电化学噪声分析方法及其在土壤腐蚀中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以研究电化学噪声(Electrochemical Noise,EN)分析方法为主线,从预处理方法入手,首先探讨了直流漂移对EN时频分析的影响。然后,通过分析典型点蚀体系产生的噪声电位和电流的分布特征,提出用模式识别(Pattern Recognition,PR)研究数据点(E,log|I|)与不同点蚀状态之间的关系。当待分析数据量很大,或EN时域谱特征随时间变化不显著时,尝试用时域统计量代替E、log|I|作为样本变量,研究局部腐蚀的变化规律。在上述研究的基础上,探讨利用EN研究金属的土壤腐蚀特征,建立土壤腐蚀EN特征谱的识别分析技术,重点在于讨论多种EN解析方法在土壤腐蚀研究方面的优缺点。最后,将EN分析结果与电化学阻抗谱(ElectrochemicalImpedance Spectroscopy,EIS)、极化曲线、失重法、腐蚀形貌和产物分析结果相结合,为研究土壤腐蚀这个复杂系统发生、发展的本征机制提供依据。主要研究成果有:
     选择m次多项式拟合(Polynomial Fitting,PF)和小波变换(Wavelet Transform,WT)消除EN直流漂移,比较了消除前后以及两种消除方法对EN统计量、功率谱密度(Power Spectral Density,PSD)、绝对能量谱(Absolute Energy Distribution Plot,AEDP)和相对能量谱(Energy Distribution Plot,EDP)的影响,并提出选择合适消除方法的判别标准。结果表明,消除前后各统计量变化不显著(均值除外)。由PSD和AEDP可知,较高方次的多项式和WT会对低频数据产生过度消除,因此推荐选择方次较低(m=1~3)的多项式消除漂移。根据PSD低频平台出现与否或EDP可以判断拟合结果的正确性并选择合适的m值,两种判断结果具有良好的一致性。针对噪声数据量大的特点,提出多段m次多项式拟合法消除漂移。窗口大小p和m值共同影响消除结果和EDP特征,其中p由腐蚀特征决定,以1024≤p≤4096,m≤3为宜。
     选择Q235碳钢在典型点蚀体系中产生的EN,研究点蚀不同阶段的E、log|I|分布特征。尝试应用k-均值聚类分析(k-means Cluster Analysis,k-means CA)对点蚀过程进行定量分类评价。根据聚类结果,采用判别分析(Discriminant Analysis,DA)建立判别分析方程,对电极在含不同氯离子浓度的混合溶液中产生的EN进行分类,从而达到区别不同点蚀状态的目的。结果显示,k-means CA可将点蚀样本(E,log|I|)分为2类,其中类1表示亚稳态,类2表示稳态。当样本在类1和类2之间随机分布时,说明电极处于从亚稳态向出现稳态宏观蚀点过渡的腐蚀状态。DA不仅能验证CA结果的正确性,更重要的是可以很好地判定来自于同种腐蚀体系的未知EN数据所属类别,从而达到确定其所代表的腐蚀状态的目的。
     为了有效减少CA/DA样本容量,在对点蚀过程进行定量分类前,先采用主成分分析(Principal Component Analysis,PCA)从基于噪声电位和电流的常用统计量中挑选出了具有显著性分类作用的统计量(?)、(?)、σ_E和σ_I为聚类变量,然后选择分层聚类(Hierarchical Agglomerative Cluster Analysis,HACA)同样可将该过程分为亚稳态、过渡态和稳态三个阶段。最后DA可对来自于同种点蚀体系的未知样本所属类别进行判别。结果表明,HACA与k-means CA结果具有良好一致性,且HACA结果更直观、清晰,无需预先指定分类数目,而k-means CA对点蚀过渡态的出现更为敏感。
     由于溃疡状腐蚀体系EN时、频谱随时间变化不明显,因此难于通过时域统计量、PSD或EDP清楚划分腐蚀发展的不同阶段以及确定合适的k值。因此,尝试应用基于统计量的PCA/HACA解析EN信号。结果表明,由PCA可确定聚类变量为(?)、σ_E、σ_I,和σ_I/(?),并根据HACA可将溃疡状腐蚀过程分为高速萌发期、横向发展期和纵向发展期三个阶段,该分类结果与电极表面腐蚀形貌具有较好的一致性。
     采用EN技术研究X70钢在30℃库尔勒原土(含水量1.04%)及35℃低含水量库尔勒土壤(含水量1.04~3.12%)中初期(0~7d)的腐蚀行为,其中PR、PSD和WT用于研究EN与土壤腐蚀状态之间的相关性,并将解析结果与EIS、极化曲线、失重法和腐蚀形貌与产物分析结果进行了对比。结果表明,基于EN统计量的HACA可用于解析土壤EN数据。根据PCA/HACA,可将30℃库尔勒原土的初期局部腐蚀过程分为不稳定萌发期、快速发展期和稳定发展期三个阶段:将35℃低含水量库尔勒土的腐蚀过程分为快速发展期和稳定发展期两个阶段;并对35℃不同含水量库尔勒土的腐蚀程度进行了分类和比较。聚类分析结果与EN时域谱、电流EDP、EIS和腐蚀形貌特征相吻合,且更加精确。
In this paper,researching the methods of analyzing electrochemical noise(EN) was considered as the main line.The pretreatment for EN raw data before other time/frequency domain analysis were compared firstly,and then the influence of DC drifts on the analysis results was researched.After analyzing the distribution characteristics of the potential and current noise(E and log|I|) from a typical pitting corrosion system,pattern recognition(PR) was proposed to study the relationship between data points(E,log|I|) and different pitting states.In order to reduce the sample number for the PR,some statistical parameters were used as variables in place of E and log|I|,and its validity was also verified in the same system.For ulcerous corrosion which has not characteristic EN time records,the PR with some EN statistical parameters as variables was applied to study the relationship between EN and its corresponding different corrosion states.Based on the above analysis,EN measurement was proposed to research the characteristics of the soil corrosion to establish its recognition technology.It focused on the EN analysis methods in soil corrosion research. Finally,the characteristics and mechanism of the complex soil corrosion were studied by EN,electrochemical impedance spectroscopy(EIS),polarization curve,loss-weight method and corrosion morphology observation,and good agreement was obtained.The main research results were shown as following:
     Polynomial fitting(PF) and wavelet transform(WT) were chosen to remove trends of EN from typical pitting system.The effects of trends on statistical parameters,power spectral density(PSD),absolute energy distribution plot(AEDP) and relative energy distribution Plot(EDP) were discussed.Furthermore,the indication of selecting the appropriate method was put forward.The results showed that the common statistical parameters except mean value would not change distinctly.Based on PSD and WEDPs,it can be found that the higher order polynomial and WT would reduce the low frequency signals more heavily,so lower order(m=1~3) polynomial was recommended.The appearance of plateau in low-frequency part of PSD plots or EDP could be regarded as the indication of the best selection of m.For large numbers of EN data,PF using window technique has been applied to remove trend.The order and window size influenced corporately the removing results and the EDP characteristics.In order to attenuate the low-frequency components without damage the useful information,the lower polynomial order(no bigger than 3) and appropriate size(between 1024 and 4096) which was determined by characteristics of EN fluctuations should be selected.
     In a typical pitting system of Q235 low carbon steel in 0.50mol/L NaHCO_3+NaCl solutions,a new method was presented to analyze EN data and identify its corresponding pitting states.The proposed method is based on k-means cluster analysis(k-means CA) and discriminant analysis(DA).Firstly,E and log|I| were determined as the variables for clustering.Then,data points(E,log|I|) of the EN groups from different pitting states were classified by k-means CA to two clusters,which relate to the metastable state(Cluster 1) and stable state(Cluster 2) respectively.When a group of(E,log|I|) data points were dispersed stochastically into two clusters,it relates to the intermediate state that was defined to describe the transformation from the metastable pitting to stable pitting.Based on the obtained clustering results,a discriminant function(s) was established to discriminate the ungrouped EN data from the similar pitting processes and thus its corresponding pitting state could be determined by the cluster distribution result.
     In order to reduce data number of the cases reasonably without loss of useful information,principal component analysis(PCA),hierarchical agglomerative cluster analysis(HACA) and DA were applied for analyzing EN statistical parameters from the similar pitting system as described as before.Firstly,according to the PCA results,the EN mean value((?) and(?) ) as well as standard deviation(σ_E andσ_I) were determined as the descriptors for clustering.Then,using the selected four statistical parameters as variables, the cases from different pitting states were classified by the HACA to three clusters,which relates to the metastable state,intermediate state and stable state,respectively.It shows a good agreement with the classification obtained from k-means CA with E and log|I| as variables.Based on the cluster results,the pitting states of the ungrouped data points from the similar pitting processes also can be distinguished according to the established discriminant function(s).
     The time and frequency domains of the EN from 0.5mol/L NaCl ulcerous corrosion would not change with the development of the corrosion time,so it is difficult to distinguish the different corrosion states by statistical parameters,PSD or EDP and then to determine the proper k value.Thus,the PCA/HACA was proposed to analyze this kind of EN signals.Based on the PCA,(?),σ_E,σ_I andσ_I/(?) were determined as the descriptors for clustering.And then,using them as variables,the cases from the ulcerous corrosion would be classified by the HACA to three clusters,which relates to the quick germination state,horizontal development state and vertical development state.Good agreement between classification and corrosion morphology was gained.
     According to the above analyses,EN technique was applied to study the corrosion behaviors of X70 steel in 30℃Xinjiang Ku'erle saline soil(moisture content 1.04%) and 35℃Ku'erle soil with low moisture(moisture content 1.04~3.12%) during the initial corrosion period(0~7d).The obtained EN data were analyzed by the PCA,HACA and WT. After the PCA applied,σ_E,(?) and(?) were considered as the descriptors to characterize EN distributions.Then,using them as variables,for the 30℃Ku'erle soil with 1.04% moisture,three different local corrosion states can be classified clearly by the HACA, including instable germination state,quick development state and stable development state. For the 35℃Ku'erle soil with low moisture,only two corrosion states were classified,i.e. quick development state and stable development state.Furthermore,the extent of the local corrosion in different moisture soil also can be differentiated.According to the current EDP, EIS and corrosion morphology,the characteristics of the different corrosion stages were further proved.The results showed that the PCA/HACA method should be successful for the analysis of the EN signals from the soil corrosion system.
引文
[1]U.Bertocci,F.Huet.Noise Analysis Applied to Electrochemical Systems.Corrosion,1995,51(2):131-144
    [2]D.A.Eden.Electrochemical Noise-the First Two Octaves.in:Proceeding of Corrosion/98.Houston,TX:NACE International,1998.386
    [3]董雅俊,程丹.未来10~20年内我国管道建设将蓬勃发展[N].新华社,2002-07-04
    [4]杨武,顾睿祥,黎樵燊等.金属的局部腐蚀.北京:化学工业出版社,1995.45-59
    [5]吴荫顺,方智,何积铨等.腐蚀实验方法与防腐蚀检测技术.北京:化学工业出版社,1995.87-93
    [6]M.Danielson.Modeling of Certain Electrode Parameters on the Electrochemical Noise Response.Corrosion,1997,53(10):770-777
    [7]T.Okada.A Theoretical Analysis of the Electrochemical Noise during the Induction Period of Pitting Corrosion in Passive Metals:Part 1.The Current Noise Associated with the Adsorption/Desorption Processes of Halide Ions on the Passive Film Surface.J.Electroanal.Chem.,1991,297:349-359
    [8]T.Okada.A Theoretical Analysis of the Electrochemical Noise during the Induction Period of Pitting Corrosion in Passive Metals:Part 1.The Current Noise Associated with the Halide Nucleus Formation in the Passive Film.J.Electroanal.Chem.,1991,297:361-375
    [9]C.Gabrielli,M.Keddam.Review of Applications of Impedance and Noise Analysis to Uniform and Localized Corrosion.Corrosion,1992,48(10):794-811
    [10]R.A.Cottis,C.A.Loto.Electrochemical Noise Generation during SCC of a High-Strength carbon steel.Corrosion,1990,46(1):12-19
    [11]C.Liu,D.D.MacDonald,E.Medina,et al.Probing Corrosion Activity in High Subcritical and Supercritical Water through Electrochemical Noise Analysis.Corrosion,1994,50(9):687-694
    [12]W.P.Iversion.Transient Voltage Changes Produced in Corroding Metals and Alloy.J.Electrochem.Sot.,1968,115(6):617-624
    [13]K.Hladky.US Patent,#4,575,1981.678
    [14]D.A.Eden,D.G.John,J.L.Darson.US Patent,#5,139,1986.627
    [15]D.A.Eden,D.G.John,J.L.Darson.US Patent,#5,425,1991.867
    [16]C.Gabrielli,F.Huet,M.Keddam,et al.A Review of the Probabilistic Aspects of Localized Corrosion.Corrosion,1990,46:266-278
    [17]Y.F.Cheng,J.L.Luo.Metastable Pitting of Carbon Steel under Potentiostatic Control.J.Electrochem.Sot.,1999,146:970-976
    [18]Y.F.Cheng,M.Wilmott,J.L.Luo.Analysis of the Role of Electrode Capacitance on the Initiation of Pits for A516 Carbon Steel by Electrochemical Noise Measurements.Corros.Sci.,1999,41:1245-1256
    [19].S.Girija,U.Kamachi Mudali,H.S.Khatak,et al.The Application of Electrochemical Noise Resistance to Evaluate the Corrosion Resistance of AISI Type 304 SS in Nitric Acid.Corros.Sci.,2007,49:4051-4068
    [20]Kyung-Hwan Na,Su-II Pyun,Hong-Pyo Kim.Analysis of Electrochemical Noise Obtained from Pure Aluminium in Neutral Chloride and Alkaline Solutions.Corros.Sci.,2007,49:220-230
    [21]C.R.Arganis-Juarez,J.M.Malo,J.Uruchurtu.Electrochemical Noise Measurements of Stainless Steel in High Temperature Water.Nuclear Engineering and Design,2007,237:2283-2291
    [22]Nikita Zaveri,Rongtao Sun,Nephi Zufelt,et al.Evaluation of Microbially Influenced Corrosion with Electrochemical Noise Analysis and Signal Processing.Electrochim.Acta,2007,52:5795-5807
    [23]S.Martinet,R.Durand,P.Ozil,et al.Application of Electrochemical Noise Analysis to the Study of Batteries State of Charge Determination and Overcharge Detection.J.Power Sources.,1999,83:93-99
    [24]E.Budevski,W.Obretenov,W.Bostanov,et al.Noise Analysis in Metal Deposition-Expectations and Limits.Electrochim.Acta,1989,34:1023-1029
    [25]A.G.Volkov.Green Plants-Electrochemical Interfaces.J.Electroanal.Chem.,2000,483:150-156
    [26] J. Mwesigwa, D.J. Collins, A.G. Volkov. Electrochemical Signaling in Green Plants -Effects of 2, 4 - Dinitrophenol on Variation and Action Potentials in Soybean. Bioelectrochemistry, 2000, 51: 201-205
    [27] S.I. Magaino, A. Kawaguchi, A. Hirata, et al. Spectrum Analysis of Corrosion Potential Fluctuations for Localized Corrosion of Type 304 Stainless Steel. J. Electrochem. Soc, 1987,134(12): 2993-2997
    [28] A. Leoal, V. Doleoek. Corrosion Monitoring System Based on Measurement and Analysis of Electrochemical Noise. Corrosion, 1995,51(4): 295-300
    [29] P.R. Roberge. Analysis of Electrochemical Noise by the Stochastic Process Detector Method. Corrosion, 1994, 50(7): 502-512
    [30] Y. Puget, K. Trethewey, R.J.K. Wood. Electrochemical Noise Analysis of Polyurethane - Coated Steel Subjected to Erosion - Corros. Wear, 1999, 233/235: 552-567
    [31] J.F. Chen, W.F. Bogaerts. Electrochemical Emission Spectroscopy for Monitoring Uniform and Localized Corrosion. Corrosion, 1996, 52(10): 753-785
    [32] P.C. Pistorius. Design Aspects of Electrochemical Noise Measurements for Uncoated Metals: Electrode Size and Sampling Rate. Corrosion, 1997, 53(4): 273-283
    [33] K.H. Na, S.II. Pyun, H.P. Kim. Analysis of Electrochemical Noise Obtained from Pure Aluminum in Neutral Chloride and Alkaline Solutions. Corros. Sci., 2007, 49: 220-230
    [34] NAGIUB, A. Mohamed. Electrochemical Noise Analysis and Electrochemical Impedance Spectroscopy for Pure Copper in Chloride Media. Chin. J. Chem., 2006, 24: 247-252
    [35] O. Duran, E. Vera, C.A. Ortiz, et al. Use of the Wavelet Method for Analyzing Electrochemical Noise Data. Mater. Corros., 2007, 58(12): 997-999
    [36] J.J. Kim. Wavelet Analysis of Potentiostatic Electrochemical Noise. Mater. Lette., 2007,61:4000-4002
    [37] C.A. Loto, R.A. Cottis. Electrochemical Noise Generation during Corrosion of Stainless Steel-type 316 in Acid Chloride Environment. Bullet. Electrochem., 1988, 4(12): 1001-1005
    [38] K.E. Heusler, K. Nachstedt, H. Muscher. Instrinsic Electrochemical Noise at Passive Iron.Bullet.Electrochem.,1992,8(1-2):7-11
    [39]P.C.Pistorius,G.T.Burstein.Growth of Corrosion Pits on Stainless Steel in Chloride Solution Containing Dilute Sulphate.Corros.Sci.,1991,33(12):1885-1897
    [40]H.S.Isaacs,Y.Ishikawa.Current and Potential Transients during Localized Corrosion of Stainless Steel.Electrochemical Society Extended Abstracts,84-2,Electrochem.Soc.,Pennington,NJ,1984
    [41]M.Hashimoto,S.Miyajima,T.Murata.An Experimental Study of Potential Fluctuation during Passive Film Breakdown and Repair on Iron.Corros.Sci.,1992,33:905-915
    [42]M.Hashimoto,S.Miyajima,T.Murata.A Spectrum Analysis of Potential Fluctuation during Passive Film Breakdown and Repair on Iron.Corros.Sci.,1992,33:917-925
    [43]曹楚南,常晓元,林海潮.孔蚀过程的电化学噪声特征.中国腐蚀与防护学报,1989,9(1):21-27
    [44]林海潮,曹楚南.中性溶液中孔蚀电化学噪声研究.中国腐蚀与防护学报,1986,6(1):141-148
    [45]Y.F.Cheng,M.Wilmott,J.L.Luo.The Role of Chloride Ions in Pitting of Carbon Steel Studied by the Statistical Analysis of Electrochemical Noise.Appl.Surf.Sci.,1999,152:161-168
    [46]Y.F.Cheng,J.L.Luo.Passivity and Pitting of Carbon Steel in Chromate Solution.Electrochim.Acta,1999,44:4795-4804
    [47]H.S.Isaacs,Y.Ishikawa.The Current and Potential Transients during Localized Corrosion of Stainless Steel.J.Electrochem.Soc.,1985,132:1288-1293
    [48]董泽华,郭兴蓬,郑家粲.用电化学噪声研究16Mn钢的亚稳态孔蚀特征.腐蚀科学与防护技术,2001,13(4):195-198
    [49]J.W.Isaac,K.R.Hebert.Electrochemical Current Noise on Aluminum Microelectrodes.J.Electrochem.Sot.,1999,146:502-509
    [50]A.Benzaid,C.Gabrielli,F.Huet,et al.Investigation of the Electrochemical Noise Generated during the Stress Corrosion Cracking of A42CD4 Steel Electrode.Corros.Sci.,1992,111:167-176
    [51]史志明,林海潮,曹楚南等.不锈钢应变过程中电化学噪声的特征—Ⅰ.恒载荷 拉伸条件下电位随机波动的特征.中国腐蚀与防护学报,1993,13(2):156-162
    [52]林海潮,史志明,曹楚南等.不锈钢应变过程中电化学噪声的特征—Ⅱ.恒应变速率条件下的电化学噪声特征.中国腐蚀与防护学报,1993,13(2):163-169
    [53]C.A.Loto,R.A.Cottis.Electrochemical Noise Generation during Stress Corrosion Cracking of the High-Strength Aluminum AA7075-T6 Alloy.Corrosion,1989,45:136-141
    [54]U.Bertocci,C.Gabrielli,F.Huet,et al.Noise Resistance Applied to Corrosion Measurements Ⅱ.Experimental Tests.J.Electrochem.Soc.,1997,144(1):37-43
    [55]R.V.Nieuwenhove.Electrochemical Noise Measurements under Pressurized Water Reactor Conditions.Corrosion,2000,56:161-166
    [56]C.Liu,D.D.MacDonald,E.Medina,et al.Probing Corrosion Activity in High Subcritical and Supercritical Water through Electrochemical Noise Analysis.Corrosion,19.94,50:687-694
    [57]C.Monticelli,G.Brunoro,A.Frignani,et al.Evaluation of Corrosion Inhibitors by Electrochemical Noise Analysis.J.Electrochem.Soc.,1992,139(3):706-711
    [58]P.R.Roberge,S.Wang,R.Roberge.Stainless Steel Pitting in Thiosulfate Solutions with Electrochemical Noise.Corrosion,1996,52(10):733-737
    [59]C.B.Breslin,A.L.Rudd.Activation of Pure A1 in an Indium-Containing Electrolyte -an Electrochemical Noise and Impedance Study.Corros.Sci.,2000,42:1023-1039
    [60]张俊凯.电极面积对电化学噪声的影响:[硕士论文].武汉:华中科技大学图书馆,2007
    [61]Y.J.Tan.Monitoring Localized Corrosion Processes and Estimating Localized Corrosion Rates Using a Wire Beam Electrode.Corrosion,1998,54(5):403-413
    [62]Y.J.Tan.Wire Beam Electrode:A New Tool for Studying Localized Corrosion and Other Heterogeneous Electrochemical Processes.Corros.Sci.,1999,41(2):229-247
    [63]董泽华.16Mn钢局部腐蚀中的电化学噪声及其解析方法研究:[博士论文].武汉:华中科技大学图书馆,2001
    [64]Z.H.Dong,X.P.Guo,J.S.Zheng,et al.Calculation of Noise Resistance by Use of the Discrete Wavelets Transform.Electrochem.Commun.2001,3:561-565
    [65]Y.J.Tan,S.Bailey,B.Kinsella,et al.Mapping Corrosion Kinetics Using the Wire Beam Electrode in Conjunction with Electrochemical Noise Resistance Measurement.J.Electrochem.Soc.,2000,147(2):530-539
    [66]钟庆东.采用丝束电极研究金属的缝隙腐蚀.中国腐蚀与防护学报,1999,19(3):189-192
    [67]左禹,陆玉成,熊金平.几种阴离子对亚稳态孔蚀行为的影响.中国腐蚀与防护学报,1999,19(1):21-26
    [68]赵景茂,左禹,熊金平等.在NaHCO_3-NaCl体系中阴离子对低碳钢点蚀的抑制作用.腐蚀科学与防护技术,2001,13(2):77-80
    [69]J.F.Chen,J.Shadley,E.F.Rybicki.Pitting Corrosion Monitoring with an Improved Electrochemical Noise Technique.in:Proceeding of Corrosion/99.Houston,TX:NACE International,1999.193
    [70]郭兴蓬,黄家怿,邱于兵等.基于电化学噪声的局部腐蚀分析方法和仪器.中国,发明专利,200610124756.2,2008
    [71]D.E.Williams.Electrochemical Corrosion Test.Dechema Monogr.,1986,101:253-265
    [72]S.T.Pride,J.R.Scully,J.L.Hudson.Electrochemical Noise Measurement for Corrosion Applications,in:J.S.Keams,J.R.Scully,P.R.Roberge,D.L.Reichert,J.L.Dawson(Eds.),ASTM STP 1277,Philadelphia,American Society for Testing and Materials,1996,307-326.
    [73]P.C.Pistorius.Electrochemical Noise Measurement for Corrosion Applications,in:J.R.Keams,J.R.Scully,P.R.Roberge,D.L.Reichert,J.L.Dawson(Eds.),ASTM STP 1277,Philadelphia,American Society for Testing and Materials,1996,343-345.
    [74]R.A.Cottis.Interpretation of Electrochemical Noise Data.Corrosion,2001,57(3):265-285
    [75]A.A.M.Gebril,R.A.Cottis.The Use of Electrochemical Noise to Detect Inttiation of Stress Corrosion Cracking.in:Proceeding of Corrosion/2005.Houston,TX:NACE International,2005.366
    [76]A.N.Rothwell,D.A.Eden.Electrochemical Noise Techniques for Determining Corrosion Rates and Mechanism.in:Proceeding of Corrosion/92.Nashville,TN:NACE International,1992.233
    [77] R.A. Cottis, S. Turgoose. Electrochemical Impedance and Noise, Corrosion Testing Made Easy. Houston, TX, NACE Press Book, 1999
    [78] G. Bagley, R.A. Cottis. Higer Order Measurements for the Analysis of Electrochemical Noise. in: Proceeding of Corrosion/99. Houston, TX: NACE International, 1999. 191
    [79] W.H. Press, S.A. Teukolsky, W.T. Vetterling, et al. Numerical Recipes in C. Cambridge, U.K., Cambridge University Press, 1993
    [80] J.F. Chen, W.F. Bogaerts. The Physical Meaning of Noise Resistance. Corros. Sci., 1995, 37(11): 1839-1842
    [81] F. Mansfeld, C. Chen, C.C. Lee. The Effect of Asymmetric Electrodes on the Analysis of Electrochemical Impedance and Noise Data. Corros. Sci., 1996, 38(3): 497~513
    [82] F. Mansfeld, H. Xiao. Electrochemical Noise Analysis of Iron Exposed to NaCl Solutions of Different Corrosivity. J. Electrochem. Soc, 1993,140(8): 2205-2209
    [83] F. Mansfeld. The Frequency Dependence of the Noise Resistance for Polymer-coated Metals. J. Electrochemical Soc, 1997,144(7): 2068-2071
    [84] G. Gusmano, G. Montesperelli, S. Pacetti, et al. Electrochemical Noise Resistance as a Tool for Corrosion Rate Prediction. Corrosion, 1997, 53(11): 860-868
    [85] K. Habib. Modified Electrochemical Emission Spectroscopy (MEES) as Technique of NDT for Detection Localized Corrosion of Copper Alloys in Seawater. Optic and Lasers in Engineering, 2000, 33: 1-13
    [86] U. Bertocci, C. Gabrielli, F. Huet, et al. Noise Resistance Applied to Corrosion Measurements I. Theoretical Analysis. J. Electrochem. Soc, 1997, 144(1): 31-37
    [87] A. Legat, C. Zevnik. The Electrochemical Noise of Mild and Stainless in Various Water Solution. Corros. Sci., 1993, 35(5-8): 1661-1667
    [88] U. Bertocci, J. Frydman, C. Gabrielli, et al. Analysis of Electrochemical Noise by Power Spectral Density Applied to Corrosion Studies. J. Electrochem. Soc, 1998, 145(8): 2780-2785
    [89] T. Schauer, H. Greisiger, L. Dulog. Details on MEM Analysis of Electrochemical Noise Data and Correlation with Impedance Measurements for Organic Coatings on Metals. Electrochim. Acta, 1998,43(16-17): 2423-2433
    [90] J.C. Uruchurtu, J.L. Dawson. Noise Analysis of Pure Aluminum under Different Pitting Conditions. Corrosion, 1987,43(1): 19-26
    [91] A. Legat, V. Dolecek. Corrosion Monitoring System Based on Measurement and Analysis of Electrochemical Noise. Corrosion, 1995, 51(4): 295-300
    [92] C. Monticelli, G. Brunoro, A. Frignani, et al. Evaluation of Corrosion Inhibitors by Electrochemical Noise Analysis. J. Electrochem. Soc, 1992, 139(3): 706-710
    [93] T. Fukuda, T. Mizuno. The Evaluation of Pitting Corrosion from the Spectrum Slope of Noise Fluctuation on Iron and 304 Stainless Steel Electrodes. Corro. Sci., 1996. 38(7): 1085-1091
    [94] U. Bertocci, F. Huet, B. Jaoul, et al. Computer Simulations in the Analysis of Electrochemical Noise. in: Proceeding of Corrosion/99. Houston, TX: NACE International, 1999.208
    [95] R. Oltra, C. Gabrielli, F. Huet, et al. Electrochemical Investigation of Locally Depassivated Iron. A Comparison of Various Techniques. Electrochim. Acta, 1986, 31(16-17): 1501-1511
    [96] Y.F. Cheng, J.L. Luo, M. Wilmott. Spectral Analysis of Electrochemical Noise with Different Transient Shapes. Electrochim. Acta, 1999,45(11): 1763-1795
    [97] U. Bertocci, F. Huet, B. Jaoul, et al. Frequency Analysis of Transients in Electrochemical Noise: Mathematical Relationships and Computer Simulations. Corrosion, 2000, 56(7): 675-683
    [98] F. Mansfeld, L.T. Han, C.C. Lee. Analysis of Electrochemical Noise Data for Polymer Coated Steel in the Time and Frequency Domains. J. Electrochem, Soc, 1996,143(12): L286-L289
    [99] F. Mansfeld, Z. Sun, E. Speckert. Electrochemical Noise Analysis (ENA) for Active and Passive Systems. In: Proceeding of Corrosion/2000. Houston, TX: NACE International, 1999.418
    [100] F. Mansfeld, Z. Sun, C.H. Hsu, et al. Concerning Trend Removal in Electrochemical Noise Measurements. Corros. Sci., 2001,43: 341-352
    [101] R.A. Cottis, M.A.A. Al-Awadhi, H. Al-Mazeedi, et al. Measures for the Detection of Localized Corrosion with Electrochemical Noise. Electrochim. Acta, 2001, 46: 3665-3674
    [102] J.M. Sanchez-Amaya, R.A. Cottis, F.J. Botana. Shot Noise and Statistical Parameters for the Estimation of Corrosion Mechanisms. Corros. Sci., 2005,47: 3280-3299
    [103]Z.Zhang,J.Q.Zhang,J.M.Wang,et al.Dimensional Analysis Applied to Pitting Corrosion Measurements of Aluminum Alloy 2024-T3 in Sodium Chloride.Electrochim.Acta,2002,47(3):2580-2586
    [104]秦前清,杨宗凯编著.实用小波分析.西安电子科技大学出版社,1994.1-4
    [105]刘贵忠,邸双亮等.小波分析及应用.西安电子科技大学出版社,1994.1-50
    [106]徐佩霞,孙功宪编著.小波分析与应用实例.中国科技大学出版社,1996.1-40
    [107]Y.Meyer.Wavelets and Application.1990年京都国际数学家会议报告.1990,1-11
    [108]M.Bos,E.Hoogendarm.Wavelet Transform for the Evaluation of Peak Intensities in Flow-injection Analysis.Anal.Chim.Acta,1992,267:73-80
    [109]A.Aballe,M.Bethencourt,F.J.Botana,et al.Wavelet Transform-based Analysis for Electrochemical Noise.Electrochem.Commun.1999,1(6):266-270
    [110]A.Aballe,M.Bethencourt,F.J.Botana,et al.Using Wavelets Transform in the Analysis of Electrochemical Noise Data.Electrochim.Acta,1999,44(26):4805-4816
    [111]Z.H.Dong,X.P.Guo,J.S.Zheng,et al.Calculation of Noise Resistance by Use of the Discrete Wavelets Transform.Electrochem.Commun.2001,3:561-565
    [112]F.H.Cao,Z.Zhang,J.X.Su,et al.Electrochemical Noise Analysis of LY12-T3 in EXCO Solution by Discrete Wavelet Transform Technique.Electrochim.Acta,2006,51:1359-1364
    [113]B.Zhao,J.H.Li,R.G.Hu,et al.Study on the Corrosion Behavior of Reinforcing Steel in Cement Mortar by Electrochemical Noise Measurements.Electrochim.Acta,2007,52:3976-3984
    [114]S.Mallat.A Wavelet Tour of Signal Processing.San Diego:Academic Press,1999.56-68
    [115]李建平.小波分析与信号处理:理论、应用及软件实现.重庆:重庆出版社,1997.6-25
    [116]B.M.Grafov,I.B.Grafova.Theory of the Wavelet Analysis for Electrochemical Noise by Use of Laguerre Functions.Electrochem.Commun.2000,2(2):386-389
    [117]A.Grossmann,J.Morlet,T.Paul.Transforms Associated to Square Integrable Group Representations:General Results.J.Math.Phys.,1985,26(10):2473-2479
    [118]A.Grossmann,J.Morlet.Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape.SLAM.J.Math.Anal.,1984,15:723-726
    [119]俞蓉蓉,蔡志章.地下金属管道的腐蚀与防护.石油工业出版社,1998.62-166
    [120]H.John.Evaluating Soil Corrosivity-Then and Now.Cathodic and Anodic Protection.1993,135:17-18
    [121]M.Romanoff.Underground Corrosion.NBS Circular C450.Washington D.C.,U.S.:NBS,1957
    [122]刘续旺,孙嘉瑞.全国土壤腐蚀网站资料汇编(第二集).上海市:上海交通大学出版社,1992.32-34
    [123]王强.地下金属管道的腐蚀与阴极保护.西宁:青海人民出版社,1984.39-44
    [124]孙成,李洪锡,张淑泉.不锈钢在土壤中的腐蚀规律的研究.腐蚀科学与防护技术,1999,11(2):94-98
    [125]金名惠,孟厦兰.碳钢在不同土壤中的腐蚀过程.材料保护,1999,10B:358-362
    [126]金名惠,孟厦兰,黄辉桃等.碳钢在我国四种土壤中腐蚀机理的研究.华中科技大学学报(自然科学版).2002,30(7):104-107
    [127]梁成浩.金属腐蚀学导论(第1版).北京:机械工业出版社,1999.138-147
    [128]田再强,袁秀鹏,王芷芳.土壤对埋地钢管腐蚀的勘测与分析.煤气与热力.2004,24(4):231-234
    [129]M.Romanoff.Underground Corrosion.NBS Circular C579.Washington D.C.,U.S.:NBS,1957
    [130]托马晓夫.金属腐蚀与防护的理论.华保定译.北京:中国工业出版社,1964.293-295
    [131]W.F.Gerhoold,E.Escalamate,B.T.Sanderson.Progress Report on the Corrosion Behavior of Selected Stainless in Soil Environments,NBSIR 81-2228.Washington D.C.,U.S.:NBS,1981
    [132]冯家潮.土壤腐蚀与防护技术论文汇编.1988.1-20
    [133]孙成.土壤中1Cr13不锈钢的某些腐蚀行为研究.材料科学与工程.1999,17(2):7-9
    [134]翁永基.塔里木地区材料的腐蚀和钢铁/土壤腐蚀模型.腐蚀与防护.2000,21(8): 347-350
    [135]宋乐平.Baeckman法评价土壤腐蚀性的局限性.腐蚀与防护.1995,16(6):286-291
    [136]美国国家标准:ANSI/AWWA C105/A21.5-82
    [137]R.A.King.TRRL Supplementary Report 316,TRRL,Crouthome,1997
    [138]宋光铃.土壤腐蚀性评价方法综述.腐蚀科学与防护技.1993,5(4):268-277
    [139]李长荣,屈祖玉,杨德均等.土壤腐蚀性因素的聚类分析.中国腐蚀与防护学报.1994,14(2):138-142
    [140]孟厦兰.苏打盐中低碳钢的自然腐蚀规律.中国腐蚀与防护学报.1997,17(4):29-32
    [141]曹楚南编著.腐蚀电化学(第1版).北京:化学工业出版社,1994
    [142]曹楚南编著.腐蚀电化学原理(第2版).北京:化学工业出版社,2004
    [143]李成保.从土壤中钢电极的弱极化曲线判别腐蚀机理和求算腐蚀速度的研究.材料保护.1982,2:7-11
    [144]J.R.Scully,J.K.Bundy.Electrochemical Methods for Measurement of Steel Pipe Corrosion Rates in Soil.Materials Performance.1985,24(4):18-24
    [145]李成保.用线性极化法评价土壤对钢腐蚀性的研究.材料保护.1984,1:2-5
    [146]曹楚南,宋诗哲,王友.微分极化电阻测量研究.中国腐蚀与防护学报.1986,6(4):26-29
    [147]唐红雁,宋光铃,曹楚南等.弱极化曲线拟合技术在土壤腐蚀研究中的应用.腐蚀科学与防护技术.1996,8(3):179-184
    [148]唐红雁,宋光铃,曹楚南等.用极化曲线评价钢铁材料土壤腐蚀行为的研究.腐蚀科学与防护技术.1995,7(4):285-293
    [149]李成保.用极化电阻R_p评价土壤对铅腐蚀性的研究.材料保护.1981,3:7-12
    [150]I.Epelboin,M.Keddan,H.Takenouti.J.Appl.Electrochem.,1972,2(1):71-78
    [151]J.R.Scully,K.J.Bundy.In:Proceeding of Corrosion/83.Houston,TX:NACE International,1983.253
    [152]W.J.Lorenz,F.Mansfeld.Determination of Corrosion Rates by Electrochemical DC and AC methods.Corros.Sci.1981,21(9):647-658
    [153]J.N.Murray,P.J.Moran.Influence of Moisture on Corrosion of Pipeline Steel in Soil Using In-situ Impedance Spectroscopy.Corrosion.1989,45(1):34-56
    [154]李谋成,林海潮,曹楚南.碳钢在土壤中腐蚀的电化学阻抗谱特征.中国腐蚀与防护学报.2000,20(2):111-117
    [155]常守文,银耀德,张莉华等.用电化学方法研究低碳钢在粘土中的腐蚀行为.中国腐蚀与防护学报.1988,8(1):37-41
    [156]曹楚南,张鉴清著.电化学阻抗谱导论.北京:科学出版社,2002
    [157]伍远辉,蔡铎昌,何晓英等.Q235钢在不同湿度的青海盐湖盐渍土壤中的腐蚀行为.商丘师范学院学.2005,21(2):98-103
    [158]伍远辉,孙成,张淑泉等.湿度对X70管线钢在青海盐湖盐渍土壤中腐蚀行为的影响.腐蚀科学与防护技术.2005,17(2):87-92
    [159]石声泰,张允书,徐乃欣等.金属腐蚀与防护科学技术的发展与前瞻(三.腐蚀电化学).腐蚀与防护.1990,11(1):19-23
    [160]M.C.Li,Z.Han,H.C.Lin,et al.A New probe for the Investigation of Soil Corrosivity.Corrosion.2001,57(10):142-147
    [161]宋义全,杜翠微.X70钢管线楔型缝隙的阴极极化特性.金属学报.2006,42(3):306-311
    [162]丁鹏.碳钢在新疆库尔勒土中腐蚀行为研究:[硕士论文].武汉:华中科技大学图书馆,2007
    [163]汪健.碳钢在大庆土中腐蚀早期的电化学行为研究:[本科论文].武汉:华中科技大学图书馆,2007
    [164]孟厦兰,金名惠,郭稚弧等.铜.钢电偶加速钢在土壤中腐蚀的研究—大庆土壤试验的部分结果.腐蚀科学与防护技术.1995,7(4):358-361
    [165]孙崇德.集成电路原理与应用.北京:人民邮电出版社,1984
    [166]Y.J.Tan,S.Bailey,B.Kinsella.The monitoring of the formation and destruction of corrosion inhibitor films using electrochemical noise analysis(ENA).Corros.Sci.1996,38(10):1681-1695
    [167]U.Bertocci,F.Huet.Drift removal procedures in the analysis of electrochemical noise.Corrosion.2002,58(4):337-347
    [168]F.Huet,U.Bertocci,C.Gabrielli,et al.In:Proc.CORROSION/97.Houston,TX:NACE International,1997.Research Topical Symposia,Part Ⅰ on 'Advanced monitoring and analytical techniques',11-30
    [169]A.Bruce,H.Y.Gao.Applied Wavelet Analysis with S-Plus,Springer,New York,1996
    [170]R.A.Cottis,S.Turgoose.Mater.Sci.Forum,1995,2,663-672
    [171]邱于兵,黄家怿,郭兴蓬.多项式拟合法消除电化学噪声的直流漂移.华中科技大学学报(自然科学版).2005,33(10):39-42
    [172]L.Kaufman,P.R.Rousseeuw,Finding Groups in Data:an Introduction to Cluster Analysis.John Wiley & Sons,New York,1990
    [173]R.O.Duda,P.E.Hart,D.G.Stork,Pattem Classification,2nd edn.,John Wiley &Sons,New York,2001
    [174]J.Hartigan,Clustering Algorithms.John Wiley & Sons,New York,1975
    [175]D.L.Massart,L.Kaufman,The Interpretation of Analytical Data by the Use of Cluster Analysis,in:P.J.Elving,J.D.Winefordner(Ed.),Chemical Analysis Series,vol.65,John Wiley & Sons,New York,1983,p.75
    [176]C.C.Lin,A.P.Chen,Computers & Operations Research.2004,31:877-896
    [177]P.A.Lachenbruch,Discriminant Analysis.Hafner,New York,1977
    [178]R.A.Fisher,Annals of Eugenics 1936,7:179-183
    [179]J.Y.Huang,X.P.Guo,Y.B.Qiu,Z.Y.Chen,Cluster and Discriminant Analysis of Electrochemical Noise Data.Electrochim.Acta 2007,53:680-687
    [180]邱于兵,丁鹏,金名惠等.X70钢在新疆库尔勒土中的早期腐蚀行为.华中科技大学学报(自然科学版).2007,35(4):129-132
    [181]杜翠薇,李晓刚,武俊伟.三种土壤对X70钢腐蚀行为的比较.北京科技大学学报.2004,26(5):529-532
    [182]武俊伟,李晓刚,杜翠薇等.X70钢在库尔勒土壤中短期腐蚀行为研究.中国腐蚀与防护学报.2005,25(1):15-19
    [183]杨锐鹏,翁永基.X70和16Mn钢土壤腐蚀行为比较Ⅰ.电位和平均腐蚀速率.腐蚀科学与防护技术.2005,17(3):148-150
    [184]罗方伟,翁永基.X70和16Mn钢土壤腐蚀行为比较Ⅱ.点蚀和缝隙腐蚀[J].腐蚀科学与防护技术.2005,17(3):151-153
    [185]王文杰,邱于兵,金名惠等.X70钢在新疆库尔勒原土中腐蚀萌发期的电化学阻抗谱特征.材料保护.2007,40(4):18-21
    [186]孟厦兰.苏打盐土中低碳钢的自然腐蚀规律.中国腐蚀与防护学报.1997,17(4):291-294
    [187]D.L.Massart,L.Kaufman.The Interpretation of Analytical Data by the Use of Cluster Analysis.New York:John Wiley & Sons,1983:75-82
    [188]王文杰.X70钢在新疆库尔勒土中腐蚀早期的电化学行为:[硕士论文].武汉:华中科技大学图书馆,2007
    [189]S.K.Gupta,B.K.Gupta.Corros.Sci.1979,19(3):171-175
    [190]J.N.Murrav,P.J.Moran.Corrosion.1989,45(1):34-37
    [191]E.Schaschl,G.A.Marsh.Mater.Prot.1963,2(11):8-11
    [192]闫茂成,翁永基.温度和应力对管道钢应力腐蚀过程电化学行为的影响.石油工程建设.2004,30(3):4-8
    [193]李谋成,林海潮,曹楚南.湿度对钢铁材料在中性土壤中的腐蚀行为的影响.腐蚀科学与防护技术.2000,12(4):218-222
    [194]刘文霞,陈永利,孙成.盐渍土壤湿度变化对碳钢腐蚀的影响.全面腐蚀控制.2005,19(1):26-29
    [195]郭稚弧,金名惠,周建华.碳钢在土壤中的腐蚀及影响因素.油气田地面工程.1995,14(4):27-29
    [196]楚喜丽,郭稚弧,齐公台等.碳钢在宝浪油田土壤中的腐蚀及影响因素的研究.腐蚀与防护.1999,20(9):400-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700