强流脉冲离子束辐照表面的烧蚀改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用TEMP-6型和ETIGO-II型强流脉冲离子束(HIPIB)装置,分别产生加速电压300kV和1 MV,脉冲宽度50-80 ns,束流密度100-1500 A/cm~2,能量密度1-90 J/cm~2的C~+和H~+离子束。通过HIPIB辐照石墨和ZrO_2涂层烧蚀行为实验和理论研究,分析了烧蚀表面温度场和应力场,探明了HIPIB辐照材料的烧蚀作用机制;利用HIPIB辐照的烧蚀作用,实现了镁合金AZ31微弧氧化膜的表面改性,烧蚀改性的镁合金表面形成的连续、致密的氧化膜,耐腐蚀性能显著改善,进一步提高了镁合金微弧氧化膜保护作用。HIPIB辐照镁合金AZ31微弧氧化膜烧蚀改性,提供了一种新的、可靠的脉冲离子束表面改性技术。
     通过HIPIB辐照石墨和ZrO_2涂层,烧蚀表面的温度场和应力场的实验和理论研究表明,在高能量密度5-90 J/cm~2条件下,表面升温速率为10~(12)-10~(13)K/s,温度梯度达到10~3 K/μm,表面应力波呈压应力和拉应力交替的周期性传播,最大压应力达到500 MPa。石墨可发生向类金刚石的非平衡相转变,ZrO_2柱状晶则发生重熔和再结晶。辐照表面的熔化、汽化和烧蚀,导致表层材料转移去除和亚表层材料的均匀化和致密化;同时烧蚀表面在反冲应力和温度梯度作用下,形成非平衡的表面结构。HIPIB辐照的热-力学耦合作用是表面烧蚀改性的主要原因。
     采用束流密度100-350 A/cm~2,辐照次数1-10次的HIPIB烧蚀改性镁合金AZ31微弧氧化膜。随束流密度和辐照次数的增加,具有内、外亚层双层结构的镁合金微弧氧化膜烧蚀表面熔化趋势加剧,200 A/cm~2已经观察到清晰的表面重熔特征,但表面重熔层深度呈先增大后减小的变化过程,最大重熔深度在200 A/cm~2,5次辐照下可达10μm,完全熔化的外亚层孔隙减少且内亚层更为致密。烧蚀表面粗糙度(Ra)则呈先减小后增加的过程,在200A/cm_2,1-10次辐照下,粗糙度由原始氧化膜表面的2.10μm减小到1.18μm,后增加到4.13μm。相应的烧蚀表面表面能增加,表面静态接触角由原始氧化膜表面的145.9°单调减小,最小值可达到49.7°。烧蚀表面具有混合的Mg_2SiO_4和MgO相结构,与原始微弧氧化膜相同。烧蚀改性显著增加了AZ31微弧氧化膜的连续性和致密性。
     采用动电位阳极极化和电化学阻抗谱,测试了HIPIB烧蚀改性镁合金AZ31微弧氧化膜在3.5%NaCl溶液中的腐蚀性能。烧蚀氧化膜表面发生的腐蚀过程由活化溶解向钝化-孔蚀击穿转变,孔蚀击穿电位随束流密度和辐照次数的增加呈先增加后减小的趋势,随束流密度由100A/cm~2增加到350A/cm~2,5次辐照下,孔蚀击穿电位由-1240 mV(SCE)增加到-800 mV(SCE),后减小到-1240 mV(SCE),钝化电流密度则由10~(-8) A/cm~2减小到4×10~(-9) A/cm~2,后增加到10~(-7) A/cm~2。束流密度200 A/cm~2,辐照次数由1次增加到10次,孔蚀击穿电位由-1420 mV(SCE)增加到-800 mV(SCE),阳极极化曲线的钝化电流由3×10~(-7)A/cm~2减小到4x10~(-9)A/cm~2。辐照后氧化膜的自腐蚀电位均有明显提高,由原始氧化膜的-1580 mV(SCE)增加到200 A/cm~2,5次辐照时的最大值-1350 mV(SCE)。烧蚀氧化膜表面的阳极极化性能显著改善。
     为了表征HIPIB辐照AZ31微弧氧化膜连续性和致密性对腐蚀性能的影响,采用在3.5%NaCl溶液中不同浸泡时间测量电化学阻抗谱。烧蚀改性氧化膜的电化学阻抗谱Nyquist图呈典型的容抗弧和感抗弧特征,Bode图辐角-频率曲线则呈典型的高频容抗弧、中频容抗弧和低频感抗弧特征。随束流密度和辐照次数的增加,Nyquist图的容抗弧和感抗弧均呈先增大后减小的变化过程,最大容抗弧和感抗弧均在200 A/cm~2,5次辐照下,浸泡时间5 h可达6x10~7Ω和1.5x10~5Ω。Bode图的两个容抗弧辐角和感抗弧辐角大小和宽度变化不显著,仅中频容抗弧宽度呈先增宽后变窄的过程。在不同浸泡时间的测试中,烧蚀改性氧化膜的Nyquist图容抗弧和感抗弧均随浸泡时间的增加而减小,Bode图的高频容抗弧辐角减小,中频容抗弧宽度变窄。在200A/cm~2,5次辐照下,浸泡时间增加至48 h,容抗弧减小到4.5x10~5Ω,相应的Bode图开始出现低频感抗弧,进一步增加到192 h,容抗弧继续减小,但低频感抗弧基本不变。采用Zsimpwin软件对烧蚀改性氧化膜电化学阻抗谱进行模拟。改性氧化膜内、外亚层阻抗较原始氧化膜显著提高。在200 A/cm~2,5次辐照下,与原始微弧氧化膜相比较,浸泡时间5 h,内、外亚层电阻由1.52×10~6Ω和5.3×10~4Ω分别增加到7.31x10~(10)Ω和3.5x10~5Ω,HIPIB辐照微弧氧化膜有效改善的氧化膜的连续性和致密性,是提高腐蚀性能的主要原因。
The experimental and theoretical investigation of ablation behavior on graphite and ZrO_2 coatings irradiated by high-intensity pulsed ion beam(HIPIB) is performed in TEMP-6 and ETIGO-II HIPIB apparatuses with the ion energy of 300 keV and 1 MV,the pulse width of 50-80 ns,the ion current density of 100-1500 A/cm~2 and the energy density of 1-90 J/cm~2.The temperature field and stress field of the ablated surface are confirmed to explore the ablation effects mechanism of HIPIB irradiation on materials.Based on ablation effects of HIPIB, modification of microarc oxidation film on AZ31 magnesium alloy is achieved by forming a continuous and compact remelted layer on the surface of magnesium alloy to enhance the protective effect of microarc oxidation film(MAO) and further improve the corrosion performance of magnesium alloy.
     The experimental and theoretical investigation on the temperature field and stress field of ablated surface of graphite and ZrO_2 coating irradiated by HIPIB shows that the elevated temperature rate and temperature gradient of the irradiated surface could reach to 10~(12)-10_(13) K/s and 10~9 K/m under the high energy density,respectively.The stress wave transmits in the irradiated materials periodically with a compressive stress and tensive stress alternately and the maximal value of compressive stress is obtained to 300 MPa.The phase transformation form graphite to diamond like carbon(DLC) on ablated graphite surface and the remelting and recrystalization of ZrO_2 columnar crystal could happen under HIPIB ablation effects.The remelting,evaporation and ablation on the irradiated surface induced the removal of the surface layer and the uniformity and compaction of the sublayer on irradiated materials,as well as a nonequilibrium surface structure was formed on the ablated surface under impulse stress and temperature gradient.The surface ablation modification is mainly attributed to thermo-mechanical coupling effects of HIPIB irradiation.
     The MAO films on magnesium alloy irradiated by HIPIB were performed at 100-350 A/cm~2 up to 10 shots.Surface remelting of MAO films with double layer structure of inner and outer sublayer becomes intense with the increase of ion current density and irradiation shot number,the apparent remelting characteristic could be observed on the irradiated surface at 200 A/cm~2.The thickness of remelted layer increased and then decreased and the maximal value of 10μm was obtained at 200 A/cm~2 with 5 shots,the porosity of the completely remelted sublayer decreased and inner sublayer became more compact.Surface roughness of the ablated surface increased and then decreased with the increase of shot number at 200 A/cm~2.The surface roughness for the original MAO film is about 2.10μm,it decreased to 1.18μm with 1 shot irradiation and then increased to 4.13μm with irradiation shots up to 10. Correspondingly,the surface energy of the ablated surface augmented,resulting in the tedious decrease of static contact angle from 145.9~ for original film to 49.7~ for the film with 10 shots.The phase structure of the ablated surface still consisted of Mg_2SiO_4 and MgO,which are the same as that of the original ones.The ablation modification enhanced the continuity and compaction of the MAO films on AZ31 magnesium alloy.
     Potentiodynamic polarization measurements and electrochemical impedance spectrum (EIS) in 3.5%NaCl solution were performed to test the corrosion performance of MAO films on AZ31 magnesium alloy.The corrosion process of the ablated surface transformed from the active solution to passivation-pitting breakdown.The passivation-pitting breakdown voltage increased and then decreased with increasing ion current density and shot number.With the increase of ion current density from 100 A/cm~2 to 350 A/cm~2 at 5 shots,the breakdown voltage increased from-1240 mV(SCE) to-800 mV(SCE),and then down to -1240 mV(SCE). On the contrary,the passivation current density show a tendency of decrease followed by an increase,which is described by an decrease from 1x10~(-8)A/cm~2 to 4×10~(-9) A/cm~2,and then up to 1x10~(-7)A/cm~2.With the increase of shot number from 1 to 10 at the ion current density of 200 A/cm~2,the breakdown voltage increased from -1420 mV(SCE) to -800 mV(SCE). Correspondingly,the passivation current density decreased from 3×10~(-7)A/cm~2 to 4x10~(-9) A/cm~2.The corrosion potentials of MAO films irradiated by HIPIB were all enhanced compared with those of original films.The corrosion potential was enhanced from -1580 mV(SCE) for original MAO films to maximal value of -1350 mV(SCE) for the irradiated films at 200 A/cm~2 with 5 shots.The anode polarization performance of the ablated MAO film was pronounced improved by HIPIB irradiation.
     The(EIS) in 3.5%NaCl solution was measured,in order to characterize the effect of modified continuity and compaction of the ablated MAO film on AZ31 magnesium alloy by HIPIB on its corrosion properties.The Nyquist plots for EIS shows typical capacitive arc and inductive loop,the phase-frequency curves show typical high-frequency(HF)and middle-frequency(MF)capacitive arcs and low-frequency(LF) inductive loop.The diameters for capacitive arc and inductive loop are both increased and then decreased with increasing the ion current density and irradiation shot number,the maximal value for diameters obtained at 200 A/cm~2 with 5 shots at immersion time of 5 h was achieved to 6x10~7Ωand 1.5x10~5Ω,respectively.No apparent changes were observed on the two capacitive arcs and inductive loop for Bode plots except for the width of MF capacitive arc.With immersion time augment, the diameters for capacitive arc and inductive loop of Nyquist plots both are decreased,and phase angle for HF capacitive arc and width for MF capacitive arc of Bode plots decreased, either.The diameter for the capacitive arc of Nyquist plots for ablated MAO films at 200 A/cm~2 with 5 shots decreased to 4.5x10~5Ωwith immersion time up to 48 h,correspondingly, the LF inductive loop just appeared on Bode plots,the diameter for capacitive arc decreased continuously and no obvious changes observed on LF inductive loop with further increasing the immersion time.
     The EIS for ablated MAO films were fitted by Zsimpwin software,which indicated that the corrosion resistances for inner and outer sublayer are all improved by HIPIB irradiation. The corrosion resistance for inner and outer sublayer at 200 A/cm~2 with 5shots all increased from 1.52x10~6Ωand 5.3x10~4Ωto 7.31x10~(10)Ωand 3.5x10~5Ω,respectively,compared with the original ones at immersion time of 5 h.The enhancement in corrosion property of ablated MAO films is mainly caused by improvement of continuity and compaction of films irradiated by HIPIB.The ablation modification on MAO films on AZ31 magnesium alloy irradiated by HIPIB affords a new and reliable surface modification technique with pulse ion beam.
引文
[1]R.B.Miller.An introduction to the physics of intense charged particle beams.Plenum Press,1982.
    [2]R.N.Sudan,R.V.Lovelace.Generation of intense ion beams in pulsed diodes.Physical Review Letters,1973,31:1174-1177.
    [3]J.Golden,T.J.Orzechowski,G.Bekefi.Magnetic insulation of an intense relativistic electron beam.Journal of Applied Physics,1974,45:3211-3212.
    [4]R.V.Lovelace,E.Ott.Theory of magnetic insulation.Physics of Fluids,1974,17:1263-1268.
    [5]T.M.Antonsen,E.Ott.Theory of intense ion beam acceleration.Physics of Fluids,1976,19:52-59.
    [6]D.J.Johnson,G.W.Kuswa,A.V.Farnsworth,J.J.P.Quintenz,R.J.Leeper,E.J.T.Burns,S.J.Humphries.Production of 0.5-TW proton pulses with a spherical focusing magnetically insulated diode.Physical Review Letters,1979,42:610-613.
    [7]K.Masugata,T.Nakayama,Y.Inazumi,K.Konno,M.Nakabaru,S.Takano,M.Matsui,J.Irisawa,K.Yatsui.Generation and focussing of intense pulsed light-ion beam at Nagaoka-ETIGO Project.Japanese Journal of Applied Physics,1981,20:347-350.
    [8]X.P.Zhu,M.K.Lei,T.C.Ma.Characterization of a high-intensity bipolar-mode pulsed ion source for surface modification of materials.Review of Scientific Instruments,2002,73:1728-1733.
    [9]X.P.Zhu,M.K Lei,Z.H.Dong,T.C.Ma.Characterization of a high-intensity unipolar-mode pulsed ion source with improved magnetically insulated diode.Review of Scientific Instruments,2003,74:47-52.
    [10]A.D.Pogrebnjak,G.E.Remnev,I.B.Kurakin,A.E.Ligachev.Structure,physical and chemical changes induced in metals and alloys esposed to high power ion beams.Nuclear Instruments and Methods in Physics Research B,1989,36:286-305.
    [11]I.B.Kurakin,A.E.Ligachov,J.E.Remnev,M.G.Sipailo.Wear resistance of ion-implanted metallic materials.Surface and Coatings Technology,1992,51:180-185.
    [12]W.Biller,D.Heyden,D.Miller,G.K Wolf.Modification of steel and aluminum by pulsed energetic ion beams.Surface and Coatings Technology,1999,116-119:537-542.
    [13]赵渭江,颜莎,乐小云,韩宝玺,薛建明,王宇钢,G.E.Remnev,M.S.Opekounov,I.F.Isakov,I.I.Grushin.强脉冲离子注入中的脉冲能量效应研究.核技术,2000,23:689-696.
    [14]R.M.Gilgenbach,S.D.Kovaleski,J.S.Lash,L.K.Ang,Y.Y.Lau.Science and applications of energy beam ablation.IEEE Transactions on Plasma Science,1999,27:150-158.
    [15]D.I.Proskurovsky,V.P.Rotshtein,G.E.Ozur,Y.F.Ivanov,A.B.Markov.Physical foundations for surface treatment of materials with low energy,high current electron beams.Surface and Coatings Technology,2000,125:49-56.
    [16]R.T.Hodgson,J.E.E.Baglin,R.Pal,J.M.Neri,D.A.Hammer.Ion beam annealing of semiconductors.Applied Physics Letters,1980,37:187-189.
    [17]A.N.Valyaev,M.K.Kylyshkanov,A.D.Pogrebnjak,A.A.Valyaev,S.V.Plotnikov.Modification of mechanical and tribological properties of R6M5 steel and Be by intense pulsed-ion and pulsed-electron beams.Vaccum,2000,58:53-59.
    [18]Z.Werner,J.Piekoszewski,W.Szymczyk.Application of high intensity pulsed ion and plasma beams in modification of materials.Vacuum,2001,63:475-481.
    [19]D.J.Rej,H.A.Davis,J.C.Olson,G.E.Remnev,A.N.Zakoutaev,V.A.Ryzhkov,V.K.Struts,I.F.Isakov,V.A.Shulov,N.A.Nochevnaya,R.W.Stinnett,E.L.Neau,K.Yatsui,W.J.Jiang.Materials processing with intense pulsed ion beams.Journel of Vacuum Science and Technology A,1997,15:1089-1097.
    [20]A.N.Valyaev,VS.Ladysev,A.D.Pogrebnjak,A.A.Valyaev,S.V.Plotnikov.Comparative analysis of radiation damages,mechanical and tribological properties of a-Fe exposed to intense-pulsed electron and ion beams.Nuclear Instruments and Methods in Physics Research B,2000,161-163:1132-1136.
    [21]B.X.Han,S.Yan,X.Y.Le,W.J.Zhao,G.E.Remnev,M.S.Opekounov,I.F.Isakov,.1.1.Grushin.The phase and microstructure changes in 45# steel irradiated by intense pulsed ion beams Surface and Coatings Technology,2000,128-129:387-393.
    [22]H.Akamatsu,T.Ikeda,K.Azuma,E.Fujiwara,M.Yatsuzuka.Surface treatment of steel by short pulsed injection of high-power ion beam.Surface and Coatings Technology,2001,136:269-272.
    [23]C.Hammerl,V Lavrentiev,B.Rauschenbach,O.Kukharenko.Formation of hardened surface layers in titanium under irradiation with intense ion beams Scripta Materialia,2001,44:625-630.
    [24]D.L.Cook,J.P.V Devender.Inertial confinement fusion with light ion beams.Science,1986,232:831-836.
    [25]王淦昌,袁之尚.惯性约束核聚变.安徽教育出版社,1996.
    [26]K.Kasuya,M.Watanabe,D.Ido,T.Adachi,K.Nishigori,T.Ebine,H.Okayama,M.Funatsu,H.Sunami,C.Wu,E.Hotta,S.Miyamoto,K.Yasuike,S.Nakai,S.Kawata,T Okada,K.Niu.Production,diagnostic and application of pulsed ion beams with light and medium mass;LIB(and MIB) program in Japan.Fusion Engineering and Design,1999,44:319-326.
    [27]R.T.Hodgson,J.E.E.Baglin,R.Pal,J.M.Neri,D.A.Hammer.Ion beam annealing of semiconductors.Applied Physics Letters,1980,37:187-189.
    [28]J.M.Neri,D.A.Hammer,G.Ginet,R.N.Sudan.Intense lithium,boron,and carbon beams from a magnetically insulated diode.Applied Physics Letters,1980,37:101-103.
    [29]R.W.Stinnett,R.G.Buchheit,E.L.Neau,M.T.Crawford,K.P.Lamppa,T.J.Renk,J.B.Greenly,I.Boyd,M.O.Thompson,D.J.Rej.Ion beam surface treatment:a new technique for thermally modifying surfaces using intense,pulsed ion beams.In:GC WLB,editor.Proceeding of the 10th IEEE International Pulsed Power Conference,IEEE Piscataway,NJ,USA,1995.p.46-55.
    [30]H.A.Davis,G.E.Remnev,R.W.Stinnett,K.Yatsui.Intense ion-beam treatment of materials.Materials Research Society Bulletin,1996,21:58-62.
    [31]X.Y.Le,S.Yan,W.J.Zhao,B.X.Hart,Y.G Wang,J.M.Xue.Computer simulation of thermal-mechanical effects of high intensity pulsed ion beams on a metal surface.Surface and Coatings Technology,2000,128-129:381-386.
    [32]W.J.Zhao,G.E.Remnev,S.Yan,M.S.Opekounov,X.Y.Le,V.M.Matvienko,B.X.Hart,J.M.Xue,Y.G.Wang.Intense pulsed ion beam sources for industrial applications.Review of Scientific Instruments,2000,71:1045-1048.
    [33]石磊,何小平,张嘉生,邱爱慈,王永昌,吴祖堂,丛培天.一台小型强流脉冲离子加速器.强激光与粒子束,2000,12:382-384.
    [34]X.P.Zhu,M.K.Lei,T.C.Ma.A high-intensity pulsed ion beam(HIPIB) apparatus using MIDs of two different modes for surface engineering.Proc of the 3rd Inter Symp on Pulsed Power and Plasma Applications,Institute of Fluid Physics,CAEP,Mianyang,China,2002.p.104-107.
    [35]X.P.Zhu,M.K.Lei,T.C.Ma.Surface morphology of titanium irradiated by high-intensity pulsed ion beam.Nuclear Instruments and Methods in Physics Research B,2003,211:69-79.
    [36]S.M.Miao,M.K.Lei.Numerical analysis of ablated behaviors on titanium irradiated by high-intensity pulsed ion beam.Nuclear Instruments and Methods in Physics Research B,2005,229:381-391.
    [37]E.L.Neau.Environmental and industrial applications of pulsed power systems.IEEE Transactions on Plasma Science,1994,22:2-10.
    [38]J.C.Olson,H.A.Davis,D.J.Rej,W.J.Waganaar,R.W.Stinnett,D.C.Mcintyre.Deposition and surface treatment with intense pulsed ion beams.Journal of Electronic Materials,1996,25:81-85.
    [39]G.E.Remnev,I.F.Isakov,M.S.Opekounov,v.M.Matvienko,V.A.Ryzhkov,V.K.Struts,I.I.Grushin,A.N.Zakoutayev,A.V.Potyomkin,V.A.Tarbokov,A.N.Pushkaryov,V.L.Kutuzov,M.Y.Ovsyannikov.High intensity pulsed ion beam sources and their industrial applications.Surface and Coatings Technology,1999,114:206-212.
    [40]A.D.Pogrebnjak,S.M.Ruzimov.Increased micohardness and positron annihilation in A1 exposed to a high-power ion beam.Physics Letters A,1987,120:259-261.
    [41]D.J.Rej,H.A.Davis,M.Nastasi,J.C.Olson,E.J.Peterson,R.D.Reiswig,K.C.Walter,R.W.Stinnett,G.E.Remnev,V.K.Struts.Surface modification of AISI-4620 steel with intense pulsed ion beams.Nuclear Instruments and Methods in Physics Research B,1997,127-128:987-991.
    [42]T.Feurer,S.Wahl,H.Langhoff.Modification of polyimide surfaces using intense proton pulses.Journal of Applied Physics,1993,74:3523-3530.
    [43]J.Kucinski,J.Langner,J.Piekoszewski,M.Adami,A.Miotello,L.Guzman.Glazing of ceramic surfaces with high-intensity pulsed ion beams.Surface and Coatings Technology,1996,84:329-333.
    [44]R.Fastow,J.W.Mayer.High-energy-density pulsed ion-beam irradiation of Co/Si,Pt/Si,and Au/Si.Journal of Applied Physics,1987,61:175-181.
    [45]A.D.Pogrebnjak,G.E.Remnev,S.V.Plotnikov.High-power ion-beam-induced melting and mixing in deposited structures.Materials Science and Engineering A,1989,115:175-179.
    [46]V.Bystritskii,E.Garate,V.Grigoriev,A.Kharlov,E.Lavernia,X.Peng.The high power pulsed ion beam mixing of a titanium layer with an aluminum substrate.Nuclear Instruments and Methods in Physics Research B,1999,149:61-66.
    [47]F.Brenscheit,J.Piekoszewski,E.Wieser,J.Langner,R.Grotzschel,H.Reuther.Modification of silicon nitride ceramics with high intensity pulsed ion beams Materials Science and Engineering A,1998,253:86-93.
    [48]X.P.Zhu,M.K.Lei,S.M.Miao,Z.H.Dong,Z.C.Xu.Selective ablation of TiAl intermetallic compound by high-intensity pulsed ion beam.Proceeding of the 4th International Symposium Pulsed Power & Plasma Applications,and International Workshop on Applications of Pulsed Power to Nanosized Materials,Nagaoka(Nagaoka University of Technology,Japan),2003.p.190-193.
    [49]Y.Shimotori,M.Yokoyama,S.Harada,K.Masugata,K.Yatsui.Quick depositon of ZnS:Mn eletroluminescent thin films by intense,pulsed,ion beam evaporation.Japanese Journal of Applied Physics,1989,28:468-472.
    [50]G.P.Johnson,P.Tiwari,D.J.Rej,H.A.Davis,W.J.Waganaar,R.E.Muenchausen,K.C.Walter,M.Nastasi,H.K.Schmidt,N.Kumar,B.Lin,D.R.Tallant,R.L.Simpson,D.B.Williams,X.Qiu.Preparation of diamondlike carbon films by high-intensity pulsed-ion-beam deposition.Journal of Applied Physics.1994.76:5949-5954.
    [51]梅显秀.强流脉冲离子束类金刚石薄膜沉积及高速钢辐照处理研究.大连:大连理工大学博士论文,2002.
    [52]K.Yatsui,C.Grigoriu,H.Kubo,K.Masugata,Y.Shimotori.Synthesis of nanosize powders of alumina by ablation plasma produced by intense pulsed light-ion beam.Applied Physics Letters, 1995,67:1214-1216.
    [53]Y.Nakagawa,C.Grigorin,K Masugata,W.Jiang,K.Yatsui.Synthesis of Ti02 and TiN nanosize powders by intense light ion-beam evaporation.Journal of Materials Science Letters,1998,33:529-533.
    [54]K Yatsui,C.Grigoriu,K Masugata,W.Jiang,T.Sonegawa.Preparation of thin films and nanosize powders by intense pulsed ion beam evaporation.Japanese Journal of Applied Physics,1997,36:4928-4934.
    [55]S.M.Miao,M.K.Lei.Surface morphology of Cr_2O_3 coatings on steel irradiated by high-intensity pulsed ion beam Nuclear Instruments and Methods in Physics Research B,2006,243:335-339.
    [56]H.A.Davis,G.P.Johnston,J.C.Olson,D.J.Rej,W.J.Waganaar,C.L.Ruiz,EA.Schmidlapp,M.O.Thompson.Characterization and modeling of the ablation plumes formed by intense-pulsed ion beam impact on solid targets.Journal of Applied Physics,1999,82:713-721.
    [57]C.A.Meli,K.S.Grabowski,D.D.Hinshelwood,S.J.Stephanakis,D.J.Rej,W.J.Waganaar.Film deposition and surface modification using intense pulsed ion beams.Journal of Vacuum Science and Technology A,1995,13:1182-1187.
    [58]K.Kashine,H.Suematsu,W.Jiang,K.Yatsui.Modification of graphite surface by intense pulsed ion-beam irradiation.IEEJ Transactions on Fundamentals and Materials,2004,124:47-51.
    [59]K.Yatsui,X.D.Kang,T.Sonegawa,T.Matsuoka,K Masugata,Y.Shimotori,T.Satoh,S.Furuuchi,Y.Ohuchi,T.Takeshita,H.Yamamoto.Application of intense pulsed ion beam to material science.Physics of Plasmas,1994,1:1730-1737.
    [60]W.Jiang,N.Hashimoto,H.Shinkai,K.Ohtomo,K.Yatsui.Characteristics of ablation plasma produced light ion beam interaction with targets and applications to materials science.Nuclear Instruments and Methods in Physics Research A,1998,415:533-538.
    [61]Y.Mitsuyasu,A.Hiroshi.Simulation of surface temperature of metals irradiated by intense pulsed electon,ion and laser beams.Surface and Coatings Technology,2003,169-170:219-222.
    [62]A.D.Korotaev,A.N.Tyumentsev,M.V.Tretyjak,Y.P Pinzhin,G.E.Remnev,D.A.Shchipakin.Surface morphology and defect substructure of the surface layer of Ni,AI treated by a high power ion beam.The Physics of Metals and Metallography,2000,89:49-55.
    [63]A.D.Korotaev,S.V.Ovchinnikov,Y.I.Pochivalov,A.N.Tyumentsev,D.A.Shchipakin,M.V.Tretyjak,I.F.Isakov,G.E.Remnev.Structure-phase states of the metal surface and undersurface layers after the treatment by powerful ion beams.Surface and Coatings Technology,1998,105:84-90.
    [64]雷明凯,苗收谋.强流载能束与材料表面相互作用的热效应.热科学与技术,2003,2:106.111.
    [65]Z.H.Dong,C.Liu,X.G.Han,M.K.Lei.Induced stress wave on the materials surface irradiated by high-intensity pulsed ion beam.Surface Coatings and Technology,2006,201:5054-5058.
    [66]周南,牛胜利,丁升,邱爱慈.强脉冲离子束辐照热.力学效应研究.强激光与粒子束,2000,12:249-253.
    [67]S.A.Chistjakov,S.B.Khalikov,A.P.Yalovetz.Formation of elastoplastic wave in metals by charged panicle flow.Journal of Technical Physics,1993,63:31-40.
    [68]A.D.Pogrebnjak,S.A.Chistjakov,G.E.Remnev.Dynamic processes and changes in metal structure induced by high power ion beams.Nuclear Instruments and Methods in Physics Research B,1989,42:342-345.
    [69]杨海亮,邱爱慈,张嘉生,何小平,孙剑锋,彭建昌,汤俊萍,任书庆,欧阳晓平,张国光,黄建军,杨莉,王海洋,李洪玉,李静雅.“闪光二号”加速器 HPIB 的产生及应用初步结果.物理学报,2004,53:406-411.
    [70]A.L.Yerokhin,X.Nie,A.Leyland,A.Matthews,S.J.Dowey.Plasma electrolysis for surface engineering.Surface and Coatings Technology,1999,122:73-93.
    [71]G.P.Wirtz,S.D.Brown,W.M.Kriven.Ceramic coatings by anodic spark deposition Materials and Manufacturing Processes,1991,6:87-115.
    [72]H.Hoche,H.Scheerer,D.Probst,E.Broszeit,C.Berger.Plasma anodisation as an environmental harmless method for the corrosion protection of magnesium alloys.Surface and Coatings Technology,2003,174-175:1002-1007.
    [73]W.Mcniell,G.F.Nordbloom.Method of making cadmium niobate.US patent 2 854 390,1958.
    [74]W.Mcniell,L.L.Gruss.Anodic spark reaction processes and articles.US patent 3 293 158,1966.
    [75]G.A.Markov,G.V.Markova.Method for forming anodes of electrolitic capacitors.USSR patent 526961,Bul.Inv.32,1976.
    [76]A.V.Nikolaev,G.A.Markov,B.I.Peshchevitskij.A new phenomenon in electrolysi.Izv.SO AN SSSR.Ser.Khim.Nauk,1977,5:32-34.
    [77]X.S.Gang,S.L.Xin,Z.R.Gen,H.X.Fang.Properties of aluminium oxide coating on aluminium alloy produced by micro-arc oxidation.Surface and Coatings Technology,2005,199:184-188.
    [78]Z.P.Yao,Z.H.Jiang,S.G.Xin,X.T.Sun,X.H.Wu.Electrochemical impedance spectroscopy of ceramic coatings on Ti-6AI-4V by micro-plasma oxidation.Electrochimica Acta,2005 50:3273-3279.
    [79]EY.Jin,K.C.Paul,H.H.Tong,J.Zhao.Improvement of surface porosity and properties of alumina films by incorporation of Fe micrograins in micro-arc oxidation.Applied Surface Science,2006,253:863-868.
    [80]L.R.Krishna,A.S.Purnima,G.Sundararajan.A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings.Wear,2006,261:1095-1101.
    [81]Y.M.Wang,B.L.Jiang,T.Q.Lei,L.X.Guo.Microarc oxidation coatings formed on Ti6A14V in Na_2SiO_3 system solution:microstructure,mechanical and tribological properties.Surface and Coatings Technology,2006,201:82-89.
    [82]K.S.Young,S.C.Won,W.S.Yong,M.S.Yun.Formation of titania photocatalyst films by microarc oxidation of Ti and Ti6A14V alloys.Electrochemistry Communications,2006,8:465-470.
    [83]C.E.Barchiche,E.Rocca,C.Juers,J.Hazan,J.Steinmetz.Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods.Electrochimica Acta,2007,53:417.
    [84]C.Blawert,V.Heitmann,W.Dietzel,H.M.Nykyforchyn,M.D.Klapkiv.Influence of electrolyte on corrosion properties of plasma electrolytic conversion coated magnesium alloys.Surface and Coatings Technology,2007,201:8709-8714.
    [85]W.Xue,Z.Deng,Y.Lai,R.Chen.Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy.Journal of American Ceramic Society 1998,81:1365-1368.
    [86]H.E Guo,M.Z.An.Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance.Applied Surface Science,2005,246:229-238.
    [87]H.P.Duan,C.W.Yan,EH.Wang.Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution.Electrochimica Acta,2007,52:5002-5009.
    [88]龚建军,辛铁柱,罗晶,高彩桥.铝及铝合金微弧氧化技术的特点及应用.航天制造技术,2002:44-47.
    [89]蒋百灵,张先锋,朱静.铝、镁合金微弧氧化技术研究现状及产业化前景.金属热处理,2004,29:23-28.
    [90]白桦.微弧氧化技术在高压齿轮水泵中的应用.哈尔滨工业大学学报,2008,40:47-49.
    [91]H.W.Huo,Y.Li,F.H.Wang.Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer.Corrosion Science,2004,46:1467-1477.
    [92]E.Brillas,P.L.Cabot,F.Centellas.Electrochemical oxidation of high-purity and homogeneius Al-Mg alloys with low Mg contents Electrochimical Acta,1998,43:799-812.
    [93]J.E.Gray,B.Luan.Protective coatings on magnesium and its alloys-a critical review.Journal of Alloys and Compounds 2002,336:88-113.
    [94]H.Fukuda,Y.Matsumoto.Effects of Na_2SiO_3 on anodization of Mg-Al-Zn alloy in 3 M KOH solution.Corrosion Science,2004,46:2135-2142.
    [95]S.Akavipat,E.B.Hale,C.E.Habermann,P.L.Hagans.Effects of iron implantation on the aqueous corrosion of magnesium.Materials Science and Engineering A,1985,69:311-316.
    [96]I.Nakatsugawa,R.Martin,E.J.Knystautas.Improving corrosion resistance of AZ91D magnesium alloy by nitrogen ion implantation.Corrosion,1996,52:921-926.
    [97]A.Koutsomichalis,L.Saettas,H.Badekas.Laser treatment of magnesium.Journal of Materials Science,1994,29:6543-6547.
    [98]T.M.Yue,A.H.Wang,H.C.Man.Corrosion resistance enhancement of magnesium ZK60/SiC composite by Nd:YAG laser cladding.Scripta Materialia,1999,40:303-311.
    [99]J.D.Majumdar,R.Galun,B.L.Mordike,I.Manna.Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy.Materials Science and Engineering A,2003,361:119-129.
    [100]H.E Guo,M.Z.An,S.Xu,H.B.Huo.Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy.Materials Letters,2006,60:1538-1541.
    [101]Y.Ma,X.Nie,D.O.Northwood,H.Hu.Systematic study of the electrolytic plasma oxidation process on a Mg alloy for corrosion protection.Thin Solid Films,2006,494:296-301.
    [102]O.Khaselev,D.Weiss,J.Yahalom.Anodizing of Pure Magnesium in KOH-Aluminate Solutions under Sparking.Journal of the Electrochemical Society,1999,146:1757-1761.
    [103]E Chen,H.Zhou,B.Yao,Z.Qin,Q.F.Zhang.Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces.Surface and Coatings Technology,2007,201:4905-4908.
    [104]Q.Z.Cai,L.S.Wang,B.K.Wei,Q.X.Liu.Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes.Surface and Coatings Technology,2006,200:3727-3733.
    [105]Y.Mizutani,S.J.Kim,R.Ichino,M.Okidob.Anodizing of Mg alloys in alkaline solutions.Surface and Coatings Technology,2003,169-170:143.
    [106]J.Liang,L.T.Hu,J.C.Hao.Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes.Applied Surface Science,2007,253:4490-4496.
    [107]李美栓,钱余海,辛丽.合金上氧化物的体积比的分析.腐蚀科学与防护技术,1999,11:284-289.
    [108]蔡启舟,王栋,骆海贺,魏伯康.镁合金微弧氧化膜的SiO_2溶胶封孔处理研究.特种铸造及有色合金,2006,26:612-614.
    [109]I.M.Penttinen,A.S.Korhonen,E.Harju,M.A.Turkia,O.Forsen,E.O.Ristolainen.Comparison of the corrosion resistance of TiN and(Ti,Al)N coatings.Surface and Coatings Technology,1992,50: 161-168.
    [110]J.E Celis,D.Drees,E.Maesen,J.R.Roos.Quantitative determination of through-coating porosity in thin ceramic physically vapour-deposited coatings.Thin Solid Films,1993,224:58-62.
    [111]W.Tato,D.Landolt.Electrochemical determination of the porosity of single and duplex PVD coatings of titanium and titanium nitride on brass.Journal of the Electrochemical Society,1998,145:4173-4181.
    [112]C.Liu,Q.Bi,A.Leyland,A.Matthews.An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCI aqueous solution:Part II.EIS interpretation of corrosion behaviour.Corrosion Science,2003,45:1257-1273.
    [113]H.E Duan,K.Q.Du,C.W.Yah,EH.Wang.Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D.Electrochimica Acta 2006,51:2898-2908.
    [114]W.Shang,B.Z.Chen,X.C.Shi,Y.Chen,X.Xiao.Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique.Journal of Alloys and Compounds,2008,469:294-298.
    [115]徐桂东,沈丽如,李炯.直流和直流脉冲电源对镁合金微弧氧化膜层性能的影响.材料保护,2007.40:42-44.
    [116]W.Jiang,K.Yatsui,H.Suematsu,N.Harada,G.Imada,T.Suzuki,Y.Kinemuchi,S.C.Yang.Pulsed power technology and its applications at extreme energy-density research institute(EDI),Nagaoka.Japanese Journal of Applied Physics,2001,40:921-929.
    [117]乐小云.强流脉冲离子束辐照金属材料表面热力学效应的研究.北京大学学位论文,2000.
    [118]J.Robertson.Diamond-like amorphous carbon.Materials Science and Engineering R,2002,37129-281.
    [119]A.C.Ferrari,J.Robertson.Interpretation of Raman spectra of disordered and amorphous carbon.Physics Review B,2000,61:14095-14107.
    [120]C.Weissmantel,K.Bewilogua,D.Dietrich,B.J.Erler,H.J.Hinneerg,S.Klose,W.Nowick,G.Reisse.Structure and properties of quasi-amorphous films prepared by ion beam techniques.Thin Solid Films,1980,72:19-31.
    [121]X.Zhou,G.E.Thompson,P.Skeldon,G.C.Wood,K.Shimizu,H.Habazaki.Film formation and detachment during anodizing of Al-Mg alloys.Corrosion Science,1999,41:1599-1613.
    [122]K Wu,Y.Q.Wang,M.Y.Zheng.Effects of microarc oxidation surface treatment on the mechanical properties of Mg alloy and Mg matrix composites.Materials Science and Engineering A,2007,447:227-232.
    [123]R.N.Wenzel.Resistance of solid surfaces to wetting by water.Industrial and Engineering Chemistry,1936,28:988-991.
    [124]S.C.Park,S.K.Kohand,K.D.Pae.Effects of surface modification by Ar~+ irradiation on wettability of surfaces of poly(ethylene terephthalate) films.Polymer Engineering and Science,1998,38:1185-1189.
    [125]J.Hitzig,K.Juttner,W.J.Lorenz,W.Paatsch.AC-impedance measurements on corroded porous aluminum oxide films.Journal of the Electrochemical Society,1986,133:887-892.
    [126]曹楚南,张鉴清.电化学阻抗谱导论(第一版).科学出版社,2002.
    [127]王天石,何劼,夏乐洋,陈科璞,吾提库尔,温潇,杜建成.镁合金微弧氧化膜有机封孔耐腐蚀性能的研究.表面技术,2006,35:8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700