类金刚石膜应用于正畸托槽及弓丝生物学及摩擦性能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     不锈钢、镍钛合金作为正畸托槽及弓丝的制造材料已经应用多年,但这些合金表面耐磨性差,摩擦系数高,易被氟化物腐蚀并析出离子,这些缺点可通过表面处理技术加以改善。类金刚石(DLC)膜具有良好的生物相容性和优异的摩擦学性能,是理想的生物涂层材料,其在工业领域的应用研究已广泛开展,在生物医学领域的临床研究也获得了重大进展。本课题拟通过在正畸托槽及弓丝表面研制类金刚石膜,并评估类金刚石膜对正畸托槽-弓丝表面生物学行为及摩擦磨损性能的影响,从而为类金刚石膜改性技术在口腔正畸领域应用提供实验依据。
     研究方法
     1.采用封闭式电子回旋共振(MCECR)等离子体溅射技术在正畸不锈钢(316Lstainless steel)表面制备类金刚石膜,利用Pin-on-Disk标准摩擦磨损试验机研究薄膜的摩擦磨损性能,以寻找在托槽、弓丝上制备类金刚石膜的最佳镀膜工艺参数。
     2.选用变形链球菌(S. mutans)在DLC薄膜表面进行细菌粘附对比试验,以及人牙周膜细胞(HPDLC)在DLC薄膜表面进行细胞粘附、增殖对比试验(MTT比色实验),以测试DLC薄膜的抗菌性能和生物安全性。
     3.设计、建造口腔正畸微振动摩擦磨损测试系统,模拟正畸牙移动方式,以及托槽-弓丝接触的扭转、转矩变化,以测试托槽-弓丝间动态摩擦力。
     4.在正畸镍钛弓丝表面制备类金刚石膜,对镀膜弓丝及传统弓丝在含氟环境下抗腐蚀及摩擦磨损性能进行比较研究。
     5.在不锈钢托槽及弓丝表面制备类金刚石膜,利用自主研发的正畸微振动试验机,测试托槽-弓丝间的摩擦行为。测试运行参数设置为:载荷1N,频率0.5Hz,位移振幅±150μm。表面制备类金刚石膜的托槽、弓丝和传统的托槽、弓丝组成多种摩擦组合,分别在干燥环境和人工唾液环境条件下进行了摩擦磨损性能的测试。采用扫描电子显微镜(SEM)对测试后托槽及弓丝表面磨痕进行观察分析。
     研究结果
     1.与无膜不锈钢相比较,表面制备类金刚石膜的316L不锈钢摩擦系数明显降低,薄膜平均磨损寿命达8000圈,表现出优异的摩擦磨损性能。
     2.人牙周膜细胞在类金刚石膜表面生长情况好于不锈钢表面,细胞更扁平,铺展更好,类金刚石薄膜表面对人牙周膜细胞表现出更好的生物相容性;此外,与不锈钢表面相比较,变形链球菌在类金刚石膜表面粘附和增殖明显减少。
     3.成功研发了一套正畸微振动摩擦磨损测试系统,可以在一定程度上模拟复杂的托槽-弓丝接触状况,进行正畸摩擦力的体外实验研究。
     4.与传统弓丝比较,制备类金刚石膜的镍钛弓丝在高氟离子环境中浸泡后表面粗糙度无明显改变,证实了类金刚石膜优异的抗腐蚀性能。摩擦试验结果显示,无论在干燥环境或人工唾液环境,类金刚石膜明显降低了托槽-弓丝间摩擦系数,减轻了磨损。
     5.无论在干燥或人工唾液环境下,与传统弓丝比较,制备类金刚石膜的不锈钢弓丝明显降低了托槽-弓丝间摩擦系数;但制备类金刚石膜的不锈钢托槽并没有降低托槽-弓丝间摩擦系数。显微照片分析可知,类金刚石膜明显减轻了弓丝表面的接触磨损,同时,显微照片也显示了托槽槽沟边沿存在明显的不规则嵴状突起等加工缺陷,这些应力集中区的嵴状突起使其在摩擦接触时无法形成摩擦转移膜,因而类金刚石膜在此无法起到降低托槽摩擦力及减轻磨损的作用。
     结论
     1.在正畸不锈钢表面成功制备了类金刚石膜,类金刚石膜对人牙周膜细胞具有良好生物相容性,并表现出抵抗变形链球菌粘附的能力,是理想的生物医学材料。
     2.正畸微振动摩擦测试系统的成功研发,为精确测量托槽-弓丝间摩擦力提供了测试手段。
     3.类金刚石膜推荐作为镍钛弓丝的涂层材料,可提高弓丝在含氟环境中的抗腐蚀能力并改善摩擦性能。
     4.不锈钢弓丝表面制备类金刚石膜可明显降低摩擦系数并减轻磨损;然而,在目前的托槽表面制备类金刚石膜并不能改善托槽的摩擦性能,托槽槽沟边沿需改善设计及加工工艺。
     总之,具有良好生物相容性和优异物理化学性能的类金刚石膜将广泛应用于口腔生物医学领域。
Objective
     Stainless steel and Nickel-titanium (NiTi) alloys have been applied in orthodontictreatment for several decades due to their biocompatibility and mechanical properties.Nevertheless, they are still controversial in long-term clinical applications because of thehigh friction coefficient and the decreasing of corrosion resistance in active saliva orfluoride solutions. The long-term biocompatibility and frictional characteristics can beimproved by using various surface modification methods. Diamond-like carbon (DLC)films are very promising candidates for this bio-application owing to their good biocompatibility and tribological properties, and it has been widely expected to be adaptedas new biocompatible coatings. The purpose of this study was to investigate the potentialinterest in DLC coating for applying to orthodontic appliances. Hence DLC films weredeposited on orthodontic archwires and brackets, and an in vitro biological andtribological evaluation was carried out.
     Methods
     1. DLC films were prepared on the surfaces of316L stainless steel byMirror-Confinement-type Electron Cyclotron Resonance (MCECR) plasma sputteringtechnique, and the friction behaviour and abrasion performance of DLC films wereinvestigated using a Pin-on-Disk friction and wear tester.
     2. The bacterial adhesion and antibacterial property of the DLC coating wasevaluated against streptococcus mutans MS95051. Cell behavior of human periodontalligament fibroblasts was evaluated in terms of cell adhesion on the DLC films, cellviability/proliferation (MTT assay) and pattern of cell growth.
     3. We developed a specific fretting test which permitted the micro-slidings tosimulate tooth movement. The fretting machine is very promising for investigatingbracket-to-wire angulation and rotation, studying environmental conditions, and thefrequency of the oscillation, as well as other parameters that could have tribologicaleffects.
     4. DLC films were deposited on Ni-Ti orthodontic archwires, and the influences of afluoride-containing environment on the surface topography and the friction coefficientbetween brackets and archwires were subsequently investigated.
     5. DLC films were deposited on the stainless steel brackets and archwires. Thetribological behavior of archwire-bracket contacts was investigated at a normal load of1Nand a frequency of0.5Hz for displacement amplitude of±150μm. Variousarchwire-bracket combinations were investigated under dry and artificial saliva conditions.After fretting tests the surface morphology of archwires and brackets were analyzed byusing scanning electron microscopy (SEM).
     Results
     1. DLC films were deposited on stainless steel, and the results of frictional testsshowed that the samples coated by DLC films exhibited lower and more stable frictioncoefficient than that of uncoated samples. The mean abrasion life of carbon film reached avalue of8000cycle.
     2. The study examined the biological behavior of human periodontal ligamentfibroblasts on the DLC-coated surface. The results demonstrated that DLC-caoted surfacewell supported the growth, spreading, attachment and proliferation of cell. Meanwhile, theSEM images as well as the counting results of bacterium revealed that the multiplicationof streptococcus mutans was not obvious on the DLC-coated surfaces than on theuncoated surface.
     3. A specific fretting apparatus consisting of reciprocating tangential displacementswas developed to study the tribological behavior of archwire-bracket contacts.
     4. The results confirmed the superior nature of the DLC coating, evident as fewersurface roughness variation for DLC-coated Ni-Ti archwires after immersion in a highfluoride ion environment. Moreover, the friction tests shown that the application of DLCcoating significantly decreased the fretting wear and the coefficient of friction both inambient air and artificial saliva.
     5. The DLC-coated stainless steel wires showed significantly lower frictioncoefficient than the uncoated wires independently of the applied environments.Nevertheless, the DLC-coated and uncoated brackets showed no significant differences inthe friction coefficient. Microscopic analysis showed that low wear took place for theDLC-coated surfaces. In addition, the dominant defect caused by mechanical treatmentduring manufacturing process was especially seen on the external edges of the bracket slotbottom surface. The debris of DLC layer could not remain on such ridged contact surfaceand form a transfer film, which favored the lubrication of the interface of wire-bracketcoupling.
     Conclusions
     1. The MCECR deposition technique allows the growth of dense, homogeneous DLCcoatings on stainless steel substrates. DLC coatings provide a suitable surface for cellattachment, spreading and proliferation, further suggesting the lack of cytotoxicity of thiscoating. In addition, the antibacterial tests show that DLC films exhibit antibacterialproperties.
     2. The fretting machine appears suitable for evaluating the frictional behavior oforthodontic bracket-wire combinations because of its controllable test parameters, such ascontact configuration and positioning. It permits standardizing the testing methods andachieving reproducible findings.
     3. DLC coating is recommended in order to reduce the fluoride-induced corrosionand improve the orthodontic friction for Ni-Ti archwires.
     4. The application of DLC coating on archwires significantly decreases theorthodontic fretting wear and coefficient of friction. Unfortunately it does not affect thefrictional properties for brackets at present, and the design, production techniques andfinal polishing process of the bracket slot bottom should be improved.
     In a word, the cellular biocompatibility of the DLC coatings, allied with the excellentphysico-chemical performance, anticipates a wide range of applications in the dentalbiomedical field.
引文
[1] Farrant SD. An evaluation of different methods of canine retraction. Br J Orthod1977;4(1):5-15.
    [2] Rossouw PE. Friction: an overview. Semin Orthod2003;9(4):218-222.
    [3] Quinn RS, Yoshikawa DK. A reassessment of force magnitude in orthodontics. Am JOrthod1985;88(3):252-260.
    [4] Paetyangkul A, Türk T, Elekda-Türk S, et al. Physical properties of root cementum:Part16. Comparisons of root resorption and resorption craters after the application oflight and heavy continuous and controlled orthodontic forces for4,8, and12weeks.Am J Orthod Dentofacial Orthop2011;139(3):e279-284.
    [5] Genelhu MC, Marigo M, Alves-Oliveira LF, et al. Characterization of nickel-inducedallergic contact stomatitis associated with fixed orthodontic appliances. Am J OrthodDentofacial Orthop2005;128:378-381.
    [6] Kusy RP. The future of orthodontic materials: the long-term view. Am J OrthodDentofacial Orthop1998;113(1):91-95.
    [7] Sims APT, Waters NE, Birnie DJ, et al. A comparison of the forces required toproduce tooth movement in vitro using two self-ligating brackets and a pre-adjustedbracket employing two types of ligation. Eur J Orthod1993;15:377-385.
    [8] Mitura S, Mitura K, Niedzielski P, et al. Nanocrystalline diamond, its synthesis,properties and applications. J Achievements Mater Manuf Eng2006;16:9-16.
    [9] Okrój W, Kamińska M, Klimek L, et al. Blood platelets in contact withnanocrystalline diamond surfaces. Diam Relat Mater2006;15(10):1535-1539.
    [10] Trava-Airoldi VJ, Corat EJ, Leite NF, et al. CVD diamond burrs—developmentand applications. Diam Relat Mater1996;5:857-860.
    [11] Amar M, Ahmed W, Sein H, et al. Chemical vapour deposition of diamond coatingsonto molybdenum dental tools. J Phys Condens Matter2003;15(39):S2977-2982.
    [12] Aisenberg S, Chabot R. Ion-Beam deposition of thin films of diamondlike carbon. JAppl Phys1971;42(7):2953-2958.
    [13] Pierson. Handbook of Carbon, Graphite, Diamond and Fullerenes-Properties,Processing and Applications. Noyes: H. O., William Andrew Publishing,1993:33-36.
    [14] Wei Q, Narayan J. Super diamond-like carbon preparation, theory, and properties.Int Mater Rev2000;45(4):133-162.
    [15] Molian PA, Janvrin B. Laser chemical vapor deposition of fluorinated diamond thinfilms for solid lubrication. Wear1993;165:133-140.
    [16] Yi JW, Lee YH, Farouk B. Annealing effects on structural and electrical propertiesof fluorinated amorphous carbon films deposited by plasma enhanced chemical vapordeposition. Thin Solid Films2003;423(1):97-102.
    [17]祝土富,沈丽如.类金刚石膜的性能、制备与应用(一).真空2007;44(6):24-29.
    [18] Liftshitz Y. Diamond-like carbon—present status. Diam Relat Mater1999(8):1659-1676.
    [19] Funada Y, Awazu K, Yasui H, et al. Adhesion strength of DLC films on ass withmixing layer prepared by IBAD. Surf Coat Technol2000;128(129):308-312.
    [20] Qi J, Luo JB, Wen SZ, et al. Mechanical and tribological properties ofnon-hydrogenated DLC Films syntersized by IBAD. Surf Coat Technol2000;128-129:324-328.
    [21] Yu X, Wang CB, Liu Y, et al. A study of hard diamond-like carbon films inmid-frequency dual-magnetron sputtering. Diam Relat Mater2006;15(9):1223-1227.
    [22] Huang ZH, Yang B. A cathodic arc enhanced middle frequency magnetron sputtersystem for deposition of hard protective coatings. Nucl Sci Tech2006;17(3):135-138.
    [23] Uenga HY, Guo CT, Dittrich KH. Development of a hybrid coating process fordeposition of diamond-like carbon films on microdrils. Surf Coat Technol2006;200:2900-2908.
    [24] Voevodina AA, Jonesa JG. Comparative study of wear-resistant DLC andfullerene-like CNx coatings produced by pulsed laser and filtered cathodic arcdepositions. Surf Coat Technol2005;197:116-125.
    [25] Balon F, Stolojan V. Diamond-like carbon thin films for high-temperatureapplications prepared by filtered pulsed laser deposition. Vacuum2005;80:163-167.
    [26] Goto Y, Yagi T, Nagai H. Synthesis of diamond films by laser-induced chemicalvapor deposition. MRS Proceedings1989;129:213-217.
    [27] Corbella C, Polo MC. Time-resolved electrical measurements of a pulsed-dcmethane discharge used in diamond-like carbon films production. Thin Solid Films2005;482:172-176.
    [28] Alakoski E, Kiuru M, Tiainen VM. A simplified arc discharge set-up for highadhesion of DLC coatings. Diam Relat Mater2006;15:34-37.
    [29] Noda M, Umeno M. Coating of DLC film by pulsed discharge plasma CVD. DiamRelat Mater2005;14:1791-1794.
    [30] Bonetti LF, Capote G, Santos LV, et al. Adhesion studies of diamond-like carbonfilms deposited on Ti6Al4V substrate with a silicon interlayer. Thin Solid Films2006;515:375-379.
    [31] He WL, Yu R, Wang H, et al. Electrodeposition mechanism of hydrogen-freediamond-like carbon films from organic electrolytes. Carbon2005;43(9):2000-2006.
    [32] Huang N, Yang P, Leng YX, et al. Hemocompatibility of titanium oxide films.Biomaterials2003;24:2177-2187.
    [33] Shah AK, Sinha RK, Hickok NJ, et al. High-resolution morphometric analysis ofhuman osteoblastic cell adhesion on clinically relevant orthopedic alloys. Bone1999;24:499-506.
    [34] Gutensohn K, Beythien C, Bau J, et al. In vitro analyses of diamond-like carboncoated stents: Reduction of metal ion release, platelet activation and thrombogenicity.Thromb Res2000;99:577-585.
    [35] Gillespie WL, Frampton CMA, Henderson RJ, et al. The incidence of cancerfollowing total hip replacement. J Bone Joint Surg Br1988;70:539-542.
    [36] Cui FZ, Luo ZS. Biomaterials modification by ion beam processing. Surf CoatTechnol1999;112:278-285.
    [37] Thomson LA, Law FC, Rushton N, et al. Biocompatibility of diamond-like carboncoating. Biomaterials1991;12:37-40.
    [38] Evans AC, Franks J, Revell PJ. Diamond-like carbon applied to bioengineeringmaterials. Surf Coat Technol1991;47:662-667.
    [39] Mitura E, Mitura S, Niedzielski P, et al. Diamond-like carbon coatings forbiomedical applications. Diam Relat Mater1994;3:896-898.
    [40] Butter R, Allen M, Chandra L, et al. In vitro studies of DLC coatings with siliconintermediate layer. Diam Relat Mater1995;4:857-861.
    [41] Du C, Su XW, Cui FZ, et al. Morphological behaviour of osteoblasts ondiamond-like carbon coating and amorphous CN film in organ culture. Biomaterials1998;19:651-658.
    [42] Yang P, Kwok SC, Chu PK, et al. Haemocompatibility of hydrogenated amorphouscarbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition.Nucl Instrum Methods Phys Res Sect B2003;206:721-725.
    [43] Yu LJ, Wang X, Wang XH, et al. Haemocompatibility of tetrahedral amorphouscarbon films. Surf Coat Technol2000;128(129):484-488.
    [44] Nurdin N, Francois P, Moret M, et al. Hemocompatible diamond-like carbon(DLC)surfaces. Eur Cells Mater2003;5:17-28.
    [45] Jones MI, McColl IR, Grant DM, et al. Haemocompatibility of DLC and TiC-TiNinterlayers on titanium. Diam Relat Mater1999;8:457-462.
    [46] Linder S, Pinkowski W, Aepfelbacher M. Adhesion, cytoskeletal architecture andactivation status of primary human macrophages on a diamond-like carbon coatedsurface. Biomaterials2002;23:767-773.
    [47] Mohanty M, Anilkumar TV, Mohanan PV, et al. Long term tissue response totitanium coated with diamond like carbon. Biomol Eng2002;19:125-128.
    [48] Sheeja D, Tay BK, Nung LN. Feasibility of diamond-like carbon coatings fororthopaedic applications. Diam Relat Mater2004;13:184-190.
    [49] DeBakey ME. Development of mechanical heart devices. Ann Thorac Surg2005;79:S2228-2231.
    [50] Airoldi F, Colombo A, Tavano D, et al. Comparison of diamond like carbon coatedstents versus uncoated stainless steel stents in coronary artery disease. Am J Cardiol2004;93:474-477.
    [51] Taeger G, Podleska LE, Schmidt B, et al. Comparison of diamond-like carbon andalumina oxide articulating with polyethylene in total hip anthroplasty. Mat-wiss uWerkstofftech2003;34(12):1094-1100.
    [52] Abu-Serriah M, Mcgowan DA, Moos KF, et al. Extra-oral craniofacial endosseousimplant-retained prostheses. Int J Oral Maxillofac Implants2003;32:452-458.
    [53] Quirynen M, Bollen CM. The influence of surface roughness and surface-freeenergy on supra-and subgingival plaque formation in man. A review of the literature.J Clin Periodontol1995;22(1):1-14.
    [54] Rosan B, Lamont RJ. Dental plaque formation. Microbes Infect2000;2(13):1599-1607.
    [55] Harris LG, Tosatti S, Wieland M, et al. Staphylococcus aureus adhesion to titaniumoxide surfaces coated with non-functionalized and peptide-functionalizedpoly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials2004;25(18):4135-4148.
    [56] Zhou H, Xu L, Ogino A, et al. Investigation into the antibacterial property of carbonfilms. Diam Relat Mater2008;17(7-10):1416-1419.
    [57] Elinson VM, Sleptsov VV, Laymin AN, et al. Barrier properties of carbon filmsdeposited on polymer-based devices in aggressive environments. Diam Relat Mater1999;8(12):2103-2019.
    [58] Marciano FR, Bonetti LF, Da-Silva NS, et al. Diamond-like carbon films producedfrom high deposition rates exhibit antibacterial activity. Synth Met2009;159(21-22):2167-2169.
    [59] Wang J, Huang N, Pan CJ, et al. Bacterial repellence from polyethyleneterephthalate surface modified by acetylene plasma immersion ionimplantation–deposition. Surf Coat Technol2004;186(1-2):299-304.
    [60] Schwarz FP, Hauser-Gerspach I, Waltimo T, et al. Antibacterial properties of silvercontaining diamond like carbon coatings produced by ion induced polymerdensification. Surf Coat Technol2011;205:4850-4854.
    [61] Marciano FR, Lima-Oliveira DA, Da-Silva NS, et al. Antibacterial activity offluorinated diamond-like carbon films produced by PECVD. Surf Coat Technol2010;204:2986-2990.
    [62] Yeung KW, Poon RW, Liu XY, et al. Corrosion resistance, surface mechanicalproperties, and cytocompatibility of plasma immersion ion implantation-treatednickel-titanium shape memory alloys. J Biomed Mater Res A.2005;75:256-267.
    [63] Wichelhaus A, Geserick M, Hibst R, et al. The effect of surface treatment andclinical use on friction in NiTi orthodontic wires. Dent Mater2005;21:938-945.
    [64] Cobb NW, Kula KS, Phillips C, et al. Efficiency of multi-strand steel, superelasticNi-Ti and ion-implanted Ni-Ti archwires for initial alignment. Clin Orthod Res1998;1:12-19.
    [65] Kobayashi S, Ohgoe Y, Ozeki K, et al. Diamond-like carbon coatings on orthodonticarchwires. Diam Relat Mater2005;14:1094-1097.
    [66] Kobayashi S, Ohgoe Y, Ozeki K, et al. Dissolution effect and cytotoxicity ofdiamond-like-carbon coating on orthodontic archwires. J Mater Sci Mater Med2007;18:2263-2268.
    [67] Bentahar Z, Barouins M, Clin M, et al. Tribological performance of DLC-coatedstainless steel,TMA and Cu-NiTi. Int Orthod2008;6:335-342.
    [68] Muguruma T, Iijima M, Brantley WA, et al. Effects of a diamond-like carboncoating on the frictional properties of orthodontic wires. Angle Orthod2011;81:141-148.
    [69] Rapiejko C, Fouvry S, Grosgogeat B, et al. A representative ex-situ fretting wearinvestigation of orthodontic arch-wire/bracket contacts. Wear2009;266:850-858.
    [70] Kao CT, Guo JU, Huang TH. Comparison of friction force between corroded andnoncorroded titanium nitride plating of metal brackets. Am J Orthod DentofacialOrthop2011;139:594-600.
    [71] Rabinowicz E. Friction and wear of materials. New York: John Wiley&Sons;1996:244.
    [72] Blau PJ. Friction and wear transitions of materials. New York: Noyes;1989: Chap.2.
    [73] Articlo LC, Kusy RP. Influence of angulation on the resistances to sliding in fixedappliances. Am J Orthod Dentofacial Orthop1999;115:39-51.
    [74]哈尔滨工业大学.理论力学.人民教育出版社.1982:137-140.
    [75] Bednar JR,Gruendeman GW.Sandrik JL. A comparative study of friction forcebetween orthodontic brackets and archwires. Am J Orthod Dentofacial Orthop1991;100:513-522.
    [76] Taylor NG, Ison K. Frictioaal resistance between orthodontic brackets and archwiresin the buccal segments. Angle Orthod1996;66(3)215-222.
    [77] Downing A, Mccabe J. A study of frictional forces between brackets and archwires.Br J Orthod l994;21(4):349-357.
    [78] Dickson JA, Jones SP, Davies EH. A comparison of frictional characteristics of fiveinitial alignment wires and stainless steel brackets at three bracket to wireangulations—an in vitro study. Br J Orthod1994;21(1):15-22.
    [79] Burrow SJ. Friciton and resistance to sliding in orthodontics: A critical review. AmJ Orthod Dentofacial Orthop2009;135(4):442-447.
    [80] Yamaguchi K, Nanda RS, Morimoto N, et al. A study of force application, amountof retarding force, and bracket width in sliding mechanics. Am J Orthod DentofacialOrthop1996;109:50-56.
    [81] Omana HM, Moore RN, Bagby MD. Frictional properties of metal and ceramicbrackets. J Clin Orthod1992;27:425-432.
    [82] Nikolai RJ. Bioengineering analysis of orthodontic mechanics. Philadelphia, PA.Lea&Febiger.1985:53-56,
    [83] Drescher D, Bourauel C, Schumacher HA. Frictional forces between bracket andarch wire. Am J Orthod Dentofacial Orthop1989;96:397-404.
    [84] Peososki RR, Baghy MD, Erickson LC. Static frictional force and surface roughnessof nickel-titanium archwires. Am J Orhod Dentofacial Orthop1991;100:34l-348.
    [85] Edwards GD, Davies EH, Jones SP, et al. The ex vivo effect of ligation technique onthe static frictional resistance of stainless steel brackets and archwires. Br J Orhod1995;22(2):145-153.
    [86] Kusy RP, Whitley JQ. Influence of archwire and bracket dimensions on slidingmechanics: derivations and determinations of the critical contact angles for binding.Eur J Orthod1999;21:199-208.
    [87] Redlich M, Tenne R. Chapter13-Nanoparticle coating of orthodontic appliances forfriction reduction. Nanobiomaterials in clinical dentidtry. Elsevier Inc.2013:259-279.
    [88] Kusy RP, Whitley JQ. Friction between different wire-bracket configurations andmaterials. Semin Orthod19973(3):166-177.
    [89] Nanda R, Ghosh J. Biomechanical considerations in sliding mechanics. In: Nanda R(ed). Biomechanics in Clinical Orthodontics. Philadelphia, PA, WB Saunders,1997:188-217.
    [90] Franco DJ, Spiller RE, Fraunhofer JA. Frictional resistances using Teflon-coatedligatures with various bracket-archwire combinations. Angle Orthod1995;65:63-72.
    [91] Schwartz AM. Tissue changes incidental to orthodontic tooth movement. Int JOrthod1932;18:331-352.
    [92] Storey E, Smith R. Force in orthodontics and its relation to tooth movement. Aust JDent1952;56:11-18.
    [93] Kapila S, Angolkar PD, Duncanson MG, et al. Evaluation of friction betweenedgewise stainless steel brackets and orthodontic wires of four alloys. Am J OrthodDentofacial Orthop1990;98:100-109.
    [94] Angolkar PD, Kapila S, Duncanson MG, et al. Evaluation of friction betweenceramic brackets and orthodontic wires of four alloys. Am J Orthod DentofacialOrthop1990;98:499-506.
    [95] Ogata RH, Nanda RS, Duncanson MG, et al. Frictional resistances in stainless steelbracket-wire combinations with effects of vertical deflections. Am J OrthodDentofacial Orthop1996;109:535-542.
    [96] Stoner MM. Force control in clinical practice. Am J Orthod1960;46:163-168.
    [97] Paulson RC, Spiedel TM, Isaacson RJ. A laminographic study of cuspid retractionversus molar anchorage loss. Angle Orthod1970;40:20-27.
    [98] Downing A, McCabe J, Gordon P. A study of frictional forces between orthodonticbrackets and archwires. Br J Orthod1994;21:349-357.
    [99] Braun S, Bluestein M, Moore K, et al. Friction in perspective. Am J OrthodDentofacial Orthop1999;115:619-627.
    [100] Frank CA, Nikolai RJ. A comparative study of frictional resistances betweenorthodontic bracket and arch wire. Am J Orthod1980;78:593-609.
    [101] Kusy RP. Orthodontic biomechanics: vistas from the top of a new century. Am JOrthod Dentofacial Orthop2000;117:589-591.
    [102] Kusy RP. Ongoing innovations in biomechanics and materials for the newmillennium. Angle Orthod2000;70:366-376.
    [103] Articolo LC, Kusy RP. Influence of angulation on the resistance to sliding in fixedappliances. Am J Orthod Dentofacial Orthop1999;115:39-51.
    [104] Ho KS, West VC. Friction resistance between edgewise brackets and archwires.Aust Orthod J1991;12:95-99.
    [105] Thorstenson GA, Kusy RP. Effect of archwire size and material on the resistance tosliding of self-ligating brackets with second-order angulation in the dry state. Am JOrthod Dentofacial Orthop2002;122(3):295-305.
    [106] Cash A, Curtis R, Garrigia-Majo D, et al. A comparative study of the static andkinetic frictional resistance of titanium molybdenum alloy arehwires in stainless steelbrackets. Eur J Orthod2004;26(1):105-111.
    [107] Stannard JG, Gau JM, Hanna MA. Comparative friction of orthodontic wire underdry and wet conditions. Am J Orthod Dentofacial Orthop1986;89:485-491.
    [108]丁鹏,林久祥,周彦恒.口中腔正畸动态摩擦力测试系统的研发与初步应用.北京大学学报(医学版)2009;41(3):319-323.
    [109] Badawi HM, Toogood RW, Carey JPR, et al. Three-dimensional orthodontic force.Am J Orthod Dentofacial Orthop2009;136(4):518-528.
    [110] Willems G, Clocheret K, Celis JP, et al. Frictional behaviors of stainless steelbracket-wire combinations subjected to small oscillating displacements. Am J OrthodDentofacial Orthop2001;120(4):371-377.
    [111] Proffit WR. Contemporary orthodontics. St. Louis: Mosby.1993:309-312.
    [112] Kusy RP, Whitley JQ. Influence of archwire and bracket dimension on slidingmechanics and determinations of the critical contact for binding. Eur J Orthod1999;21:199-208.
    [113] Brien B, Carroll W. The evolution of cardiovascular stent materials and surfaces inresponse to clinical drivers: A review. Acta Biomater2009;5(4):945-958.
    [114] Mani G, Feldman MD, Patel D, et al. Coronary stents: A materials perspective.Biomaterials2007;28(9)1689-1710.
    [115] Eliades T. Orthodontic materials research and applications: Part2. Current statusand projected future developments in materials and biocompatibility. Am J OrthodDentofacial Orthop2007;131(2):253-262.
    [116] House K, Sernetz F, Dymock D, et al. Corrosion of orthodontic appliances—shouldwe care? Am J Orthod Dentofacial Orthop2008;133(4):584-592.
    [117] Oliveira NTC, Guastaldi AC. Electrochemical stability and corrosion resistance ofTi–Mo alloys for biomedical applications. Acta Biomater2009;5(1):399-405.
    [118] Okazaki Y, Gotoh E. Comparison of metal release from various metallicbiomaterials in vitro. Biomaterials200;26(1):11-21.
    [119] Zhou YL, Niinomi M. Ti–25Ta alloy with the best mechanical compatibility inTi–Ta alloys for biomedical applications. Mater Sci Eng C2009;29(3):1061-1065.
    [120] Mareci D, Chelariu R, Gordin DM, et al. Comparative corrosion study of Ti–Taalloys for dental applications. Acta Biomater2009;5(9):3625-3539.
    [121] Zhou YL, Niinomi M, Akahori T. Changes in mechanical properties of Ti alloys inrelation to alloying additions of Ta and Hf. Mater Sci Eng A2008;483-484(15):153-156.
    [122] Falub CV, Thorwarth G, Affolter C, et al. A quantitative in vitro method to predictthe adhesion lifetime of diamond-like carbon thin films on biomedical implants. ActaBiomater2009;5(8):3086-3097.
    [123] Krishna BV, Xue WC, Bose S, et al. Functionally graded Co–Cr–Mo coating onTi–6Al–4V alloy structures. Acta Biomater2008;4(3):697-706.
    [124] Chai F, Mathis N, Blanchemain N, et al. Osteoblast interaction with DLC-coated Sisubstrates. Acta Biomater2008;4(5):1369-1381.
    [125] Donnet C, Erdemir A. Historical developments and new trends in tribological andsolid lubricant coatings. Surf Coat Technol2004;180-181:76-84.
    [126] Zhang HS, Endrino JL, Anders A. Comparative surface and nano-tribologicalcharacteristics of nanocomposite diamond-like carbon thin films doped by silver.Appl Surf Sci2008;255(5):2551-2556.
    [127] Cacciafesta V, Sfondrini MF, Scribante A, et al. Evaluation of friction ofconventional and metal-insert ceramic brackets in various bracket-archwirecombinations. Am J Orthod Dentofacial Orthop2003;124(4):403-409.
    [128] Vaughan JL, Duncanson MG, Nanda RS, et al. Relative kinetic frictional forcesbetween sintered stainless steel brackets and orthodontic wires. Am J OrthodDentofacial Orthop1995;107(1):20-27.
    [129] Whitley JQ, Kusy RP. Resistance to sliding of titanium brackets tested againststainless steel and beta-titanium archwires with second-order angulation in the dryand wet states. Am J Orthod Dentofacial Orthop2007;131(3):400-411.
    [130]汪朋飞.MCECR等离子体溅射制备DLC膜及其摩擦磨损性能研究.西安:西安交通大学.2007:13-50.
    [131] Grill A. Diamond-like carbon: state of the art. Diam Relat Mater1999;8:428-434.
    [132] Fontaine J, Donnet C, Grill A, et al. Tribochemistry between hydrogen anddiamond-like carbon films. Surf Coat Technol2001;146-147:286-291.
    [133] Speranza G, Gottardi G, Pederzolli C, et al. Role of chemical interactions inbacterial adhesion to polymer surfaces. Biomaterials2004;25(11):2029-2037.
    [134] Ishihara M, Kosaka T, Nakamura T, et al. Antibacterial activity of fluorineincorporated DLC films. Diam Relat Mater2006;15(4-8):1011-1014.
    [135] Zhao Q, Liu Y, Wang C, et al. Bacterial adhesion on silicon-doped diamond-likecarbon films. Diam Relat Mater2007;16(8):1682-1687.
    [136] Liu C, Zhao Q, Liu Y, et al. Reduction of bacterial adhesion on modified DLCcoatings. Colloids Surf B Biointerfaces2008;61(2):182-187.
    [137]胡炜,傅民魁,谢以岳,等.口腔正畸固定矫治器应用中牙釉质脱矿的临床调查.口腔正畸学2001;8(1)增刊:13.
    [138] Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the cariesprocess. Caries Res2008;42(6):409-418.
    [139] Yin Y, Hang L, Xu J, et al. Surface adsorption and wetting properties of amorphousdiamond-like carbon thin films for biomedical applications. Thin Solid Films2008;516(16):5157-5161.
    [140] Robertson J. Diamond-like amorphous carbon. Mat Sci Eng R2002;37(4-6):129-281.
    [141] Donnet C, Fontaine J, Le Mogne T, et al. Diamond-like carbon-based functionallygradient coatings for space tribology. Surf Coat Technol1999;120-121:548-554.
    [142] Donnet C, Grill A. Friction control of diamond-like carbon coatings. Surf CoatTechnol1997;94-95:456-462.
    [143] Shirakura A, Nakaya M, Koga Y,. Diamond-like carbon films for PET bottles andmedical applications. Thin Solid Films2006;494(1-2):84-91.
    [144] Morrison ML, Buchanan RA, Liaw PK, et al. Electrochemical and antimicrobialproperties of diamondlike carbon-metal composite films. Diam Relat Mater2006;15(1):138-146.
    [145] Shihara M, Suzuki M, Watanabe T, et al. Synthesis and characterization offluorinated amorphous carbon films by reactive magnetron sputtering. Diam RelatMater2005;14(3-7):989-993.
    [146] Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury2006;37(Suppl2):S3-14.
    [147] Hoyle BD, Costerton JW. Bacterial resistance to antibiotics: the role of biofilms.Prog Drug Res1991;37:91-105.
    [148] Griffin J, Ray PC. Role of inert gas in the low-temperature nanodiamond chemicalvapour deposition process. Nanotechnology.2006;17:1225-1229.
    [149] Xiao X, Wang J, Liu C, et al. In vitro and in vivo evaluation of ultrananocrystallinediamond for coating of implantable retinal microchips. J Biomed Mater Res B: ApplBiomater.2006;77B:273-281.
    [150] Tang L, Tsai C, Gerberich WW, et al. Biocompatibility ofchemical-vapour-deposited diamond. Biomaterials1995;16:483-488.
    [151] Steinmueller-Nethl D, Kloss FR, Haq MNU, et al. Strong binding of bioactiveBMP-2to nanocrystalline diamond by physisorption. Biomaterials2006;27:4547-4556.
    [152] Wenmackers S, Christiaens P, Daenen M, et al. DNA attachment to nanocrystallinediamond films. Phys Status Solidi2005;202:2212-2216.
    [153] Retama JR, Hernando J, Lopez-Ruiz B, et al. Synthetic nanocrystalline diamond asa third-generation biosensor support. Langmuir2006;22:5837-5842.
    [154] Siew PS, Loh KP, Poh WC, et al. Biosensing properties of nanocrystalline diamondfilm grown on polycrystalline diamond electrodes. Diam Relat Mater2005;14:426-431.
    [155] Jakubowski W, Bartosz G, Niedzielski P, et al. Nanocrystalline diamond surface isresistant to bacterial colonization. Diam Relat Mater2004;13:1761-1763.
    [156] Tetsumura A, Honda E, Sasaki T, et al. Metallic residues as a source of artifacts inmagnetic resonance imaging of the temporomandibular joint. Dentomaxillofac Radiol1999;28:186-190.
    [157] Ohgoe Y, Kobayashi S, Ozeki K, et al. Reduction effect of nickel ion release on adiamond-like carbon film coated onto an orthodontic archwire. Thin Solid Films2006;497:218-222.
    [158] Bajpai PK, Billote WG. Ceramic biomaterials. In: Bronzino JD, editor. Thebiomedical engineering handbook. Boca Raton, FL: CRC Press.1995:552-580.
    [159] Sj gren G, Sletten G, Dahl JE. Cytotoxicity of dental alloys, metals, and ceramicsassessed by Millipore filter, agar overlay, and MTT tests. J Prosthet Dent2000;84(2):229-236.
    [160] Iwasaki LR, Beatty MW, Nickel JC. Friction and orthodontic mechanics: clinicalstudies of moment and ligation effects. Semin Orthod2003;9(4):290-297.
    [161] Redlich M, Katz A, Rapoport L, et al. Improved orthodontic stainless steel wirescoated with inorganic fullerene-like nanoparticles of WS2impregnated in electrolessnickel-phosphorous film. Dent Mater2008;24:1640-1646.
    [162] Tselepis M, Brockhurst P, West VC. The dynamic frictional resistance betweenorthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop1994;106:131-138.
    [163] Edwards GD, Davies EH, Jones SP, et al. The ex vivo effect of ligatlon techniqueon the static frictional resistance of stainless steel brackets and archwires. Br J Orthod1995;22(2):145-153.
    [164] Drescher D, Bourauel C, Schurnacher HA. Frictional forces between bracket andarch wire. Am J Orthod Dentofacial Orthop1989;96:397-404.
    [165] Waterhouse RB. Fretting wear. Wear1984;100:107-118.
    [166] Mohrbacher H, Celis JP, Roos JR. Laboratory testing of displacement and loadinduced fretting. Tribol Int1995;28:269-278.
    [167] Kusy RP, Whitley JQ, Prewitt MJ. Comparison of the frictional coefficients forselected archwire-bracket slot combinations in the dry and wet states. Angle Orthod1991;61(4):293-302.
    [168] Kusy RP, Whitley JQ. Influence of fluid media on the frictional coefficients inorthodontic sliding. Semin Orthod2003;9(4):281-289.
    [169] Kapila S, Sachdeva R. Mechanical properties and clinical applications oforthodontic wires. Am J Orthod Dentofacial Orthop1989;96:100-109.
    [170] Gil FJ, Planell JA, Libenson C. Differences in the pseudoelasticity behaviour ofnickel-titanium orthodontic wires. J Mater Sci Mater Med1993;4:281-284.
    [171] Widu F, Drescher D, Junker R, et al. Corrosion and biocompatibility of orthodonticwires. J Mater Sci Mater Med1999;10:275-281.
    [172] Huang HH, Chiu YH, Lee TH, et al. Ion release from NiTi orthodontic wires inartifcial saliva with various acidities. Biomaterials2003;24:3585-3592.
    [173] Huang HH. Variation in surface topography of different NiTi orthodonticarchwires in various commercial fluoride-containing environments. Dent Mater2007;23:24-33.
    [174] Walker MP, White RJ, Kula KS. Effect of fluoride prophylactic agents on themechanical properties of nickel-titanium-based orthodontic wires. Am J OrthodDentofacial Orthop2005;127:662-669.
    [175] Espinar E, Llamas JM, Michiardi A, et al. Reduction of Ni release andimprovement of the friction behaviour of NiTi orthodontic archwires by oxidationtreatments. J Mater Sci Mater Med2011;22:1119-1125.
    [176] Xu JL, Liu F, Wang FP, et al. Alumina coating formed on medical NiTi alloy bymicro-arc oxidation. Mater Lett2008;62:4112-4114.
    [177] Sun T, Lee WC, Wang M. A comparative study of apatite coating andapatite/collagen composite coating fabricated on NiTi shape memory alloy throughelectrochemical deposition. Mater Lett2011;65:2575-2577.
    [178] Cai C, Diao D, Ma W, et al. Carbon films deposited by MCECR plasma sputtering.Vacuum2006;80:939-943.
    [179]Krishnan V, Krishnan A, Remya R, et al. Development and evaluation of twoPVD-coated β-titanium orthodontic archwires for fluoride-induced corrosionprotection. Acta Biomater2011;7:1913-1927.
    [180] Baker KL, Nieberg LG, Weimer AD, et al. Frictional changes in force valuescaused by saliva substitution. Am J Orthod Dentofacial Orthop.1987;91:316-320.
    [181] Iwasaki LR, Haack JE, Nickel JC, et al. Human tooth movement in response tocontinuous stress of low magnitude. Am J Orthod Dentofacial Orthop2000;117:175-183.
    [182] Staffolani N, Damiani F, Lilli C, et al. Ion release from orthodontic appliances. JDent1999;27:449-454.
    [183] Rinchuse DJ, Rinchuse DJ, Kapur-Wadhwa R. Orthodontic appliance design. Am JOrthod Dentofacial Orthop2007;131:76-82.
    [184] Thorstenson G, Kusy R. Influence of stainless steel inserts on the resistance tosliding of esthetic brackets with second-order angulation in the dry and wet states.Angle Orthod2003;73:167-175.
    [185] Miles PG, Weyant RJ, Rustveld L. A clinical trial of Danmon2vs conventionaltwin brackets during initial alignment. Angle Orthod2006;76:480-485.
    [186] Suwa N, Watari F, Yamagata S, et al. Static-dynamic friction transition of FRPesthetic orthodontic wires on various brackets by suspension-type friction test. JBiomed Mater Res B Appl Biomater2003;67:765-771.
    [187] Cha J, Kim K, Hwang C. Friction of conventional and silica-insert ceramic bracketin various bracket-wire combinations. Angle Orthod2007;77:100-107.
    [188] Singh A, Ehteshami G, Massia S, et al. Glial cell and fibroblast cytotoxicity studyon plasma-deposited diamond-like carbon coatings. Biomaterials2003;24:5083-5089.
    [189] Roy RK, Lee KR. Biomedical applications of diamond-like carbon coatings: areview. J Biomed Mater Res B Appl Biomater2007;83:72-84.
    [190] Roy ME, Whiteside LA, Katerberg BJ. Diamond-like carbon coating enhancescratch resistance of bearing surface for use in joint arthroplasty: hard substratesoutperform soft. J Biomed Mater Res B Appl Biomater2009;89:527-535.
    [191] Jones DS, Garvin CP, Dowling D, et al. Examination of surface properties and invitro biological performance of amorphous diamond-like carbon-coated polyurethane.J Biomed Mater Res B Appl Biomater2006;78:230-236.
    [192] Jr SR, Soares P, Camargo ES, et al. Biodegradation of orthodontic metallicbrackets and associated implications for friction. Am J Orthod Dentofacial Orthop2011;140:501-509.
    [193] Reitan K. Effect of force magnitude and direction of tooth movement on differentalveolar bone types. Angle Orthod1964;34:244-255.
    [194] Lundgren D, Owman-Moll P, Kurol J. Early tooth movement pattern afterapplication of a controlled continuous orthodontic force. A human experimentalmodel. Am J Orthod Dentofacial Orthop1996;110:287-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700