and Technology, 1999, 33 (18):3119-3126.
    [145] 张琳, 张喆,吴峰等. 水中铁(III)草酸盐络合物光解产生羟基自由基的测定. 环境化学,2002, 21(1): 87-91.
    [146] Katsumata H, Kaneco S, Suzuki T et al. Photo-Fenton degradation of alachlor in the presence of citrate solution. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180(1-2): 38-45.
    [147] Siffert C, Sulzberger B. Light-induced dissolution of hematite in the presence of oxalate. A case study. Langmuir, 1991,7(8): 1627-1634.
    [148] Voelker B M, Sulzberger B. Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environmental Science and Technology, 1996, 30: 1106-1114.
    [149] Voelker B M, Morel F M M, Sulzberger B. Iron redox cycling in surface waters: Effects of humic substances and light. Environmental Science and Technology, 1997, 31:1004-1011.
    [150] Fukushima M, Tatsumi K. Photocatalytic reaction by iron(III)-humate complex and its effect on the removal of organic pollutant. Toxicological and Environmental Chemistry, 1999, 73: 103-116.
    [151] Paciolla M D, Davies G, Jansen S A. Generation of hydroxyl radicals from metal-loaded humic acids. Environmental Science and Technology, 1999; 33(11): 1814-1818.
    [152] Gaberell M, Chin Y-P, Hug S J et al. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron. Environmental Science and Technology, 2003, 37(19): 4403-4409.
    [153] Kieber R J, Hardison D R, Whitehead R F et al. Photochemical production of Fe(II) in rainwater. Environmental Science and Technology, 2003; 37(20): 4610-4616.
    [154] Kieber R J, Skrabal S A, Smith B J et al. Organic complexation of Fe(II) and its impact on the redox cycling of iron in rain. Environmental Science and Technology, 2005,39(6): 1576-1583.
    [155] www.epa.gov/atrazine.html
    [156] Cooper R L, Storker T E, Tyrey L. Atrazine disrupts the hypothalamic control of pubertal development. Toxicological Sciences, 2000, 53: 297-307.
    [157] Laws S C, Ferrell J M, Storker T E et al. The effects of atrazine on female wisre rats: An evaluation of the protocol for assessing pubertal development and thyroid function. Toxicological Science, 2000, 58: 366-376.
    [158] Van Leeuwen J A, Wainter-Toews D, Abernathy T. Associations between stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987-1991. International Journal of Epidemiology, 1999, 28(5):836-840.
    [159] Prosen H, Zupancic-Kralj L. Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids. Environmental Pollution, 2005, 133(3): 517-529.
    [160] Alegria H A, Shaw T J. Rain deposition of pesticides in coastal waters of south Atlantic bight. Environmental Science and Technology, 1999, 33: 850-856.
    [161] Buchell T D, Mueller S R, Heberle S et al. Occurrence and behavior of pesticides in rainwater, roof rinoff. and artifical stormwater infiltration. Environmental Science and Technology, 1998, 32 (22): 3457-3464.
    [162] Spalding R F, Snow D D, Cassada D A et al. Study of pestcide occurrence in two closely spaced lakes in northeastern Nebraska. Journal of Environmental Quality, 1994, 23: 571-578.
    [163] Behki R M, Khan S U. Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. Journal of Agricultural and Food Chemistry, 1994,42:1237-1241.
    [164] Hapeman C J, Johnson W E. Structural influences of low-molecular-weight dissolved organic carbon mimics on the photolytic fate of atrazine. Environmental Toxicology and Chemistry, 1998, 17:975-981.
    
    [165] 张琰. 松辽流域沉积物中阿特拉津的分布特征研究: (博士学位论文).北京: 北京师范大学,2006.
    [166] Hug S J, Canonica L, Wegelin M et al. Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environmental Science and Technology, 2001, 35: 2114-2121.
    [167] Dodge C J, Francis A J. Photodegradation of a ternary iron(III)-uranium(VI)-citric acid complex. Environmental Science and Technology, 2002, 36: 2094-2100.
    [168] Bielski B H J, Cabelli D E, Arudi R L et al. Reactivity of HO_2/O_2 radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1985, 14: 1041-1100.
    [169] Rush J D, Bielski B H J. Pulse radiolytic studies of the reaction of HO_2/O_2~- with Fe(II)/Fe(III) ions. The reactivity of HO_2/O_2~- with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. Journal of Physical Chemistry, 1985, 89: 5062-5066.
    [170] Kwan W P, Voelker B M. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environmental Science and Technology, 2002, 36: 1467-1476.
    [171] Xie Y, Chen F, He J et al. Photoassisted degradation of dyes in the presence of Fe~(3+) and H_2O_2 under visible irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 136: 235-240.
    [172] Faust B C, Hoigne J. Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmospheric Environment, 1990, 24A: 79-89.
    [173] Field T B, Mc-Court J L, Mc-Bryde W A E. Composition and stability of iron and copper citrate complexes in aqueous solution. Canadian Journal of Chemistry-Revue Canadienne de Chimie Can, 1974,52:3119-3124.
    [174] Konigsberger L C, Konigsberger E, May P M et al. Complexation of iron(III) and iron(II) by citrate. Implications for iron speciation in blood plasma. Journal of Inorganic Biochemistry. 2000,78: 175-184.
    [175] Amico P, Daniele P G, Cucinotta V et al. Equilibrium study of iron(II) and manganese(II) complexes with citrate ion in aqueous solution: Relevance to coordination of citrate to the active site of aconitase and to gastrointestinal absorption of some essential metal ions. Inorganica Chimica Acta, 1979,36: 1-7.
    
    [176] Smith R M, Martell A E. Critical Stability Constants. Plenum, New York. 1977.
    [177] Balmer M E, Sulzberger B. Atrazine degradation in irradiated iron/oxalate systems: Effects of pH and oxalate. Environmental Science and Technology, 1999, 33: 2418-2424.
    
    
    [178] Fukushima M, Tatsumi K, Morimoto K. The fate of aniline after a photo-Fenton reaction in anaqueous system containing iron(Ⅲ), humic acid, and hydrogen peroxide. Environmental Scienceand Technology, 2000, 34: 2006-2013.
    
    [179] Kocar B D, Inskeep W P. Photochemical oxidation of As(Ⅲ) in ferrioxalate solutions.Photochemical oxidation of As(Ⅲ) in ferrioxalate solutions. Environmental Science andTechnology, 2003, 37: 1581-1588.
    
    [180] Fu H B, Quan X, Liu Z Y et al. Photoinduced transformation of γ-HCH in the presence ofdissolved organic matter and enhanced photoreactive activity of humate-coated α-Fe_2O_3.Langmuir, 2004, 20: 4867-4873.
    
    [181]黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应.生态学报,2002,22(2): 259-269.
    
    [182] Esteves da Silva J C G, Machado A A S C, Oliveira C J S et al. Fluorescence quenching of anthropogenic fulvic acids by Cu(Ⅱ), Fe(Ⅲ) and UO_2~(2+). Talanta, 1998, 45: 1155-1165.
    
    [183]曹军,李本纲,徐福留等.水体与土壤中天然有机物与铜的络合作用及其影响因素.环境 科学学报,2001,21(6):726-730.
    
    [184]傅平青,刘丛强,吴丰昌.三维荧光光谱研究溶解有机质与汞的相互作用.环境科学,2004, 25(6):140-144.
    
    [185] Ryan D K, Weber J H. Copper(Ⅱ) complexing capacities of natural waters by fluorescence quenching. Environmental Science and Technology, 1982, 16(12): 866-872.
    
    [186]傅平青.水环境中的溶解有机质及其与金属离子的相互作用-荧光光谱学研究:(博士学位 论文).中国科学院研究生院(地球化学研究所),2004.
    
    [187] Tipping E. Humic ion-binding model VI: An improved description of the interactions of protonsand metal ions with humic substances. Aquatic Geochemistry, 1998, 4: 3-48.
    
    [188] Kinniburgh D G, Milne C J, Benedetti M F et al. Metal ion binding by humic acid: Applicationof the NICA-Donnan Model. Environmental Science and Technology, 1996, 30(5): 1687-1698.
    
    [189] Kinniburgh D G, van Riemsdijk W H, Koopal L K et al. Ion binding to natural organic matter:competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids andSurfaces A: Physicochemical and Engineering Aspects, 1999, 151(1-2): 147-166.
    
    [190] Schmitt P, Freitag D, Trapp I. Binding of s-triazines to dissolved humic substances:electrophoretic approaches using affinity capillary electrophoresis (ACE) and micellarelectrokinetic chromatography (MEKC). Chemosphere, 1997, 35: 55-75.
    
    [191] Piccolo A, Conte P. Scheunert 1, Paci M. Atrazine interactions with soil humic substances ofdifferent molecular structure. Journal of Environmental Quality, 1998, 27: 1324-1333.
    
    [192] Leenheer J A, Brown G K. Models of metal binding structures in fulvic acid from the SuwanneeRiver, Georgia. Environmental Science and Technology, 1998, 32: 2410-2416.
    
    [193] Filius J D, Johannes C L, Lumsdon D G et al. Adsorption of small weak organic acids ongoethite: modeling of mechanisms. Journal of Colloid and Interface Science, 1997, 195:368-380.
    
    [194] Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the northeast Pacificsubartic. Nature. 1988, 331: 341-343.
    [195] Zhuang G S, Zhen Y, Duce R A et al. Link between iron and sulphur cycles suggested by detection of Fe(II) in remote marine aerosols. Nature, 1992, 355, 537-539.
    [196] Breytenbach L W, Vanpareen W, Pienaar J J et al. The role of organic acids and metal ions on the kinetics of the oxidation of S(IV) by hydrogen peroxide. Atmospheric Environment, 1994, 28:2451-2459.
    [197] Hug S J, Leupin O. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science and Technology, 2003, 37 (12): 2734-2742.
    [198] King D W, Lounsbury H A, Millero F J. Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environmental Science and Technology, 1995, 29: 818-824.
    [199] Miles C J, Brezonik P L. Oxygen consumption in humic-colored waters by photochemical ferrous-ferric catalytic cycle. Environmental Science and Technology, 1981, 15: 1089-1095.
    [200] Cunningham K M, Goidberg M C, Weiner E R. Mechanisms for aqueous photolysis of adsorbed benzoate, oxalate, and succinate on iron oxyhydroxide (goethite) surfaces. Environmental Science and Technology, 1988,22: 1090-1097.
    [201] Sonke J E. Lanthanide-humic substances complexaiion. II. Calibration of humic ion-binding model V. Environmental Science and Technology, 2006,40: 7481-7487.
    [202] Chen F, Ma W H, He J J et al. Fenton degradation of malachite green catalyzed by aromatic additives. Journal of Physical Chemistry A, 2002, 106: 9485-9490.
    [203] Pelizzetti E, Maurino V, Minero C et al. PhotocaTalytic degradation of atrazine and other s-triazine herbicides. Environmental Science and Technology, 1990, 24(10): 1559-1565.
    [204] Torrents A, Anderson B G, Bilboulian S et al. Atrazine photolysis: Mechanistic investigations of direct and nitrate-mediated hydroxy radical processes and the influence of dissolved organic carbon from the Chesapeake Bay. Environmental Science and Technology, 1997, 31: 1476-1482.
    [205] Acero J L, Stemmler K, Von Gunten U. Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: A predictive tool for drinking water treatment. Environmental Science and Technology, 2000, 34: 591-597.
    
    [206] Sposito G. The Surface Chemistry of Soils; Oxford University Press: New York, 1984.
    [207] Canonica S, Jans U, Stemmler K et al. Transformation kinetics of phenols in water: Photosensitization by dissolved natural organic material and aromatic ketones. Environmental Science and Technology, 1995,29: 1822-1831.
    [208] Gerecke A C, Canonica S, Muller S R et al. Quantification of dissolved natural organic matter (DOM) mediated phototransformation of phenylurea herbicides in lakes. Environmental Science and Technology, 2001, 35: 3915-3923.
    [209] Richard C, Trubetskaya O, Trubetskoj O. Key role of the low molecular size fraction of soil humic acids for fluorescence and photoinductive activity. Environmental Science and Technology, 2004, 38:2052-2057.
    [210] Fukushima M, Tanabe Y, Morimoto K et al. Role of humic acid fraction with higher aromaticity in enhancing the activity of a biomimetic catalyst, tetra(p-sulfonatophenyl)porphineiron(III). Biomacromolecules, 2007, 8:386-391.
    
    
    [211] Martin W, Christian S. Rates of humic substance photosensitized degradation ofmicrocystin-LR in natural waters. Environmental Science and Technology, 2000, 34:3415-3419.
    
    [212] Mamoru K, Katsura K. Photochemical effects of humic substances on the degradation oforganophosphorus pesticides. Chemosphere, 1998,36: 2337-2344.
    
    [213] Aquer J P, Richard C. Influence of the excitation wavelength on the photoinductive properties ofhumic substances. Chemosphere, 1999,38:2293-2301.
    
    [214] Vasilios A S, Ioannis K K, Triantafyllos A A. Photodegradation study of the antifouling boosterbiocide dichlofluanid in aqueous media by gas chromatographic techniques. Journal ofChromatography A, 2001,930: 135-144.
    
    [215] Stefan B, Anneli W. Photochemical degradation of PAHs in freshwaters and their impact onbacterial growth - influence of water chemistry. Hydrobiologia, 2002, 469: 23-32.
    
    [216] Cieslewics J E, Niedzwiecki E, Protasowicki M et al. Humus properties of bottom sedimentsfrom the Szczecin lagoon (North-West Poland). In: Proceedings of the Eighth InternationalHumic Substances Society Meeting. IHSS-Polish Society of Humic Substances, Wroclaw, 1997,pp. 553-558.
    
    [217] Debska B. The effect of green manure on the properties of soil humic acids. In: Proceedings ofthe Eighth International Humic Substances Society Meeting. IHSS-Polish Society of HumicSubstances, Wroclaw, 1997, pp. 260-282.
    
    [218]文启孝,土壤有机质研究法.北京:农业出版社,1984,181-182.
    
    [219] Chen Y, Senesi N, Schnitzer M. Information provided on humic substances by E_4/E_6 ratios. Soil Science Society of America Journal, 1977,41: 352-358.
    
    [220] 曲风臣.土壤腐殖酸凝胶分级、表征及其光化学行为:(硕士学位论文),大连:大连理工大 学.2006.
    
    [221] Thorn K A. Nuclear-magnetic-resonance spectrometry investigations of fulvic and humic acidsfrom the Suwannee river. In: Humic Substances in the Suwannee River, Georgia: Interactions,Properties, and Proposed Structures, Averett R C, Leenheer J A, McKnight D M, Thorn K A.(Eds.), USGS Water-supply paper 2373, 1994, pp. 141-182.
    
    [222] Ma H Z, Allen H E, Yin Y J. Characterization of isolated fractions of dissolved organic matterfrom natural waters and a wastewater effluent. Water Research, 2001, 35: 985-996.
    
    [223] Perminova I V, Grechishcheva N Y, PetrosyanV S. Relationships between structure and bindingaffinity of humic substances for polycyclic aromatic hydrocarbons: Relevance of moleculardescriptors. Environmental Science and Technology, 1999, 33: 3781-3787.
    
    [224] Burba P, Shkinev V, Spivakov B Y. On-line fraction and characterization of aquatic humicsubstances by means of sequential-stage ultrafiltration. Fresenius Journal of AnalyticalChemistry, 1995,351:74-82.
    
    [225] Niemeyer J, Chen Y, Bollag J-M. Characterization of humic acids, composts an peats by diffusereflectance Fourier-transform infrared spectroscopy. Soil Science Society of America Journal,1992,56: 135-140.
    
    [226] Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatichumic substances. Analytica Chimica Acta, 1997, 337: 133-149.
    
    [227] Tombacz E. Colloidal properties of humic acids and spontaneous changes of their colloidal stateunder variable solution conditions. Soil Science, 1999,164: 814-824.
    
    [228] De Souza Sierra M M, Donard O F X, Lamotte M. Fluorescence spectroscopy of coastal andmarine waters. Marine Chemistry, 1994, 47: 127-144.
    
    [229] Jaffe R, Boyer J N, Lu X. Source characterization of dissolved organic matter in a subtropicalmangrove-dominated estuary by fluorescence analysis. Marine Chemistry, 2004, 84: 195-210.
    
    [230] Senesi N. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactionswith metal ions and organic chemicals: Part II. The fluorescence spectroscopy approach.Analytica Chimica Acta, 1990, 232: 77-106.
    
    [231]俞天智,滕秀兰,张子瑜等.用荧光光谱研究腐殖酸与金属离子Al~(3+)的配合作用.环境化 学,1999,18(6):557-560.
    
    [232] Chang Chien S W, Wang M C, Huang C C et al. Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals. Journal of Agricultural and Food Chemistry, 2007, 55: 4820-4827.
    
    [233]李丽.不同级分腐殖酸的分子结构特征及其对菲的吸附行为的影响:(博士学位论文),广州: 中国科学院广州地球化学研究所.2003.
    
    [234] Klaus H, Pran N. Photochemical degradation of dicarboximide fungicides in the presence of soilconstituents. Chemosphere, 1997, 35: 33-37.
    
    [235] Aquer J P, Richard C, Trubetskaya O et al. Photoinductive efficiency of soil extracted humicand fulvic acids. Chemosphere, 2002,49: 259-262.
    
    [236] Xie H X, Zafiriou O C, Cai W J et al. Photooxidation and its effects on the carboxyl content ofdissolved organic matter in two coastal rivers. Environmental Science and Technology, 2004, 38:4113-4119.
    
    [237] These A, Reemtsma T. Structure-dependent reactivity low molecular weight fulvic moleculesduring ozonation. Environmental Science and Technology, 2005, 39: 8382-8387.
    
    [238] Ji H, Chen C, Ma W, Zhao J. Anchored oxygen-donor coordination to iron for photodegradationof organic pollutants. Environmental Science and Technology, 2007, 41: 5103-5017.
    
    [239] Blasiak L C, Vaillancourt F H, Walsh C T et al. Crystal structure of the non-haem ironhalogenase SyrB2 in syringomycin biosynthesis. Nature, 2006, 440: 368-371.
    
    [240] Thrower J S, Blalock III R, Klinman J P. Steady-state kinetics of substrate binding and ironrelease in tomato ACC oxidase. Biochemistry, 2001, 40: 9717-9724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700