金属材料经硫化氢腐蚀后的疲劳可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐蚀疲劳是指腐蚀性介质与交变应力协同作用所引起的材料破坏的现象,它广泛存在于石油化工、核工业、航空航天以及海洋船舶等工业之中。随着我国工业化水平的高速发展,对安全生产与设备安全性的要求也越来越高,腐蚀疲劳问题在工程领域中也显得愈加重要。在对疲劳问题的研究中,腐蚀疲劳因为腐蚀环境、服役工况的多变性而显得更加复杂,它将会涉及到力学、电化学、材料科学等多个学科。国家2006年~2020年中长期发展纲要中也将“材料服役与环境的相互作用、性能演变、失效机制及寿命预测原理等”列为重大战略需求的基础性研究项目,以期望解决材料的环境服役问题。
     基于以上研究背景,本文对腐蚀疲劳问题展开了一系列的研究。由于腐蚀疲劳包含了腐蚀与疲劳两个不同的问题,对腐蚀疲劳的研究可以通过腐蚀、疲劳分别进行研究后再进行综合研究。因此,为了解决工程中的腐蚀疲劳及其可靠性的问题,本文的研究主要分三个部分,一是疲劳可靠性问题的研究,二是腐蚀程度评定的研究,三是腐蚀疲劳及其可靠性问题的研究。
     在疲劳可靠性的研究中,本文基于对数疲劳寿命遵循正态分布的假设,通过构造材料对数疲劳寿命、对数疲劳寿命标准差分别与应力水平之间的函数μ(S)与σ(S),建立得到了材料的条件概率密度分布曲面(CPDDS)并对其性质展开了讨论。该CPDDS可以较全面的反映材料的疲劳性质如S-N曲线、p-S-N曲线及理论疲劳极限。材料的理论疲劳极限即材料在规定的服役时间内发生失效的概率为小概率事件时的疲劳强度值,该定义利用CPDDS中的小概率事件突破了传统方法中对疲劳极限的定义。本部分研究提出了一种通过建立材料的CPDDS来研究材料疲劳性能的方法,同时该方法还可以用于随后的腐蚀疲劳及其可靠性的研究中。
     为了对材料经受H_2S腐蚀后的腐蚀程度进行评定,本文提出了逐层显微硬度试验的方法。通过材料经H_2S腐蚀后的硬度随材料打磨层深的变化,证明了金属材料在不同浓度的H_2S溶液中经过不同时间腐蚀后会产生H_2S腐蚀层、氢脆影响层的分层现象,其中溶液浓度对分层的影响不明显,腐蚀时间对分层有显著性影响。对本文采用的45号钢材料来说,经过48h浸泡腐蚀后材料的氢脆影响层会达到最大值,经过96h浸泡腐蚀后材料的H_2S腐蚀层会达到最大值。通过对金属材料腐蚀评定的研究,本文还提出了材料氢脆影响层中硬度随腐蚀溶液浓度、腐蚀时间与层深变化而变化的力学模型,并对模型中的参数进行了物理定义,该模型的提出为氢损伤的研究提供了研究思路。
     在腐蚀疲劳及其可靠性的研究中,本文结合材料腐蚀评定与疲劳可靠性研究方法,提出了一种研究工程中腐蚀疲劳问题的新方法,为腐蚀疲劳的机理解释提供了定性的解释。本文以45号钢为例进行了腐蚀疲劳的试验研究,研究发现腐蚀对材料产生的分层现象会对材料的疲劳行为产生重要的影响。H_2S腐蚀层因为点蚀坑的存在极易引发微裂纹的萌生与加速裂纹扩展,导致材料的抗疲劳特性减弱,引起材料理论疲劳极限的降低;氢脆影响层中包含的氢损伤会导致材料失效的随机性增大,导致材料疲劳寿命的分散性增大,引起材料可靠性寿命的降低。以上的研究结果为材料基于疲劳强度的可靠性设计、基于疲劳寿命的可靠性设计提供了理论参考,同时可用于工程中服役设备与材料的检修方案制定提供有效的试验数据。
Corrosion fatigue of the material is caused by the synergy of corrosive media andalternating stress, it is widely present in the engineering such as petrochemicalindustry, nuclear industry, aerospace and marine vessels. With the rapid developmentof the industry, production safety and equipment security requirements are alsoincreasing, and the corrosion fatigue problem is increasingly important in engineering.Corrosion fatigue, which is related to mechanics, electrochemistry, materials scienceand other disciplines, is very complex because of the variability of the corrosiveenvironment and the service conditions. Thus the long-term development frameworkfrom2006to2020of our Country has put the "Interaction of material service and theenvironment, Performance evolution, Failure mechanisms and Life predictionprinciple" as a major strategic need of basic research projects, expect to solve thematerial environment service problems.
     Based on the above background, studies on the corrosion fatigue issues aredeveloped in this paper. For the corrosion fatigue contains two different problems,corrosion and fatigue respectively. Thus the corrosion fatigue study can be firstdivided into two independent studies, corrosion study and fatigue study, and thencarry out a comprehensive study. In order to solve the problem of corrosion fatigueand its reliability in engineering, there are three parts of the research, the first is thestudy of the fatigue reliability, the second is the study of the corrosion assessment,and the third is the study of the corrosion fatigue and its reliability.
     In fatigue reliability studies, based on the assumption that the logarithmic fatiguelife follow the normal distribution, a conditional probability density distributionsurface (CPDDS) of material is established by constructing the functions μ(S) andσ(S). Where μ(S) is the function between the logarithm of fatigue life and the stresslevel, σ(S) is the function between the standard deviation of logarithmic fatigue lifeand the stress level. The CPDDS can reflect the fatigue properties of the materialmore comprehensively, such as the S-N curve, p-S-N curve and the theoretical fatiguelimit. The theoretical fatigue limit is the stress level at which the material failure is asmall probability event within the required service time. The definition of thetheoretical fatigue limit broke the conventional definition of the fatigue limit. A newmethod for researching the performances of the material fatigue is proposed in thisstudy, while the method can also be used in the study of the corrosion fatigue and itsreliability.
     In order to assess the corrosion degree of the material after the H_2S corrosion, thelayer by layer micro-hardness test method is proposed. By monitoring the hardnesschanging with the thickness of the polished layers after the H_2S corrosion, thestratification phenomenon is proved. The material will induce the corrosion layer andthe hydrogen embrittlement affected layer after the H_2S corrosion, wherein thesolution concentration plays little role on these stratifications, the etching time playsan important role on these stratifications. For the C45steel used in this paper, thethickness of the hydrogen embrittlement affected layer will reach the maximum after48h immersion, the thickness of the corrosion layer will reach the maximum after96himmersion. The mechanical model which expresses the hardness changing with thesolution concentration, etching time and the layer thickness is proposed in this part,and the physical definition of the model parameters is also given. The proposed modelprovides a new research method for the hydrogen damage study.
     In studies of the corrosion fatigue and its reliability, a new research method ofthe corrosion fatigue in engineering is proposed by the combination of the corrosionassessment and the fatigue reliability research, and the qualitative explanation of thecorrosion fatigue mechanism is given. The corrosion fatigue test of C45steel isresearched in this part, the study found the material stratifications after the corrosionhave an important impact on the fatigue behavior. The corrosion layer can easily leadto the micro-crack initiation and accelerate the crack propagation because of thepresence of pitting, resulting in the weakening of anti-fatigue properties, causing thereduction of the theoretical fatigue limit; the hydrogen embrittlement affected layerbecause of the hydrogen damage will lead to the increase of the material failurerandomness, resulting in the material fatigue life dispersibility increases, causing areduction in material‘s reliability life. The above findings provide a theoreticalreference for the fatigue strength based reliability design or the fatigue life basedreliability design, and the valid test data for life maintenance program development ofthe serving equipment and materials in engineering.
引文
[1]束德林主编.工程材料力学性能[M].北京:机械工业出版社.2003.7.
    [2] ASTM Standard E1823-10a, Standard Terminology Relating to Fatigue and FractureTesting[S], ASTM International, West Conshohocken, PA,2010, DOI:10.1520/E1823-10A,www.astm.org.
    [3](美)苏尔茨(Surech, S.)著,王光中译.材料的疲劳[M].北京:国防工业出版社.1993.
    [4]肖纪美.应力作用下的金属腐蚀应力腐蚀·氢致开裂·腐蚀疲劳·磨耗腐蚀[M].北京:化学工业出版社.1990.
    [5] National Transportation Safety Board.2003. Natural Gas Pipeline Rupture and Fire NearCarlsbad, New Mexico, August19,2000[R]. Pipeline Accident Report NTSB/PAR-03/01.Washington, D.C.
    [6] National Transportation Safety Board.2008. Natural Gas Distribution Line Break andSubsequent Explosion and Fire, Plum Borough, Pennsylvania. March5,2008[R]. PipelineAccident Report NTSB/PAB-08/01. Washington, D.C.
    [7] National Transportation Safety Board.2012. Enbridge Incorporated Hazardous LiquidPipeline Rupture and Release, Marshall, Michigan, July25,2010[R]. Pipeline AccidentReport NTSB/PAR-12/01. Washington, D.C.
    [8]中华人民共和国航空工业部标准HB/Z112-86材料疲劳试验统计分析方法[S].北京:中华人民共和国航空工业部,1986.
    [9]高镇同,熊俊江.疲劳可靠性[M].北京:北京航空航天大学出版社.2000.
    [10]赵少汴,蓝狄金.抗疲劳设计——方法与数据.北京:机械工业出版社.1997.
    [11] International Standard. Metallic materials-Fatigue testing-Statistical planning and analysisof data[S]. ISO12107:2003.
    [12]徐灏.疲劳强度[M].北京:高等教育出版社.1988.
    [13] Tait NS. The use of probability in engineering design a historical survey[J]. ReliabilityEngineering and System Safety.1993,40(2):119-132.
    [14]张艳斌.车轴钢超长寿命疲劳性能及可靠性研究[D].成都:西南交通大学.2008.
    [15]茆诗松,汤银才,王玲玲编著.可靠性统计[M].北京:高等教育出版社.2008.
    [16]曾春华,邹十践编译.疲劳分析方法及应用[M].北京:国防工业出版社.1991.
    [17]张安哥,朱成九,陈梦成编著.疲劳、断裂与损伤[M].成都:西南交通大学出版社.2006.
    [18]韩明,可靠性参数的修正Bayes估计方法及其应用[M].上海:同济大学出版社.2010.
    [19]高镇同.疲劳应用统计学[M].北京:国防工业出版社.1986.
    [20] Weibull W. A statistical theory of the strength of materials[M]. Stockholm: Royal SwedishAcademy of Engineering Sciences,1939.
    [21] Dixon W.J., A.M. Mood. A Method for Obtaining and Analyzing Sensitivity Data[J].Journal of the American Statistical Association,1948,43(241):109-126.
    [22] Nakazawa H, S. Kodama S.. Statistical S-N testing method with14specments[C]. JSMEstandard method for determination of S-N curve. Statistical research on fatigue and fracture,New York, Elsevier Applied Science,1987:59-69.
    [23]中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会. GB/T24176-2009金属材料疲劳试验数据统计方案与分析方法[S].北京:全国钢标准化技术委员会,2009.
    [24]熊俊江,武哲,高镇同.广义疲劳等寿命曲线与二维疲劳极限概率分布[J].应用数学和力学.2002,23(10):1055-1060.
    [25]罗毅,高镇同.疲劳寿命可靠性分析模型[J].机械强度.1994,16(03):64-66.
    [26]凌静,高镇同. P-Sa-Sm-N曲面的求法[J].航空学报.1991,12(07): A365-A372.
    [27]熊俊江,武哲,高镇同.疲劳可靠性设计中的p-Sa-Sm-N曲面理论与二维可靠性Miner公式[J].应用数学和力学.1999,20(7):707-712.
    [28]熊俊江,高镇同.用于疲劳可靠性设计的P-Sα-Sm-N曲面拟合法[J].实验力学.1995,10(01):63-67.
    [29]高镇同,熊俊江.疲劳学的研究进展[J].北京航空航天大学学报.1996,22(03):245-248.
    [30]徐人平,傅惠民,高镇同.根据S-N曲线确定P-S-N曲线[J].机械强度.1994,16(01):58-61.
    [31]高镇同,熊俊江.疲劳/断裂可靠性研究现状与展望[J].机械强度.1995,17(03):61-80.
    [32] Jiang Y.Q., S.L. Wang. Statistical analysis of reliability of container refrigeration units[J].International Journal of Refrigeration-Revue Internationale Du Froid.1996,19(6):407-413.
    [33] Shimizu S. New P-S-N curve, P-F-L curve and life estimation model for rolling contactmachine elements[J]. Journal of Japanese Society of Tribologists.2004,49(2):155-160.
    [34] Shimizu S. P-S-N/P-F-L curve approach using three-parameter Weibull distribution for lifeand fatigue analysis of structural and rolling contact components[J]. Tribology Transactions.2005,48(4):576-582.
    [35] Sakai T., et al.. Statistical fatigue properties of SCM435steel in ultra-long-life regime basedon JSMS database on fatigue strength of metallic materials[J]. International Journal of Fatigue.2006,28(11):1486-1492.
    [36] Xiong JJ, Shenoi RA. Single-point likelihood method to determine a generalized S-Nsurface[C]. Proceeding of the Institution of Mechanical Engineers Pare C-Journal ofMechanical Engineering Science.2006,220(10):1519-1529.
    [37] Xiong JJ, Shenoi RA. A practical randomization approach of deterministic equation todetermine probabilistic fatigue and fracture behaviours based on small experimental datasets[J]. International Journal of Fracture.2007,145(4):273-283.
    [38] Luo CY, Xiong JJ, Shenoi RA. A reliability-based approach to assess fatigue behaviourbased on small incomplete data sets[J]. Materials and Product Technologies.2008,44-46:871-877.
    [39] Liu Y M, Mahadevan S. Stochastic fatigue damage modeling under variable amplitudeloading[J]. International Journal of Fatigue.2007,29(6):1149-1161.
    [40] Chiew S, Lee C, Lie S, et al. Fatigue behaviors of square-to-square hollow section T-jointwith corner crack. I: Experimental studies [J]. Engineering Fracture Mechanics.2007,74(5):703-720.
    [41] Lee C K, Chiew S P, Lie S T, et al. Fatigue behaviors of square-to-square hollow sectionT-joint with corner crack. II: Numerical modeling[J]. Engineering Fracture Mechanics.2007,74(5):721-738.
    [42]杨谋存,聂宏,童明波.基于应力严重系数和概率断裂力学的耐久性分析方法[J].中国机械工程.2007,18(17):2079-2082.
    [43]杨谋存,聂宏.通用EIFS分布确定方法改进研究[J].航空学报,2006.27(6):1107-1112.
    [44] Baek S H, Cho S S, Kim H S, et al. Reliability design of preventive maintenance schedulingfor cumulative fatigue damage[J]. Journal of Mechanical Science and Technology.2009,23(5):1225-1233.
    [45] Baek S H, Cho S S, Joo W S. Fatigue life prediction based on the rainflow cycle countingmethod for the end beam of a freight car bogie[J]. International Journal of AutomotiveTechnology.2008,9(1):95-101.
    [46] Wang HW, Luo HY, Zhong QP, et al. Establishment of vehicle front axle load spectrum andits application of fatigue life estimation[J]. Engineering Structural Integrity: Research,Development and Application.2007, Vol.1-2:681-684.
    [47] Yang GX, Xie JL, Zhou SX. Fatigue reliability evaluation of welded frame of four-axlewagon bogie[J]. Advances in Heterogeneous Material Mechanics2008.2008:1219-1223.
    [48] Han WQ, Zhang YL, Li XY. Performance test for the fatigue of train wheel[C]. EnvironmentEffects on Fracture and Damage.2004:221-224.
    [49] Tosha K, Ueda D, Shimoda H, et al. A study on P-S-N curve for rotating bending fatigue testfor bearing steel[J]. Tribology Transactions.2008,51(2):166-172.
    [50] Shimizu S, Tsuchiya K, Tosha K. Probabilistic Stress-Life (P-S-N) Study on Bearing SteelUsing Alternating Torsion Life Test[J]. Tribology and Lubrication Technology.2010,66(8):42-50.
    [51] Shimizu S, Tsuchiya K, Tosha K. Probabilistic Stress-Life (P-S-N) Study on Bearing SteelUsing Alternating Torsion Life Test[J]. Tribology Transactions.2009,52(6):807-816.
    [52] Liu J, Wang Y, Li W. Simplified fatigue durability assessment for rear suspensionstructure[J]. International Journal of Automotive Technology.2010,11(5):659-664.
    [53] Shimizu S, Tosha K, Tsuchiya K. New data analysis of probabilistic stress-life (p-S-N) curveand its application for structural materials[J]. International Journal of Fatigue.2010,32(3):565-575.
    [54] Zhang JY, Bao R, Zhang XA, et al. A Probabilistic Estimation Method of Multiple SiteDamage Occurrence for Aircraft Structures[J]. Fatigue2010.2010,2(1):1115-1124.
    [55]杨波等,飞机结构紧固孔耐久性符合性检查与评估[J].南京航空航天大学学报.2008,40(4):493-496.
    [56] Li W, Sakai T, Li Q, et al. Reliability evaluation on very high cycle fatigue property ofGCr15bearing steel. International Journal of Fatigue[J].2010,32(7):1096-1107.
    [57] Li W, Li Q, Wang BJ, et al. Reliability Research on the Fatigue Fracture Behaviour in VeryHigh Cycle Region[J]. Progress in Safety Science and Technology. Vol VII.2008,7(A-B):1858-1863.
    [58] Song ZX, Xie JL, Ding LF, et al. Fatigue Reliability Research on ENAW6005Alloy WeldedJoint of High Speed Train[C]. Proceedings of the Third International Conference onMechanical Engineering and Mechanics, Vols1and2.2009:256-261.
    [59] Choi JH, Cho SK, Kim DJ, et al. Prediction of fatigue life characteristic of real waterworkpipe using linear transformation by the probability density function[J]. Integrated Approachesfor Materials and Structural Safety.2007:63-68.
    [60] Park TG, Choi CH, Won JH, et al. An Efficient Method for Fatigue Reliability AnalysisAccounting for Scatter of Fatigue Test Data[J]. International Journal of Precision Engineeringand Manuf acturing.2010,11(3):429-437.
    [61]杨振国等,42CrMoVNb细晶高强钢的疲劳行为[J].金属学报,2004(04):367-372.
    [62] S.U.KOH, J.S.KIM, B.Y.YANG, K.Y.KIM. Effect of line pipe steel microstructure onsusceptibility to sulfide stress cracking[J]. Corrosion,2006,60(3):244-253.
    [63]鲁连涛,盐泽和章,森井佑一,西野精一.高碳铬轴承钢超长寿命疲劳破坏过程的研究[J].金属学报.2005,41(10):1066-1072.
    [64] Zhang, J.M., et al., Influence of inclusion size on fatigue behavior of high strength steels inthe gigacycle fatigue regime[J]. International Journal of Fatigue.2007,29(4):765-771.
    [65] Kang KW, Goo BC, Kim JH, et al. Experimental Investigation on Static and FatigueBehavior of Welded SM490A Steel Under Low Temperature[J]. International Journal of SteelStructures.2009,9(1):85-91.
    [66] Kang KW, Goo BC, Kim JH, et al. A study on fatigue behavior of SM490A steel under lowtemperature[J]. Progresses in Fracture and Strength of Materials and Structures.1-4.2007,353-358(1-4):142-145.
    [67]苏卿,万小梅,赵铁军.氯离子侵蚀耐久寿命影响因素的敏感性分析[J].混凝土.2010(5):16-21.
    [68]《交通大辞典》编辑委员会编.交通大辞典[Z].上海:上海交通大学出版社.2005:763.
    [69]中国腐蚀与防护学会《金属腐蚀手册》编委会.金属腐蚀手册[Z].上海:上海科学技术出版社,1982.
    [70]机械工业部科技与质量监督司,中国机械工程学会理化检验分会编;桂立丰总主编;吴民达(腐蚀),赵源(摩擦学)主编.机械工程材料测试手册·腐蚀与摩擦学卷[Z].沈阳:辽宁科学技术出版社.2002:267-268.
    [71]乔利杰,王燕斌,褚武扬.应力腐蚀机理[M].北京:科学出版社.1993.
    [72]魏宝明主编.金属腐蚀理论及应用[M].北京:化学工业出版社.1984.
    [73]刘道新主编.材料的腐蚀与防护[M].西安:西北工业大学出版社.2006.
    [74]寇杰,梁法春,陈婧.油气管道腐蚀与防护.北京:中国石化出版社.2008.
    [75]周德惠,谭云编著.金属的环境氢脆及其实验技术[M].北京:国防工业出版社.1998.
    [76] Quispitupa Yupa A. Fatigue behavior of ultra high strength structural materials[D],University of Puerto Rico, Mayaguez (Puerto Rico),2007.
    [77] S. D. Antolovich. Fatigue Crack Propagation and Corrosion Fatigue of AF1410Steel[D].Department of Material Science and Metallurgical Engineering, University of Cincinnati,Ohio, January1980.
    [78] A. Turnbull. Modeling of Environment Assisted Cracking[J]. Corrosion Science.1993,34(6):921-960.
    [79] B. Shafiq and V. Agarwala. Corrosion and Fatigue in High Strength7075-T6Aluminum:Life Prediction Issues[J]. Journal of Aircraft.2004,41(2):393-398.
    [80] L. S. Richard Thomas, J. R. Scully, and P. R. Gangloff. Internal Hydrogen Embrittlement ofUltrahigh Strength Aermet100Steel[J]. Metallurgical and Materials Transformation A.2003,34A:327-344.
    [81]王荣著.金属材料的腐蚀疲劳[M].西安:西北工业大学出版社.2001.9.
    [82] Hirth J.P, Johnson H H. Corrosion–NACE[Z],1976,32(1):3.
    [83] Wang J., Chung Y.W. Effects of boron on water dissociation and surface diffusivity ofhydrogen on Ni3(Al,Ti)(110)Single crystal surfaces[J]. Intermetallics.2001,9:349-354.
    [84] Wan X.J., Chen Y.X., Chen A.P., et al. The influence of atomic order on H2-inducedenvironmental embrittlement of Ni3Fe intermetallics[J]. Intermetallics.2005,13:454-459.
    [85] Cheng X.Y., Wan X.J. The effect of ordering on the environmental embrittlement of Ni4Moalloy[J]. Scripta Metallurgica Et Materialia.2002,46:465-470.
    [86] Kimura Y, Sakai Y, Hara T, et al. Hydrogen induced delayed fracture of ultrafine grained0.6%O steel with dispersed oxide particles[J]. Scripta Materialia.2003,49(11):1111-1116.
    [87] Wang M, Akiyama E, Tsuzaki K. Effect of hydrogen and stress concentration on the notchtensile strength of AISI4135steel[J]. Materials Science and Engineering A.2005,398(1-2):37-46.
    [88]李志林,陈涛,曾致翚.不锈钢电化学诱导退火过程中的氢及其扩散系数测定[J].北京化工大学学报(自然科学版).2005,32(05):60-63.
    [89] Lee WJ, Chia WJ, Wang JL, et al. Role of Surfaces and Interfaces in Controlling theMechanical Properties of Metallic Alloys[J]. Langmuir.2010,26(21):16254-16260.
    [90] Liu CT, Lee EH, McKamey CG. An environmental effect as the major cause forroom-temperature embrittlement in FeAl[J]. Scripta Metallurgica Et Materialia.1989,23:875-880.
    [91] Li, Y.D., et al., The characteristics of granular-bright facet in hydrogen pre-charged anduncharged high strength steels in the very high cycle fatigue regime[J]. Journal of MaterialsScience.2010,45(3):831-841.
    [92] Gough H.J., Sopwith D.G. Atmospheric action as a factor in fatigue of metals[J]. JournalInstitute of Metals.1932,49:93-107.
    [93] Gray HR. Testing for Hydrogen Environment Embrittlement: Experimental Variables[Z]. In:Hydrogen Embrittlement Testing, ASTM. STP543,1974,133.
    [94] Chandler WT, Walter RJ. Hydrogen Embrittlement Testing[S]. ASTM. STP543,1974:170.
    [95] Ouchi H, Kobarashi J, Ishikawa T, et al. Environmental Effect of Crude Oil ContainingHydrogen Sulfide on Fatigue Properties of Steel Plates for Shipbuilding [J].Tetsu-to-Hagane(Japan).1994,80:475-480.
    [96] Mclaren T B, Thompson A W. Effect of hydrogen and microstructure on fatigue crackpropagation in a medium carbon steel[J]. Materials Science and Engineering.1983,57(2):L21-L25.
    [97] Chuang J H, Tsay L W, Chen C. Crack growth behaviour of heat-treated4140steel in airand gaseous hydrogen[J]. International Journal of Fatigue.1998,20(7):531-536.
    [98] K.Makhlouf, H.Sidhom, I.Triguia C.Braha. Corrosion fatigue crack propagation of a duplexstainless steel X6Cr Ni Mo Cu25-6in air and in artifical sea water[J]. International Journalof Fatigue.2003,25:167-179.
    [99] L W Tsay, Y C Liu, M C Young. Fatigue Crack Growth of AISI304Stainless Steel Welds inAir and Hydrogen[J]. Materials Science and Engineering A.2004,374(1-2):204-210.
    [100] Y Iino, K W Gao, K Okamura. Effect of High-Temperature Hydrogen Exposure on RoomTemperature Tensile Properties and Fatigue Crack Growth Behaviour of TiAl Base Alloy[J].Materials Science and Engineering A.2002,338(1-2):54-59.
    [101] R Ebara. Corrosion Fatigue Behavior of Structural Materials in Aggressive GasEnvironment[J]. International Fatigue Congress.2002:709-720.
    [102]潘明阳,严立,张会臣,等.16Mn钢在海水中腐蚀疲劳断口形貌分析[J].大连海事大学学报.1998,24(4):79-82.
    [103] Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of superlong fatiguefailure in steels.[J]. Fatigue&Fracture of Engineering Materials&Structures.1999,22(7):581-590.
    [104] Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong liferegime.[J]. Fatigue&Fracture of Engineering Materials&Structures.2002,25(8/9):735-746.
    [105] Yukitaka M., N Junji. Effect of Hydrogen on High Cycle Fatigue Failure of High StrenthSteel SCM435[J]. Society of Materials Science(Japan).2005,54(4):420-427.
    [106] Aoki Y, Kawamoto K, Oda Y, et al. Fatigue characteristics of a type304austeniticstainless steel in hydrogen gas environment[J]. International Journal of Fracture.2005,133(3):277-288.
    [107] Oda Y, Noguchi H. Observation of hydrogen effects on fatigue crack growth behaviour inan18Cr-8Ni austenitic stainless steel[J]. International Journal of Fracture.2005,132(2):99-113.
    [108] Masanobu Kubota, Yasuhiro Tanaka, Yoshiyuki Kondo. The effect of hydrogen gasenvironment on fretting fatigue strength of materials used for hydrogen utilization machines.International Journal of Fatigue.2008,30:1376-1386.
    [109]李永德.氢含量与高强钢疲劳强度的相关性研究[Z].第十四届全国疲劳与断裂学术会议论文集.2008.中国江西井冈山.
    [110]李永德等,氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J].金属学报,2008(1):64-68.
    [111] Li Y D, Yang Z G, Li S X, et al. Effect of Hydrogen on Fatigue Strength of High-StrengthSteels in the VHCF Regime[J]. Advanced Engineering Materials.2009,11(7):561-567.
    [112] Furuya Y., H Hirukawa, M Hayakawa. Gigacycle Fatigue Properties of Hydrogen-ChargedJIS-SCM440Low-Alloy Steel Under Ultrasonic Fatigue Testing[J]. Metallurgical andMaterials Transactions A-Physical Metallurgy and Materials Science.2010,41A(9):2248-2256.
    [113] Holobut P. Fatigue crack growth model for a thin steel plate containing hydrogen[J].International Journal of Fatigue.2010,32(12):1895-1903.
    [114] Turnbull A, Zhou S. Comparative evaluation of environment induced cracking ofconventional and advanced steam turbine blade steels. Part1: Stress corrosion cracking[J].Corrosion Science.2010,52(9):2936-2944.
    [115] Turnbull A, Zhou S. Comparative evaluation of environment induced cracking ofconventional and advanced steam turbine blade steels. Part2: Corrosion fatigue[J]. CorrosionScience.2011,53(1):503-512.
    [116] Olden V, Thaulow C, Johnsen R. Modelling of hydrogen diffusion and hydrogen inducedcracking in supermartensitic and duplex stainless steels[J]. Materials&Design.2008,29(10):1934-1948.
    [117] Oltra R, Bouillot C, Magnin T. Localized hydrogen cracking in the austenitic phase of aduplex stainless steel[J]. Scripta Materialia.1996,35(9):1101-1105.
    [118] Robertson, I.M., The effect of hydrogen on dislocation dynamics[J]. Engineering FractureMechanics.1999.64(5):649-673.
    [119] Vytvyts'Kyi V I. Experimental and analytic evaluation of the influence of high-pressurehydrogen on the low-cycle fatigue of steels[J]. Materials Science.2007,43(5):725-729.
    [120] Balitskii A I, Vytvytskyi V I, Ivaskevich L M. The low-cycle fatigue of corrosion-resistantsteels in high pressure hydrogen[M].2010:2,2367-2371.
    [121] Mcmahon C J. Hydrogen-induced intergranular fracture of steels[J]. Engineering FractureMechanics.2001,68(6):773-788.
    [122]中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会. GB/T3075-2008疲劳试验轴向力控制方法[S].北京:全国钢标准化技术委员会,2008.
    [123] NACE TM0177-96. Laboratory Testing of Metals for Resistance to Sulfide Stress Crackingand Stress Corrosion Cracking in H2S Environments.
    [124] Wallin, K., Statistical aspects of fatigue life and endurance limit[J]. Fatigue&Fracture ofEngineering Materials&Structures.2010.33(6):333-344.
    [125] Grell, W.A. and P.J. Laz, Probabilistic fatigue life prediction using AFGROW andaccounting for material variability[J]. International Journal of Fatigue,2010.32(7):1042-1049.
    [126] Castillo E., Hadi A S.. Modeling Lifetime Data with Application to Fatigue Models[J].Journal of the American Statistical Association.1995,90(431):1041-1054.
    [127] Castillo E, Fernandez-Canteli A, Hadi A S. On fitting a fatigue model to data[J].International Journal of Fatigue.1999,21(1):97-106.
    [128] ASTM. Statistical Analysis of Fatigue Data[S], ASTM STP744, ed. R. E. Little and J. C.Ekvall. American Society for Testing and Materials.1981.
    [129] Hanaki S, Yamashita M, Uchida H, et al. On stochastic evaluation of S-N data based onfatigue strength distribution[J]. International Journal of Fatigue.2010,32(3):605-609.
    [130] Murty A.S.R., Gupta U.C., Krishna A.R.. A New Approach to Fatigue-Strength Distributionfor Fatigue Reliability Evaluation[J]. International Journal of Fatigue.1995,17(2):85-89.
    [131] Yoon, H. and J. Zhang, Prediction of fatigue life distribution of marine propellermaterials[J]. Journal of Mechanical Science and Technology.2009.23(5):1323-1330.
    [132] Roger Rabb. Fatigue life evaluation of grey cast iron machine components under variableamplitude loading[J]. ESIS publication: Fatigue Design and Reliability.1999,23:26-29.
    [133] Bathias C. There is no infinite fatigue life in metallic materials[J]. Fatigue&Fracture ofEngineering Materials&Structures.1999,22(7):559-65.
    [134] Sonsino CM. Course of SN-curves especially in the high-cycle fatigue regime with regardto component design and safety[J]. International Journal of Fatigue.2007,29(12):2246-2258.
    [135] Pyttel B, Schwerdt D and Berger C. Very high cycle fatigue-Is there a fatigue limit?[J].International Journal of Fatigue.2011,33(1):49-58.
    [136] Basquin OH. The exponential law of endurance tests[J]. Proceedings of ASTM.1919(10):625-630.
    [137] International Standard. Metallic materials-Fatigue testing-Axial force-controlled method[S].ISO1099:2006.
    [138]赵宇,杨军马,小兵编著.可靠性数据分析教程[M].北京:北京航空航天大学出版社.2009.6:137-138.
    [139] Beer FP, Johnston Jr ER, DeWolf JT. Mechanics of materials[M].2nd ed. New York:McGraw-Hill, Inc.;1992.
    [140]张朝霞,吴杰.日常生活中的小概率事件[J].太原师范学院学报(自然科学版).2006,5(4):61-63.
    [141] Shen H, Lin J, Mu E. Probabilistic model on stochastic fatigue damage[J]. InternationalJournal of Fatigue.2000,22(7):569-572.
    [142] Tovo R. On the fatigue reliability evaluation of structural components under serviceloading[J]. International Journal of Fatigue.2001,23(7):587-598.
    [143] Bucar T, Nagode M, Fajdiga M. Reliability approximation using finite Weibull mixturedistributions[J]. Reliability Engineering&System Safety.2004,84(3):241-251.
    [144] ASTM Standard E739-10. Standard Practice for Statistical Analysis of Linear orLinearized Stress-Life (S-N) and Strain-Life (-N) Fatigue Data[S]. ASTM International,West Conshohocken, PA,2010, DOI:10.1520/E0739-10, www.astm.org.
    [145] ASTM STP91A. A Guide for Fatigue Testing and the Statistical Analysis of FatigueData[Z]. ASTM International,1963. Out of print; available from University Micro-flms, Inc.,300N. Zeeb Rd., Ann Arbor, MI48106.
    [146] Bucar T, Nagode M, Fajdiga M. An improved neural computing method for describing thescatter of S-N curves[J]. International Journal of Fatigue.2007,29(12):2125-2137.
    [147] Weibull. W.. Fatigue Testing and Analysis of Results[M]. Pergamon Press.1961:226-228.
    [148]高镇同,傅惠民.疲劳强度的频率分布和疲劳强度特征函数[J].机械强度.1985,7(2):27-34.
    [149]陈明,崔琦.硫化氢腐蚀机理和防护的研究现状及进展[J].石油工程建设.2010,36(5):1-5.
    [150]张亦良,徐金泉,王羽辞.石化特种设备中的硫化氢应力腐蚀与残余应力[J].中国工程科学.2009(08):38-43.
    [151]刘智勇,李明,李晓刚.16Mn(HIC)钢在硫化氢环境中的应力腐蚀开裂行为[J].中国腐蚀与防护学报.2006;26(6):360-364.
    [152] Rogante A, Battistella P, Cesari F. Hydrogen interaction and stress-corrosion inhydrocarbon storage vessel and pipeline weldings[J]. Int J Hydrogen Energ.2006;31(5):597-601.
    [153]任学冲,褚武扬,李金许,宿彦京,乔利杰.夹杂对氢鼓泡形成的影响[J].金属学报.2007,43(07):673-677.
    [154]李云涛,杜则裕,孙娈芬,陶勇寅.高强度管线钢的抗氢致裂纹性能[J].钢铁研究学报.2008,20(12):50-54.
    [155]顾宝兰,徐学东,周莉.管线用钢显微组织对氢致裂纹影响的研究[J].理化检验(物理分册).2006,42(01):8-11.
    [156] Zinbi A, Bouchou A. Delayed cracking in301austenitic steel after bending process:Martensitic transformation and hydrogen embrittlement analysis[J]. EngineeringFailure Analysis.2010,17(5):1028-1037.
    [157]赵颖,王荣. X70管线钢电化学充氢后的力学行为研究[J].中国腐蚀与防护学报.2004,24(05):293-296.
    [158]李会录,余竹焕,李颖,褚武扬,乔利杰.高强钢氢脆敏感性和氢致附加应力的相关性[J].腐蚀与防护.2009,30(10):678-683.
    [159] Marcelo AL, Tokimatsu RC, Ferreira I. Hydrogen embrittlement in an AISI1045steelcomponent of the sugarcane industry[J]. Engineering Failure Analysis.2009,16(1):468-474.
    [160] Kottenstette R, Cotrell J. Hydrogen storage in wind turbine towers[J]. International Journalof Hydrogen Energy.2004,29(12):1277-1288.
    [161] Chatzidouros EV, Papazoglou VJ, Tsiourva TE, Pantelis DI. Hydrogen effect on fracturetoughness of pipeline steel welds, with in situ hydrogen charging[J]. International Journal ofHydrogen Energy.2011,36(19):12626-12643.
    [162] Swieczko-Zurek B, Zielinski A, Lunarska E. Hydrogen degradation of structural steels intechnical hydrocarbon liquids[J]. Materials and Corrosion.2008,59(4):289-295.
    [163] Nanninga N, Grochowsi J, Heldt L, Rundman K. Role of microstructure, composition andhardness in resisting hydrogen embrittlement of fastener grade steels[J]. Corrosion Science.2010,52(4):1237-1246.
    [164] Mohammadi F, Luo J. Effect of cold work on erosion-corrosion of304stainless steel[J].Corrosion Science.2011,53(2):549-556.
    [165]中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会.GB/T4340.1-1999金属维氏硬度试验第1部分:试验方法. GB/T4340.1-1999.全国钢标准化技术委员会,北京,1999.
    [166]国家质量监督检验检疫局. GB/T4342-1991金属显微维氏硬度试验方法. GB/T4342-1991.全国钢标准化技术委员会,北京,1991.
    [167] EFC. Publications No.16Guidelines on Materials Requirements for Carbon and Low AlloySteels for H2S-Containing Environments in Oil and Gas Production: Reprinted withCorrections.
    [168]中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会. GB/T17820-2012天然气.全国钢标准化技术委员会,北京,2012.
    [169] NACE TM0284-2003, Evaluation of Pipeline and Pressure Vessel Steels for Resistance toHydrogen-Induced Cracking. NACE International, Houston,1996.
    [170] Kappes M, Frankel GS, Thodla R, et al. Hydrogen Permeation and Corrosion FatigueCrack Growth Rates of X65Pipeline Steel Exposed to Acid Brines Containing Thiosulfate orHydrogen Sulfide[J]. Corrosion.2012,68(11):1015-1028.
    [171] Boellinghaus T. Hydrogen assisted cracking of supermartensitic stainless steels[C].International Conference on Hydrogen Effects on Material Behaviour and CorrosionDeformation Interactions, September22,2002-September26,2002Moran, WY, Unitedstates: Minerals, Metals and Materials Society.2003:1009-1018.
    [172] Gui F, Ramgopal T, Muller MG. Role of Sour Environments on the Corrosion FatigueGrowth Rate of X65Pipe Steel[J]. Corrosion.2012,68(8):730-738.
    [173] Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami Y. Effects of hydrogen onfatigue crack growth behavior of austenitic stainless steels[J]. International Journal ofHydrogen Energy.2008,33(10):2604-2619.
    [174] Toba K, Ueyama M, Kawano K, Sakai J. Corrosion of Carbon Steel and Alloys inConcentrated Ammonium Chloride Solutions[J]. Corrosion.2012,68(11):1049-1056.
    [175] Al-Awar A, Aldajah S, Harhara A. Stress corrosion cracking for316stainless steel clips ina condensate stabilizer[J]. Materials and Corrosion.2011,62(9):884-889.
    [176] Yang CH, Huang MF. Characterization of hydrogen concentration in Zircaloy claddingsusing a low-frequency acoustic microscope with a PVDF/LFB transducer[J]. Journal ofNuclear Materials.2004,335(3):359-365.
    [177] Mine Y, Narazaki C, Murakami K, Matsuoka S, Murakami Y. Hydrogen transport insolution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhancedfatigue crack growth[J]. International Journal of Hydrogen Energy.2009,34(2):1097-1107.
    [178] Adler PN, Schulte RL. Stress-induced hydrogen migration in β-phase titanium[J]. ScriptaMetallurgica.1978,12:669-672.
    [179] Ovejero-Garcia J. Hydrogen microprint technique in the study of hydrogen in steels[J].Journal of Materials Science.1985,20:2623-2629.
    [180] Landa B, Birnbaum HK. A study of hydrogen transport during plastic deformation[J]. ActaMetallurgica.1987,35:1775-1778. Article in press International Journal Of Hydrogen Energy.2008,33:2604-2619,2618.
    [181] Takai K, Chiba Y, Noguchi K, Nozue A. Visualization of the hydrogen desorption processfrom ferrite, pearlite, and graphite by secondary ion mass spectrometry[J]. Metallurgical andMaterials Transactions.2002,33A:2659-2665.
    [182] Louthan Jr MR, Donovan JA, Caskey Jr GR. Tritium absorption in type304L stainlesssteel[J]. Nuclear Technology.1975,26:192-200.
    [183] Ilic R, Altstetter C. Prompt ion-induced autoradiography and its application for thedetermination of deuterium[J]. Nuclear Instruments Methods.1981,185:505-512.
    [184] Trethewey KR, Wenman M, Chard-Tuckey P, Roebuck B. Correlation of meso-andmicro-scale hardness measurements with the pitting of plastically-deformed Type304Lstainless steel[J]. Corrosion Science.2008,50(4):1132-1141.
    [185] Constantinides G, Tweedie CA, Savva N, et al. Quantitative impact testing of energydissipation at surfaces[J]. Experimental Mechanics.2009,49(4):511-522.
    [186] Kuromoto NK, Guimar es AS, Lepienski CM. Superficial and internal hydrogenationeffects on the fatigue life of austenitic steels[J]. Materials Science and Engineering: A.2004,381(1-2):216-222.
    [187] Nagumo M, Shimura H, Chaya T, Hayashi H, Ochiai I. Fatigue damage and its interactionwith hydrogen in martensitic steels[J]. Materials Science and Engineering: A.2003,348(1-2):192-200.
    [188] Nagumo M, Yoshida H, Shimomura Y, Kadokura T. Ductile Crack Growth Resistance inHydrogen-Charged Steels[J]. Materials Transactions.2001,42(1):132-137.
    [189]褚武扬著.氢损伤和滞后断裂[M].北京:冶金工业出版社.1988.
    [190] Aoki Y, Kawamoto K, Oda Y, Noguchi H, Higashida K. Fatigue characteristics of a type304austenitic stainless steel in hydrogen gas environment[J]. International Journal of Fracture.2005,133(3):277-288.
    [191] Genel K. The effect of pitting on bending fatigue performance of high-strength aluminiumalloy[J]. Scripta Materialia.2007,57:297-300.
    [192] Wang QY, Kawagoishi N, Chen Q. Effect of pitting corrosion on very high cycle fatiguebehavior[J]. Scripta Materialia.2003,49:711-716.
    [193] Wasekar NP, Jyothirmayi A, Sundararajan G. Influence of prior corrosion on the highcycle fatigue behavior of microarc oxidation coated6061-T6Aluminum alloy[J].International Journal of Fatigue.2011,33(9):1268-1276.
    [194] Ragab A, Alawi H, Sorein K. Corrosion fatigue of steel in various aqueous environments[J].Fatigue&Fracture of Engineering Materials&Structures.1989,12:469-479.
    [195] Beretta S, Carboni M, Fiore G, Lo Conte A. Corrosion-fatigue of A1N railway axle steelexposed to rainwater[J]. International Journal of Fatigue.2010,32(6):952-961.
    [196] Schijve J. Fatigue of structures and materials[M]. Kluwer Academic Publishers.2004.
    [197] Akid R, Miller KJ. Short fatigue crack growth behavior of a low carbon steel undercorrosion fatigue conditions[J]. Fatigue&Fracture of Engineering Materials&Structures.1991,14:637-649.
    [198]房志忠,彭芳明,刘烈炜,郑家燊.钻杆40Cr钢在含H2S钻井液中的腐蚀疲劳[J].华中理工大学学报.1995,23(增刊(II)):148-153.
    [199] K.J. Miller, in: A.S. Argon (Ed.). Topics in Fracture and Fatigue[M], Springer, New York,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700