利用D-葡萄糖酸修复重金属污染土壤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是重要的自然资源,它是农业发展的物质基础。没有土壤就没有农业,也就没有人们赖以生存的基本原料。在各种进入土壤的污染物质中,重金属更易导致长期的土壤污染问题。它不仅可以在生物体内累积,而且容易在食物链内循环,直接威胁人类的粮食安全。因此,进行土壤重金属污染的研究具有十分重要的意义。本文以株洲市冶炼厂下风向地区土壤重金属污染为研究对象,利用天然有机螯合剂D-葡萄糖酸为萃取剂,研究其对于重金属Cd、Cr、Cu、Ni、Pb和Zn的萃取能力。对pH值、葡萄糖酸浓度、葡萄糖酸加量和固液比进行单因素分析,确定各种因素对于葡萄糖酸去除污染土壤重金属的影响。
     对土壤理化性质进行分析,结果如下:土壤的含水率为(13.53±2.03)%,含水率较高是因为该地区年降雨量达1280~1497mm,年平均降雨天数为154.7d;pH为6.3;有机质含量为87.2g/kg;砂粒、粉粒和粘粒的质量分数分别为34%,49%和17%;碳酸盐含量为156g/kg;阳离子交换量为290mmol/kg;土壤中总Pb、总Zn、总Cu、总Cd、总Cr和总Ni的质量浓度分别为1014.9 mg/kg、1141.4 mg/kg、268.5 mg/kg、40.1 mg/kg、114.6 mg/kg和64.7 mg/kg。土壤重金属形态分析采取优化的BCR连续萃取方法对土壤进行形态分析,把土壤形态分为:酸提取态、氧化物结合态、有机结合态以及残余态四种。
     研究表明,多羟基羧酸D-葡萄糖酸从土壤中萃取金属的效果受到pH的强烈影响,萃取能力在接近中性条件的时候很低,在pH12.0~13.0之间强烈增长。
     除了pH外,糖酸浓度也影响重金属的去除。在pH从12.5~13.5之间的时候,采取50g/L的糖酸浓度对于重金属的去除是最有效的。在pH超过13的时候,Ni和Cd采取糖酸浓度为20g/L能达到金属萃取的最高效率。采用固液比为1:10或1:20是考虑到萃取剂和萃取量的理想配比以及经济实用方面的结果。
     采取最佳的条件,在强碱性的D-葡萄糖酸溶液重金属最大的萃取效率中可以达到:Ni 43%,Cr60%、Cd50%、Zn70%、Pb80%和Cu 84%。
Among the pollutants in soil, heavy metal often results in long-term soil contamination. It not only may accumulate in organism, but also may easily recycle in the food chain. So it directly threatens humanity’s grain security. This makes it of great significance to study soil heavy contamination.
     Taking the soil leeward Zhuzhou meltery as research object, D-gluconic acid were tested for their ability to remove heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) from soil. Batch equilibrium experiments were performed under variation of fundamental process parameters, i.e. pH value, sugar acid concentration, batch solution volume and solid: liquid ratio.
     A BCR sequential extraction procedure, detailed elsewhere, was used to divide the metals into mobile, Fe-Mn oxide bound, organically bound and residual fraction. The following soil characteristics were determined: texture: 34% sand,49% silt, 17% clay; 87.2g/kg organic matter, 156g/kg carbonate content; pH 6.3; 290mmol/kg CEC; Total heavy metal content: Pb1014.9mg/kg, Zn1014.9 mg/kg, Cu 268.5 mg/kg, Cd 40.1 mg/kg, Cr 114.6mg/kg and Ni 64.7mg/kg.
     The extractability of heavy metals was low under near-neutral and slightly basic pH conditions. It increased drastically between pH12.0 and 13.0. Pb and Cu were preferentially extracted metals. Compared with the extraction efficiency of pH adequate pure sodium hydroxide solutions, the sugar acids enhanced the solubilization of Pb and Cr especially. The metal depletion from soil was the highest when applying 20 or 50g/L solutions of the chelating agents. Under strongly basic conditions solid: liquid ratios of 1:10 or 1:20 were proofed to be advantageous. Following metal extraction degrees were achieved with strongly alkaline D-gluconic acid solutions: Ni 43%,Cr 60%, Cd 50%, Zn70%, Pb 80% and Cu 84%。
引文
[1]周启星,于颖,宋玉芳等.污染土壤修复原理与方法.北京:科学出版社,2004:2
    [2]陈志良等.重金属污染土壤修复技术.环境保护,2002,6:2-23
    [3]陈怀满主编.环境土壤学.北京:科学出版社,2005:4-10
    [4]郝亚琦,王益权.土壤污染现状及修复对策.水土保持研究,2007,14(3):249-251
    [5]贾学萍.土壤重金属污染的来源及改良措施.现代农业科技,2007,(9):197-199
    [6]陈怀满,郑春荣,涂从等.中国重金属污染现状与防治对策.Ambio, 1999, 28(2):130-134
    [7]蔡嗣经,杨鹏.金属矿山尾矿问题及其综合利用与治理.中国工程科学,2000,12(14):89-92
    [8]韩素清.土壤污染的类型及影响和危害.化工之友,2007,3(5):32-34
    [9]林强.中国的土壤污染现状及其防治对策.福建水土保持,2004,16(1):25-28
    [10]陈怀满,等著.土壤中化学物质的行为与环境质量.北京:科学出版社,2002:102-105
    [11]王新.土壤重金属污染生态过程效应及修复.生态科学,2004,23(3):278-281
    [12]蔡嗣经,杨鹏.金属矿山尾矿问题及其综合利用与治理.中国工程科学,2000,12(14):89-92
    [13]Raskin I, Ensley B D. Phytoremediation of toxic metals: using plants to clean up the environment. New York: John Wiley and Sons, 2000:23-25
    [14]Shen H, Pritchard P H and Sewell G W. Microbial reduction of Cr (Ⅵ) during anaerobic degradation of benzoate. Environmental Science.Technology, 1996, 30:1667-1674
    [15]俞慎,何振立,黄昌勇.重金属胁迫下土壤微生物和微生物过程研究进展.应用生态学报,2003,14(4):618-622
    [16]陈怀满等著.土壤中化学物质的行为与环境质量.北京:科学出版社,2002:102-105
    [17]戴树桂.环境化学进展.北京:化学工业出版社,2005:8
    [18]陈怀满等.环境土壤学.北京:科学出版社,2005:402-410
    [19]武晓锋,唐杰,藤间幸久.土壤、地下水中有机污染物的就地处理.环境污染治理技术与设备,2000,4(1):46-51
    [20]Semer R, Reddy K. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. Journal of Hazardous Materials, 1996, 45:45-47
    [21]Sleep B E, McClure P D. Removal of volatile and semi volatile organic contamination form soil by air and stream flushing. Journal of Contaminant Hydrology, 2001, 50(1-2):21-40
    [22]Blaylock M J, Salt K, Dushenkov O, et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science Technology, 1997, 31:860-865
    [23]Elliott H A, Brown G A. Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air and Soil Pollution, 1989, 45:361-369
    [24]Barona A and Romero F. Relationships among metals in the soils phase of soils and in wildplants. Water Air and Soil Pollution, 1997, 95:59-74
    [25]Impellitteri C A, Lu Y F, Saxe J K, et al. Correlation of the partitioning of dissolved organic matter fractions with the adsorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environment International, 2002, 28:401-410
    [26]Ure A M, Quevauviller P H, Muntau H and Griepick B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 1993, 51:135-151
    [27]Tuin B J W, Tels M. Removing heavy metals from contaminated clay soils by extraction with hydrochloric acid, EDTA or hypochlorite solutions. Environmental Technology, 1990, 11:1039-1052
    [28]Yu J and Klarup D. Extraction kinetics of copper, zinc, iron and manganese from contaminated sediment using disodium ethylene diaminetetracetate. Water Air Soil Pollutant, 1994, 75: 205-225
    [29]Ghestem J P, Bermond A. EDTA extractability of trace metals in polluted soils: a chemical physical study. Environmental Technology, 1998, 19(3):409-416
    [30]Chulsung Kim. Effects of Amorphous Iron on Extraction of Lead Contaminated Soil with EDTA. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2000, 4(1):16-23
    [31]Connick C. Mitigation of heavy metal migration in soil. New Engineering Water Pollution Control Association, 1985, 19(1):4-21
    [32]Herbert E. Allen and Ping-Hsien Chen. Remediation of metal contaminated soil by EDTA incorporating electrochemical recovery of metal and EDTA. Environment Progress, 1993, 12 (4):284-293
    [33]Brian E. Reed, Patrick C, Carriere and Roderic Moore. Flushing of Pb (II) contaminated soil using HCI, EDTA, and CaCl2. J. Journal of Environment Engineering, 1996, 122(1):48-50
    [34]Mark C. S. and John P. Ex-situ remediation of a metal-contaminated superfund Soil using selective extractants. Environment Engineering, 1998, 124(7):639-645
    [35]Tim Nedwed. Feasibility of extracting lead from lead battery recycling dite soil using high concentration chloride solutions. Environmental progress, 2000, 19(3):197-206
    [36]C Nelson neale, R Mark Bricka and Allen C Chao. Evaluating acids and agents for removing heavy metals from contaminated soils. Environmental Progress, 1997, 16(4):274-279
    [37]Wasay S A, Barrington S F, Tokunaga, S. Remediation of soils polluted by heavy metal using Salts of organic acid and chelating agents. Environmental Technology, 1998, 19(3): 45-47
    [38]H A Elliott and L Shastri. Extractive decontamination of metal-polluted soils using oxalate.Water, Air, and Soil pollution, 1999, 110(3-4):335-346
    [39]Catherine N. Mulligan et al. Metal removal from contaminated soil and sediments by the bio-surfactants. Environmental Science and Technology, 1999, 33(21):3812-3820
    [40]Raman Bassi, Shiv O. Prasher and B K Simpson. Extraction of metals from a contaminated sandy soil using citric acid. Environmental Progress, 2000, 19(4):275-282
    [41]Wasay S A, Barrington and Tokunaga. Organic acid for the in situ remediation of Soils polluted by heavy metals: soil flushing in collumns. Water, Air and Pollution, 2000, 127(4):301-314
    [42]朱建良,任永,欧阳平凯.葡萄糖酸生产工艺综述.化工周刊,1995,(10):24-27
    [43]Abbadi A, Bekkum H. Effect of pH in pt-catalyzed oxidation of D-glucose to D-gluconic acid. Joumal of Molecular catalysis A: Chemical, 1995, 97(2):111-118
    [44]杨瑞金,闻方,吴新涛.葡萄糖酸氧化及葡萄糖酸盐生产技术的研究.食品工业工业科技,1195,3:21-23
    [45]李光兴,陈兵.葡萄糖酸盐产品研究、生产及应用.化学工程师,1994,(5):28-31
    [46]黄道震,余丽秀,王桂香,等.葡萄糖酸钠的生产工艺及研究动态.河南化工,1999,(5):35-36
    [47]陈际帆.环保型缓蚀阻垢剂的现状和发展.甘肃科技,2005,21(12):140-143
    [48]Noordman W H, Buining J W, Wietzes, et al. Facilitated transport of a PAH mixture by a rhamnolipid biosurfactant in porous silica matrices. Journal of Contamination Hydrology, 2000, 144:119-140
    [49]中国科学院南京土壤研究所编.土壤理化分析(第一版).上海:上海科技出版社,1978:169-174
    [50]周康民,汤志云,黄光明.土壤重金属形态分析方法的研究.江苏地质,2007,31(3):165-175
    [51]Stumm W, Brauner P A. A chemical speciation. In Chemical Oceanography, Chapter 3. New York: Academic Press, 1975: 173-279
    [52]蔡绪贻,林黎虹.重金属在水环境中形态分布的随机模拟.中国地质灾害与防治学报,1997,8(2):40-47
    [53]Tessier A, Campbell P G C and Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7):844-851
    [54]Mc Bride M B. Reactions Controlling Heavy Metal Solubility in Soils. Advances in soils Technology, 1989, 10:50-56
    [55]韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义.生态学杂志,2005,24(12):1499-1502
    [56]冯素萍,鞠莉,沈永,等.沉积物中重金属形态分析方法研究进展.化学分析计量,2006,15(4):72-74
    [57]Gleyzes Cristine, Sylvaine Tellier, Michel Astruc. Fractionation studies of trace elements incontaminated soils and sediments: a review of sequential extraction procedures. Analytical Chemistry, 2002, 21(6-7):451-467
    [58]Tessier A. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry,1979,51(7):844-851
    [59]Arabinda K Das, Ruma Chakraborty, M Luisa Cervera, et al. Metal speciation in solid matrices .Talanta, 1995, 42(8):1007-1030
    [60]Constantine D. Stalikas, George A. Pilidis, Stella. M. Tzouwara- KarayanniU. Use of sequential extraction scheme with data normalization to assess the metal distribution in agricultural soils irrigated by lake water. The Science of the Total Environment, 1999, 236(1-3):7-18
    [61]Sutherland R A, Tack F M G. Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research, 2003, 8:37-50
    [62]朱嬿婉,沈壬水,钱钦文.土壤重金属元素五个组分的连续提取法.土壤,1989,10(5):163-166
    [63]Arabinda K Das, Ruma Chakraborty, M Luisa Cervera, et al. Metal speciation in s solid matrices. Talanta, 1995, 42(8):1007-1030
    [64]Sauman L M. Fractionation Method for Soil Microelements. Soil Science, 1985, (140):11-22.
    [65]Forstner U. Chemical Methods for Assessing Bioavailability Metals in Sludge, Elsevier, London, 1985
    [66]Weissenfels W D, Klewr H J, Langhoff J. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: Influence on biodegradability and biotoxicity. Applied Microbiology and Biotechnology, 1992, 36(3):689-696
    [67]Davidson C M, Ferrier P C S, Ure A M. Some sources of variability in application of the three-stage sequential extraction procedure recommended by BCR to industrially-contaminated soil. Analytica Chimica Acta, 1999, 363:446-451
    [68]McBride M B. Reactions Controlling Heavy Metal Solubility in Soils. Advances in Soil Science, 1989, 10:40-56
    [69]Jeffrey R Bacon, Irene J Hewitt, Patricia Cooper. Reproducibility of the BCR sequential extraction procedure in a long-term study of the association of heavy metals with soil components in an upland catchments in Scotland. Science of the Total Environment, 2005, 337:191-205
    [70]Christine Gleyzes, Sylvaine Tellier, Michel Astruc. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Analytical Chemistry, 2002, 21(6-7):451-468
    [71]Rauret G, Rubio R, Lopez-Sanchez J F. Optimization of Tessier procedure for metal solidspeciation in river sediments. Trends Analytical Chemistry, 1989, 36:79-83
    [72]Ure A M, Quevauviller P, Muntau H. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities. Environmental Analytical Chemistry, 1993, 51(1-4):135-151
    [73]Rauret G, Lopez-Sanchez J F, Sahuquillo A, et al. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Environmental Monitoring, 1999, 1:57-61.
    [74]Sahuquillo A, Rigol A, Rauret G. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends in Analytical Chemistry, 2003, 22(3):152-159
    [75]Katherine F Mossop, Christine M Davidson. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytical Chemistry, 2003, 478:111-118
    [76]McBride M B. Reactions Controlling Heavy Metal Solubility in Soils. Advanced Soil Science, 1989, 10:10-56
    [77]Sutherland R A, Tack F M G. Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research, 2003, 8:37-50
    [78]陈德生.株洲冶炼厂拟建废渣场环境地质评价,湖南地质,1994,13(4):224-22
    [79]郭笃发.环境中铅和镉的来源及其对人和动物的危害.环境科学进展,1994,2(3):71-72
    [80]Milson P E, Meers J L. In”Comprehensive Bitechnology”. Journal of Bitechnology, 1985, 3(3):681-689
    [81]余贵芬.有机物质对土壤镉有效性的影响研究综述.生态学报,2002,22(5):773-775
    [82]宋静等.土壤重金属修复技术.污染农业环境保护,1998,17(6):271-273
    [83]郭笃发.环境中铅和镉的来源及其对人和动物的危害.环境科学进展,1994,2(3):71-72
    [84]Enzo L, Zhao F J, Gerlinde W, et al. In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution, 2002, 118(3):445-452
    [85]莫争.重金属 Cu、Pb、Zn、Cr、Cd 在土壤中的形态分布和转化.农业环境保护,2002,21(1):9-12
    [86]Kononova M M. Soil organic matter, its nature, its role in soil formation and in fertility. London: Paragon Press, 1964:5-20
    [87]余贵芬,蒋新,和文祥等.腐殖酸对红壤中 Pb、Cd 赋存形态及活性的影响.环境科学学报,2002,22(4):508-513
    [88]熊毅.土壤有机无机复合:有机化合物与粘粒的相互作用.土壤农化参考资料,1974,5:1-9
    [89]中国科学院南京土壤研究所编.土壤理化分析(第一版).上海:上海科技出版社,1978
    [90]Tu C, Zheng C R, Chen H M. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil. Chemosphere, 2000, 41:133-138
    [91]Shoko I, Chisato T. Effects of dissolved organic matter on toxicity and Bioavailability of copper for lettuce sprouts. Environmental Technology, 2005, 31:603-608
    [92]杜彩艳,祖艳群,李元.pH 和有机质对土壤 Cd 和锌生物有效性影响研究.云南农业大学学报,2005,20(4):539-543
    [93]李云峰,王兴理著.腐殖质-金属离子的络合稳定性及土壤胡敏素的研究.贵阳:贵州科技出版社,1999:30-37
    [94]Brahim Koukal, C_eline Gu_eguen, Michel Pardos, Janusz Dominik. Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudo kirchneriella subcapitata. Chemosphere, 2003, (53):953-961
    [95]Tipping E and Hurley M A. A unifying model of cation binding by humic substances. Geochemical et Cosmochimica Acta, 1992, 56:3267-3633
    [96]王维君,邵宗臣,何群红.壤粘粒对Co、Cu、Pb 和Zn 的吸附亲和力的研究.土壤学报,1995,32(2):167-178
    [97]Saar R A, Weber J H. Comparison of spectrofluorometry and ion-selective electrode potantiometry for determination of complexes between fulvic acid and heavy metal ions. Analytical Chemistry, 1980, 52:2095-2100
    [98]Anderson W C, et al. Innovative site remediation technology: soil washing/soil flushing. Wastech: American Academy of Environmental Engineering, Annapolis, Md, 1993:262-276
    [99]Michael J M and Erik G. The first full-scale soil washing project in the USA. Environmental Progress, 1996, 15(2):108-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700