海洋环境下船用太阳能光伏系统特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪90年代开始,基于各种船型平台建成的太阳能光伏系统先后投入长期试验研究或商业运营,其对于其它形式清洁能源的接入起到了很好的示范和指导作用。针对大型远洋船舶而言,构建基于船舶电力系统的太阳能光伏系统需应对特殊的运行环境和应用平台,主要涉及下述问题,包括:
     (1)海洋环境因素对于太阳能电池电力输出特性的影响;
     (2)在不同光伏渗透率(功率比重)和并网运行控制策略条件下,基于船舶电网的太阳能光伏并网系统运行特性问题;
     对此,本文以海洋环境下船用太阳能光伏系统的运行特性问题为基本立足点,主要进行了四个方面的研究工作:
     (1)针对太阳能光伏电池的理论和数学模型进行了对比分析,并以光伏电池的工程实用模型为基础,在Matlab/Simulink仿真环境中建立了相应的仿真模型,实现了最大功率跟踪控制和DC/AC逆变控制的模拟仿真;
     (2)围绕海洋环境条件下的太阳能电池Ⅰ-Ⅴ输出特性问题,分别从海洋环境影响因素分析、环境模拟和输出特性对比实验研究三个方面对影响机理问题进行研究。结合理论基础和实验数据,建立了涉及多因素作用下太阳能电池输出特性的改进能量守恒模型和基于数值关系的参数关联模型;
     (3)以构建SPS2所涉及的相关技术规范为指导,基于Matlab/Simulink仿真软件分别对船舶电力系统和光伏并网系统进行建模和仿真研究,进而以某型营运客滚船为参考对象,构建了基于实船的SPS2基本结构模型和通用仿真模型;
     (4)解析了环境因素介入条件下的光伏电网并网运行特性,并通过采用多模型切换的研究方法,着重针对简化船舶电网、单发电机组和多发电机组船舶电网平台上的电网运行特性问题进行了系列仿真对比研究。
     本文研究工作中形成的基本结论如下:
     (1)针对船舶电力系统的基本发展态势。船舶综合电力系统可成为接入高渗透率太阳能光伏发电系统的基础平台,实船建造高渗透率船舶太阳能光伏并网系统,需以船舶入级规范为依托,参照陆地电网光伏并网系统的相关技术要求具体实施。单船多种清洁能源的综合应用是船舶电力系统发展的最高形式,在具体实施过程中可充分借鉴智能电网技术框架下的微电网理论;
     (2)针对海洋多因素影响下的太阳能电池输出特性。海洋环境因素是导致电池板工作过程中温度升高和所接受辐照强度下降的关键因素,且环境因素的影响同时作用于这两个过程之中,其直接导致太阳能光伏电池填充因素和光伏转换效率的降低;
     (3)针对船舶太阳能光伏并网系统。随着光伏渗透率的提高,以最大有用功功率输出为控制策略的太阳能光伏系统在并网瞬时对于船舶电网的冲击作用增幅显著。由于缺乏惯性机械系统作为能量缓冲,船舶太阳能光伏并网系统的并网运行特性主要受逆变并网控制器执行效能的影响,合理的并网运行控制策略对于船舶太阳能光伏并网系统的稳定运行起到决定性作用。在并网运行过程中,通过对同步发电机组原动机转速和励磁系统的控制,可对电网电压、电流和频率进行调节。在高渗透率光伏系统并网运行时,仅通过对励磁系统的调节,对电网电压的调节作用有限且不足以补偿电网中无功负载的功率需求,需相应的同步补偿机予以解决。
Since its start in the1990s, the solar ship built based on different kinds of hull structure has been invested in long-term experimental research or commercial operation, which provided both demonstration and guidance for using another clean energy on the ship. For the ocean-going vessels especially, the marine environment and application platform issues should be regarded as the initial point when establishing the solar photovoltaic grid-connected system based on a ship power system, containing:
     (1) Output characteristics of solar cell under the effect of marine environment.
     (2) The performance characteristics of ship power system with solar photovoltaic (grid-connected) system (SPS2) integrated at the different level of photovoltaic penetration, especially by applying different control strategy for grid-connected.
     Correspondingly, the characteristic issues of shipborne solar photovoltaic system are set as the basic standpoint in this dissertation, and four aspects are contained during the research process:
     (1) The theoretical and mathematical models of solar photovoltaic cell are compared and analyzed, and a corresponding simulation model is established under the simulation environment of Matlab/Simulink. The algorithms of maximum power point tracking and DC/AC inverse are both achieved based on this simulation model.
     (2) The power output characteristics and mechanisms of solar cell under the effect of multiple environmental factors are studied via analysis of influencing factors, environmental simulation and comparative experiments. Based on more analysis and numerical solution, two theoretical models (Improved Energy Conservation Model and Parameter Correlation Model) are established to represent the interrelationship between five parameters and Ⅰ-Ⅴ equation of solar cell.
     (3) The technical specifications that relate to SPS2are stated in detail, and simulation models aiming at ship power system and solar photovoltaic system are established and analyzed via Matlab/Simulink environment respectively. Further, a ro-ro passenger ship is defined as the prototype for building SPS2generalized simulation model based on its structural model, which is derived from Integrated Power System (IPS).
     (4) With the environmental factors involved in, the method of multi-model switching is applied to study the operation characteristics of grid-connected. Three sets of comparative experiments are conducted with the different simulation models, containing simplified ship grid, actual ship grid that composed of single-and multi-diesel generator.
     Three basic conclusions are contained, as following:
     (1) IPS can be treated as the technical platform for constructing high-penetration photovoltaics, but the specifications for ship classification and solar PV grid-connected system should be regarded as the fundamental guide for building SPS2. The intellectualized power system "SSG" is the most advanced form for realizing the integrated application of multiple renewable energy or green energy on a ship. In the implementation process of SSG, the Microgrid theory from the framework of SG can be taken as the reference substance.
     (2) The multiple factors related to marine environment can affect the cell temperature and solar irradiation intensity simultaneously, which deteriorate the power output characteristics of solar cell, such as fill factor and PV conversion efficiency.
     (3) Along with the increase of penetration, the PV grid-connected system that only applies the PQ control strategy will shock the ship power system observably. The inverter's performance decides the parallel operation characteristics, as PV system is a zero inertia electrical power system. Thus, the operating stability of SPS2is greatly depended on the real-time control strategy of power system. The voltage and frequency of grid can be changed by regulating the speed of prime mover and the voltage output of excitation system, but the synchronous generator cannot individually compensate the power requirement of reactive load when the PV penetration is set at a relativly high level. Under this condition, a synchronous compensator should be inserted.
引文
[1]Sawin L. Renewable 2011:Global Status Report[R/OL].2011. http://www.ren21.net/Portals/97/documents/GSR/GSR2011_Master18.pdf
    [2]WWF. The energy report:100 percent renewable energy by 2050[R].2011, ISBN 978-2-940443-26-0. assets.panda.org/downloads/101223_energy_report_final_print_2.pdf
    [3]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社,2006.
    [4]李俊峰,王斯成.2011中国光伏发展报告[M].中国环境科学出版社,2011.
    [5]European Photovoltaic Industry Association. Global Market Outlook——For Photovoltaics until 2016[R].2012:11-15. files.epia.org/files/Global-Market-Outlook-2016.pdf
    [6]Wenham S R, Green M A, Watt M E, et al. Applied Photovoltaics[J]. UK&USA:Earthscan, 2007:5-10.
    [7]Gevorkian P. Sustainable energy systems engineering:the complete green building design resource [M]. McGraw-Hill Professional.2007:498.
    [8]Heckeroth S. The promise of thin-film solar [J]. Mother Earth News.2010,3. http://www.motherearthnews.com/Renewable-Energy/Thin-Film-Solar-Utility-Scale-PV-Po wer.aspx
    [9]Perlin J. From space to earth:the story of solar electricity [M]. AATEC publication, 1999:54-55.
    [10]赵玉文,吴达成,王斯成,王文静,等.中国光伏产业发展研究报告(2006—-2007)(上)[J].太阳能,2008,6:11-19.
    [11]Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 36) [J]. Progress in Photovoltaics:Research and Applications,2010,18:346-352.
    [12]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].科学出版社,2005.
    [13]EPIA. Global market outlook-for photovoltaics until 2016[R/OL]. European Photovoltaic Industry Association,2012,5:11-16. http://files.epia.org/files/Global-Market-Outlook-2016.pdf
    [14]EPIA. Annual report 2011 [R/OL]. European Photovoltaic Industry Association,2011:10-12. http://www.ferven.es/EPIA/Annual_Report_2011.pdf
    [15]RENI. PV power plants 2012 (Industry Guide)[R/OL]. Renewables Insight-Energy Industry Guides,2012:8-11. http://www.pv-power-plants.com/fileadmin/user_upload/pdf/PVPP12_low.pdf
    [16]Arnulf Jager-Waldau. PV status report 2011[R/OL]. European Commission Joint Research Centre (JRC), Luxembourg:Publications Office of the European Union,2011:9-22,36-50. http://re.jrc.ec.europa.eu/refsys/pdf/PV%20reports/PV%20Status%20Report%202011. pdf
    [17]中国国家能源局.可再生能源发展“十二五”规划[Z].北京:中国国家能源局,2012,8.
    [18]冯垛生.太阳能发电原理与应用[M].北京:人民邮电出版社,2007.
    [19]严新平.新能源在船舶上的应用进展及展望[J].船海工程,2010,39(6):111-115.
    [20]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社,2006.
    [21]中国国务院.“十二五”国家战略性新兴产业发展规划[Z/OL].北京:中国国务院,2012.7.http://www.nea.gov.cn/2012-07/25/c_131736831.htm
    [22]乔琦,王永谦,张光春,施正荣,李果华.BIPV并网发电系统技术及应用[J].电源技术,2012,36(1):130-132.
    [23]孙玉伟.船用太阳能光伏发电系统设计及性能评估[D].武汉:武汉理工大学,2010.
    [24]祁斌.欧洲未来新概念船探秘[J].中国船检,2010(3):86-89.
    [25]李源.复合船型引领船市新潮流[J].中国船检,2010(1):50-53.
    [26]章迪思.太阳能轮船:前景宏伟,征程漫漫[N].解放日报.2010-03-05
    [27]E/S Orcelle-the green flagship[Z/OL] http://www.2wglobal.com/www/environment/orcelleGreenFlagship/
    [28]叶航.环保动力游艇现身阿布扎比游艇展[N].中国水运报,2010-07-07.
    [29]袁成清,赵亮亮,孙玉伟,严新平.船用太阳能电池可靠性分析[J].船海工程,2010,39(6):129-131.
    [30]赵亮亮,袁成清,董从林,严新平.船用太阳能电池板玻璃盖片腐蚀损伤效应研究[J].润滑与密封,2010,35(4):58-61.
    [31]Akbaba M, Mohammed A A, Alattawi. A new model for Ⅰ-Ⅴ characteristic of solar cell generators and its applications[J]. Solar Energy Materials and Solar Cells,1995,37(2): 123-132.
    [32]翟载腾.任意条件下光伏阵列的输出性能预测[D].合肥:中国科学技术大学,2008.
    [33]陈维,沈辉,舒碧芬,张臻.晶体硅太阳电池和组件热性能分析[C].第八届全国光伏会议暨中日光伏论坛论文集,深圳-香港,2004:641-647.
    [34]Radziemska E. The effect of temperature on the power drop in crystalicon solar cells [J]. Renewable Energy,2003,28(1):1-12.
    [35]秦敬玉,孙成帅,谷廷坤.组件质量波动对太阳能电池阵列输出特性的影响[J].山东大学学报工学版,2011,41(6):122-126.
    [36]康姣,胡志强,周红茹,殷克剑.基于MATLAB/Simulink的染料敏化太阳能电池输出特性仿真[J].大连工业大学学报,2011,30(3):187-190.
    [37]任航,叶林.太阳能电池的仿真模型设计和输出特性研究[J].电力自动化设备,2009,(10):112-115.
    [38]任驹.基于P-N结的太阳能电池伏安特性的分析与模拟[J].光子学报,2006(2):171-175.
    [39]禹华军,潘俊民.光伏电池输出特性与最大功率跟踪的仿真分析[J].计算机仿真,2005,22(6):248-251.
    [40]潘玉良,施浒立.光伏发电系统最大输出效率探索[J].电子工程师,2001,27(9):50-53.
    [41]Veeraehary M, Senjyu T, Uezato K. Neural-network-based maximum-power-Point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller[J]. IEEE Trans Ind Electron,2003,50(4):749-758.
    [42]Syafaruddin, Engin Karatepe, Takashi Hiyama. Performance enhancement of photovoltaic array through string and central based MPPT system under non-uniform irradiance conditions [J] Energy Conversion and Management,2012,62:131-140.
    [43]Koehl M. Durability of solar energy materials[J]. Renewable Energy,2001,24:597-607
    [44]Oelhafen P, Schuler A. Nanostructured materials for solar energy conversion[J], Solar Energy, 2005,79:110-121.
    [45]Bailey S, Brinker D, Curtis H, et al, Solar cell calibration and measurement techniqes, NASA Technical Memorandum 113155, IECEC-97534,1997.
    [46]Lles P A. Evolution of space solar cells[J]. Solar Energy Materials & Solar Cells,2001,68: 1-13.
    [47]Mani M, Pillai R. Impact of dust on solar photovoltaic (PV) performance:research status, challenges and recommendations. Renewable and Sustainable Energy Reviews,2010,14(9): 3124-3131.
    [48]King D L, Boyson W E, Kratochvil J A. Analysis of factors influencing the annual energy production of photovoltaic systems [C]. Proceedings of the 28th IEEE Photovoltaic Specialists Conference,2002, pp.1356-1361. Paper number 1525-8.
    [49]Hanai A T, Hashim B R, Chaar E L, Lamont A L. Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system[J]. Renewable Energy,2011,36(10): 2615-2622.
    [50]EI-Shobokshy S M, Hussein M F. Effect of dust with different physical properties on the performance ofphotovoltaic cells[J]. Solar Energy,1993,51(6):505-511.
    [51]居发礼.积灰对光伏工程的影响研究[D].重庆:重庆大学,2010.
    [52]Jiang H, Lu L, Sun K. Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules [J]. Atmospheric Environment,2011, 45(25):4299-4304.
    [53]Kaldellis J K, Kapsali M. Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements [J]. Energy,2011,36(8): 5154-5161.
    [54]Beattie N S, Moir R S, Chacko C, Buffoni G, et al. Understanding the effects of sand and dust accumulation on photovoltaic modules [J]. Renewable Energy,2012,48:448-452.
    [55]Meral E M, Dincer F. Review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems [J]. Renewable and Sustainable Energy Reviews,2011,15:2176-2184.
    [56]Mekhilef S, Saidur R, Kamalisarvestani M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells [J]. Renewable and Sustainable Energy Reviews,2012,16: 2920-2925.
    [57]Arakil K. Reliabilities of high concentrator PV modules using III-V cells [C].15th international Photovoltaic Science &Engineering Conference (PVSEC-15), Shanghai, China, 2005.
    [58]Brogren M, Karlsson B, Roos A, et al. Analysis of the effects of outdoor and accelerated ageing on the optical properties of reflector materials for solar energy applications[D], Solar Energy Materials & Solar Cells,2004,82:491-515.
    [59]王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社,2003.
    [60]翟载媵.任一条件下光伏阵列的输出性能预测[D].合肥:中国科学技术大学.2008
    [61]Malik A Q, Salmi Jan Bin Haji Damit. Outdoor testing of single crystal silicon solar cells [J]. Renewable Energy,2003,28(9):1433-1445.
    [62]Soto W D, Klein S A, Beckman W A. Improvement and validation of a model for photovoltaic array performance [J]. Solar Energy,2006,80:78-88.
    [63]戴聿雯.光伏阵列输出特性研究及预估分析[D].合肥:合肥工业大学,2007.
    [64]杨虎,崔容强,徐林.非标条件下太阳电池短路电流向标准条件下的转化[J].太阳能学报,2003,24(5):663-667.
    [65]冯海峰,马德林,许良军.单级式光伏并网发电系统的仿真分析[J].计算机仿真,2008,25(3):245-250.
    [66]隋岗,韩嵩.浅析光伏并网发电系统研究中的关键问题[J].山东电力技术,2009,30(3):19-21.
    [67]雷埏,艾芊.光伏并网策略及应用研究[J].低压电器,2010(2):21-26.
    [68]赵平,严玉廷.并网光伏发电系统对电网影响的研究[J].电气技术,2009(3):41-44.
    [69]汪海宁.光伏并网功率调节系统及其控制的研究[D].合肥:合肥工业大学,2005.
    [70]Saha S, Sundarsingh V P. Novel grid-connected photovoltaic inverter[J]. IEE Proceedings: Generation, Transmission and Distribution,1996,143(2):219-224.
    [71]Martins D C. Photovoltaic energy processing for utility connected system[C]. Processing: Generation, the 27th Annual Conference of the IEEE on Industrial Electronics Society, November 29-December 2,2001, Denver, CO, USA:1965-1969.
    [72]Valderrama-Blavi H, Alonso C, Martinez-Salamero L, Singer S, et al. AC-L FR concept applied to modular photovoltaic power conversion chains [J]. IEEE Proceedings:Electric Power Applications,2002,149(6):441-448.
    [73]Li W, Lin Y H. Dynamic stability analyses of a photovoltaic array connected to a large utility grid[C]. Proceedings of the Power Engineering Society Winter Meeting of IEEE, January 23-27,2000, Singapore:476-480.
    [74]Li W, Lin Y H. Random fluctuations on dynamic stability of a grid connected photovoltaic array[C]. Proceeding s of the Power Engineering Society Winter Meeting of IEEE, January 28-February 1,2001, Columbus, OH USA:985-989.
    [75]Rodriguez C, Amaratungaga J. Dynamic stability of grid-connected photovoltaic systems[J]. Proceeding of the Power Engineering Society General Meeting of IEEE, June 7-10,2004, Denver, CO, USA:2193-2199.
    [76]李晶,许洪华,赵海翔,等.并网光伏电站动态建模及仿真分析[J].电力系统自动化,2008,32(24):83-87.
    [77]唐景星,黄民翔,景伟强,等.含并网光伏电源的配电网可靠性评估[J].华东电力,2011,39(2):266-270.
    [78]何国庆,许晓艳,黄越辉,等.大规模光伏电站控制策略对孤立电网稳定性的研究[J].电网技术,2009,33(15):20-25.
    [79]Bialasiewicz J T. Renewable Energy Systems with Photovoltaic Power Generators: Operation and Modeling [J]. IEEE Transactions on Industrial Electronics,2008,55(7): 2752-2758.
    [80]Achilles S, Schramm S, Bebic J. Transmission system performance analysis for high-penetration photovoltatics [M]. National Renewable Energy Laboratory,2008.
    [81]王一波,伍春生,廖华,等.大型并网光伏发电系统稳态模型与潮流分析[J].清华大学学报自然科学版,2009,49(8):1093-1097.
    [82]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60.
    [83]王文义.船舶电站[M].哈尔滨:哈尔滨工程大学出版社,2006.
    [84]李膀,沈兵.舰船电力系统及自动化[M].武汉:海军工程大学,2006.
    [85]马伟明.舰船动力发展的方向:综合电力系统[J].海军工程大学学报,2002,(12):1-5.
    [86]肖杨婷,赵越平,曹爽.国内外综合电力系统技术研究动态[J].舰船科学技术,2010,32(8):24-29.
    [87]余贻鑫.智能电网的技术组成和实现顺序[J].南方电网技术,2009,3(2):1-5.
    [88]甄宏斌,张晓锋,戚连锁.智能电网在舰船电力系统中的应用展望[J].舰船科学技术,2011,33(1):9-13.
    [89]Liu H Y, Mu L H. Construction of integrated smart power system for future ship [C]. Proceedings of the International Conference on Power System Technology, IEEE 978-1-4244-5940-7/10,2010.
    [90]吴俊勇.智能电网综述技术讲座[J].电力电子,2010(2):61-64.
    [91]李鹏.分布式发电微网系统暂态仿真方法研究[D].天津:天津大学,2010.
    [92]刘宗德,陈定先.船舶电站用自动化装置[M].北京:科学技术文献出版社,1992.
    [93]夏永明,杨立海.模拟系统中的轴带发电机模拟装置的设计[J].上海海运学院学报,1997,18(4):94-99.
    [94]甄洪斌,庄劲武,张晓锋,杨秀霞.复杂结构的舰船电力系统仿真算法究[J].船舶工程,2004,26(4):64-67.
    [95]杨国豪.船舶电站控制装置及动态模拟系统[D].大连:大连海事大学,1999.
    [96]孙诗南.舰船电力推进的新进展[J].船电通讯,2004,103:4-6.
    [97]孙才勤.船舶电力系统建模仿真及动态稳定性研究[D].大连:大连海事大学,2010.
    [98]许晓彦.船舶多模式电站与船舶电网电能质量研究[D].上海:上海海事大学,2007.
    [99]王焕文.船舶电力系统及自动装置[M].北京:科学出版社,2004.
    [100]Doerry H N, Davis C J. Integrated power system for marine applications [J]. Naval Engineers Journal,1994,106(3):77-90.
    [101]Doerry H N, Robey H, Amy J, Petry C. Powering the future with the integrated power system [J]. Naval Engineers Journal,1996,108(3):267-282.
    [102]Pine J B. Mass Customization, The new frontier in business competition [M]. Harvard Business School Press, Boston, Massachusetts,1993.
    [103]Ayres R U, Duane C B. The flexible factory revisited [J]. American Scientist,1993,81: 448-59.
    [104]陈次祥,刘莉飞,唐石青,赵跃平.船舶综合电力系统仿真研究[J].上海造船,2010(1):51-55.
    [105]余贻鑫.智能电网的技术组成和实现顺序[J].南方电网技术,2009,3(2):1-5.
    [106]Deepak D. Smart distributed control of power systems [C]. Proceedings of Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century[C]. IEEE 978-1-4244-1905-0,2008,1-3.
    [107]Roger L K. Information services for smart grids [C]. Proceedings of Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century[C]. IEEE 978-1-4244-1905-0,2008,1-5.
    [108]Damir N. Emerging technologies in support of smart grids [C]. Proceedings of Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century[C]. IEEE 978-1-4244-1905-0,2008,1-2.
    [109]Miroslav B. Emerging technologies in transmission networks [C]. Proceedings of Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. IEEE 978-1-4244-1905-0,2008.
    [110]United States Department of Energy, Grid 2030:National Version for Electricity's Second 100 Years[EB/OL], NK,2003. http://www.climatevision.gov/sectors/electricpower/pdfs/electric_vision.pdf
    [111]United States Department of Energy, National Electric Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America[EB/OL], NK, 2004. http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/ER_2-9-4.pdf
    [112]Title XIII-Smart Grid. Energy Independence and Security Act of 2007[EB/OL], Public Law 110-140-DEC.19,2007. http:/energy.gov/sites/prod/files/oeprod/DocumentsandMedia/EISA_Title_XIII_Smart_Grid.pdf
    [113]古丽萍.国外智能电网发展概述[J].电力信息化,2010,8(8):29-32.
    [114]吴俊勇.“智能电网综述”技术讲座[J].电力电子,2010(2):61-64.
    [115]卢强.新世纪电力系统科技发展方向:数字电力系统(DPS)[J].中国电力,2000,33(5):15-18.
    [116]卢强.数字电力系统(DPS)[J].电力系统自动化,2000(5):1-4.
    [117]Miller J. Power system optimization-smart grid, demand dispatch and microgrids [EB/OL]. NETL,2011. http://www.netl.doe.gov/smartgrid/referenceshelf/presentations/SE%20Dist%20Apparatus% 20School_Final_082911_rev2.pdf
    [118]Miller J. Smart grid school[C]. Proceedings of Mid-Atlantic Conference of Regulatory Utility Commissioners (MACRUC) 15th Annual Education Conference,2010.
    [119]Miller J. Smart grid technologies professional development course [EB/OL]. NETL,2011. http://www.netl.doe.gov/smartgrid/referenceshelf/presentations/SMART%20GRID%20TEC HNOLOGIES%20PD%20COURSE_020411_Rev%202_Delivered.pdf
    [120]吴俊勇.中国智能电网的效益评估和政策机制研究[J].电力科学与技术学报,2010,25(4):42-46.
    [121]余贻鑫,栾文鹏.智能电网[J].电网与清洁能源,2009,25(1):7-11.
    [122]孙玉伟,严新平.民用船舶的核动力选择[J].中国船检,2010(4):70-74.
    [123]严新平,徐立,袁成清.船舶清洁能源技术[M].北京:国防工业出版社,2012.
    [124]D. Kondoleon, L.Ten-Hope, T. Surles, R.L. Therkelsen. Integration of distributed energy resources:the CERTS Microgrid concept [EB/OL]. CERTS,2003. http://certs.lbl.gov/pdf/50829.pdf
    [125]Hatziargyriou N, Asano H, Iravani R, and Marnay C. Microgrids:an overview of ongoing research, development and demonstration projects[J]. IEEE Power & Energy magazine, 2007(7/8):78-94.
    [126]肖朝霞.微网控制及运行特性分析[D].天津:天津大学,2008.
    [127]崔明勇.微网多目标优化运行及控制策略研究[D].北京:华北电力大学,2011.
    [128]张颖媛.微网系统的运行优化与能量管理研究[D].合肥:合肥工业大学,2011.
    [129]韩奕.微网及含分布式发电的配电网保护算法研究[D].北京:中国电力科学研究院,2011.
    [130]鞠洪新.分布式微网电力系统中多逆变电源的并网控制研究[D].合肥:合肥工业大学,2006.
    [131]杨占刚.微网试验系统研究[D].天津:天津大学,2010.
    [132]Fang G, Iravani M R. A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation[J]. Power Delivery,2008,23(2):850-859.
    [133]陈培青.基于双闭环控制的逆变器数字波形控制技术研究[D].武汉:华中科技大学,2007.
    [134]Katiraei F. Dynamic analysis and control of distributed energy resources in a micro-grid [D]. Toronto-Ontario, University of Toronto,2005.
    [135]陈卫民.基于微电网运行的光伏逆变电源若干关键技术研究[D].上海:上海海事大学,2011.
    [136]任驹,郭文阁,郑建邦.基于P-N结的太阳能电池伏安特性的分析与模拟[J].光子学报,2006,35(2):171-175.
    [137]任航,叶林.太阳能电池的仿真模型设计和输出特性研究[J].电力自动化设备,2009,29(10):112-115.
    [138]Green M A, Solar Cell:Operating Principle, Technology and System Application[M]. Kensington Australia:University of NSW,1992.
    [139]R.C. Neville. Solar energy conversion:The solar cell, elsevier[R]. Amsterdam,1978.
    [140]吴海涛,王晓丽,夏东伟.基于Matlab/Simulink的光伏电池建模与仿真[J].青岛大学学报:工程技术版,2006,21(4):74-77.
    [141]Singh P, Singh S N, Lal M, Husain M. Temperature dependence of I-V characteristics and performance parameters of silicon solar cell [J]. Solar Energy Materials & Solar Cells, 2008,92(12):1611-1616.
    [142]刘刚.太阳能光伏阵列数学模型的综述[J].科技信息,2010,4:131-132.
    [143]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251.
    [144]温嘉斌,刘密富.光伏系统最大功率点追踪方法的改进[J].电力自动化设备,2009,29(6):81-84.
    [145]程启明,程尹曼.光伏电池最大功率点的跟踪方法[J].上海电力学院学报,2009,25(4):346-352.
    [146]王健强.太阳能发电技术与应用第三讲:最大功率点跟踪技术[J].电力电子,2009,2:48-51.
    [147]高艳丽,孙阳,刘迪.基于DSP的直流斩波电源的设计[J].自动化与仪器仪表,2012,4:78-80.
    [148]王忠礼,段慧达,高玉峰.MATLAB应用技术[M].北京:清华大学出版社,2007.
    [149]陈坚.电力电子学[M].北京:高等教育出版社,2009.
    [150]Erickson R W, Maksimovi D. Fundamentals of power electronics [M]. Norwell, MA, USA: Kluwer Academic Publishers, second edition,2001.
    [151]Pern F J, Czanderna A W. Characterization of ethylene vinyl acetate (EVA) encapsulant: Effects of thermal processing and weathering degradation on its discoloration [J]. Solar Energy Materials & Solar Cells,1992,25(1-2):3-23.
    [152]Klemchuk P, Ezrin M, Lavigne G, Holley W, et al. Investigation of the degradation and stabilization of EVA-based encapsulant in field-aged solar energy modules [J]. Polymer Degradation and Stability,1997,55(3):347-365.
    [153]Hanai T A, Hashim R B, Chaar L E, Lamont L A. Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system [J]. Renewable Energy, 2011,36:2615-2622.
    [154]Yuan C Q, Dong C L, Zhao L L, Yan X P. Marine environmental damage effects of solar cell panel[C]. IEEE-Prognostics & System Health Management Conference 2010 (PHM-2010), Macau.2010.
    [155]Lin J, Yuan C Q, Sun Y W, Zhao L L, Study on Degradation of Optical Properties of Shipping Solar Cell Cover Glass[C]. IEEE-Prognostics & System Health Management Conference 2011, University of Macau, P.R. China.2011. IEEE Explores, ISBN: 978-1-4244-7950-4/11.
    [156]严新平,孙玉伟,袁成清,赵亮亮.用于船用太阳能电池板电力特性测试的海洋环境模拟装置:中国,201010258875.3[P].2012-07-04.
    [157]Sadok M, Mehdaou A. Outdoor testing of photovoltaic arrays in the Saharan region [J]. Renewable Energy,2008,33(12):2516-24.
    [158]Leboeuf C, Ossenbrink H A. PV module power output:sensitivity and uncertainty in non-STC measurements[C]. In:Proceedings of the 22nd IEEE Photovoltaic Specialists Conference (PVSC),1991,614-619.
    [159]Blaesser G, Rossi E. Extrapolation of outdoor measurement of PV array I-V characteristics to standard test condition [J]. Solar Cell,1988,25:91.
    [160]Mani M, Pillai R. Impact of dust on solar photovoltaic (PV) performance:research status, challenges and recommendations [J]. Renewable and Sustainable Energy Reviews,2010, 14(9):3124-31.
    [161]Sun Y W, Yan X P, Yuan C Q. Research on evaluation model for characteristic of solar cell in simulated marine environment based on information fusion[C]. The 1st International Conference on Transportation Information and Safety (ICTIS 2011),2011,No.2011-00434.
    [162]中国船级社.钢质海船入级规范[S].北京:人民交通出版社,2009.
    [163]李春叶.微网的建模及并网运行方式研究[D].太原:太原理工大学,2010.
    [164]许晓慧.智能电网导论[M].北京:中国电力出版社,2009.
    [165]国家电网公司.Q/GDW 480-2010分布式电源接入电网技术规定[S].2010.
    [166]韦韩英.船舶柴油发电机系统仿真[D].上海:上海海运学院,2003.
    [167]陈成功.船电系统中同步发电机建模与仿真研究[D].上海:上海交通大学,2011.
    [168]高海波.船舶电力推进系统的建模与仿真[D].武汉:武汉理工大学,2008.
    [169]Chapman S J. Electric machinery and power system fundamentals[M]. MeGraw Hill,2002.
    [170]朱志宇,刘维亭.船舶电力系统的数学建模和鲁棒控制器设计[J].电机与控制学报,2007,11(3):291-297.
    [171]施伟锋,聂益文.船舶柴油发电机与异步电动机建模及其系统仿真[J].上海海事大学学报.2004,25:171-175.
    [172]袁春,张寿珍.柴油发电机组[M].北京:人民邮电出版社,2003.
    [173]张汝钧.船舶电站同步发电机的自动励磁装置[M].北京:国防工业出版社,1989.
    [174]钱正林.船舶电力系统仿真研究[D].武汉:武汉理工大学,2008.
    [175]王崇武,任章,李宏.PWM逆变电路输出波滤波器的分析与设计[J].西安工程科技学院学报,2002,16(3):247-250.
    [176]王长勇,张寅孩,张仲超.有源滤波器中LC滤波器的特性及其设计[J].电源技术,2000,4:12-14.
    [177]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100-107.
    [178]陈顺,黄守道.基于改进瞬时无功理论的单相锁相环[J].电力电子技术.2009,43(10):89-90.
    [179]杨文杰.光伏发电并网与微网运行控制仿真研究[D].成都:西南交通大学,2010.
    [180]袁建华.分布式光伏发电微电网供能系统研究[D].青岛:山东大学,2011.
    [181]王丹.分布式发电系统建模及稳定性仿真[D].天津:天津大学,2009.
    [182]李东辉.船舶柴油机组的建模与运行仿真研究[D].大连:大连海事大学,2011.
    [183]贾宝柱.多模型模糊切换系统研究及在船舶控制中的应用[D].大连:大连海事大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700