一般大气环境多因素作用混凝土中性化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
处于一般大气环境中的混凝土结构种类繁多,数量巨大。工业化的进程,导致全球大气污染日趋严重,环境中CO_2浓度的加大以及酸雨范围的扩大,使混凝土的中性化问题越来越受关注。混凝土中性化是钢筋锈蚀的前提条件,一般大气环境下混凝土中性化和钢筋锈蚀是混凝土结构耐久性的主要研究内容。此外,混凝土结构总处于承载状态下,结构的应力状态会对混凝土的耐久性产生影响。研究受荷状态下粉煤灰混凝土在酸雨和碳化共同作用时的中性化性能,为进一步研究混凝土中钢筋的锈蚀与混凝土结构的寿命预测奠定了基础,对混凝土结构的耐久性设计及其评估具有重要的意义。
     论文选取一般大气环境下影响混凝土结构耐久性的力学因素(弯曲荷载)和环境因素(CO_2和酸雨)组合,设计了多因素耐久性试验方案和具体实施方法,通过试验研究了单一、双重和多重影响因素作用下粉煤灰混凝土的中性化性能,揭示了它们的作用机理和性能退化规律,最终建立了一般大气环境粉煤灰混凝土结构中性化深度预测模型。主要研究内容如下:
     从扩散传质角度分析了气态的CO_2和液态的酸雨与混凝土发生中性化反应的过程,揭示了混凝土碳化和混凝土遭受酸雨侵蚀中性化的机理。在对全国酸雨成分调查和分析的基础上,提出了试验室模拟酸雨溶液的配制方法以及采用浸烘循环制度加速酸雨侵蚀的试验方法。分析了国内外耐久性试验加载装置的优缺点,确定了适合于多因素耐久性试验的加载方式,为开展多因素作用下混凝土中性化试验研究,以及建立粉煤灰混凝土中性化深度预测模型奠定了基础。
     开展了粉煤灰混凝土快速碳化试验,研究了各种因素(水胶比、粉煤灰掺量、浇筑面)对粉煤灰混凝土碳化规律的影响以及CO_2二维扩散作用对构件角区碳化深度的影响;进行了粉煤灰混凝土酸雨侵蚀模拟试验,采用混凝土表层溶蚀、质量变化、力学性能降低和中性化深度等评价指标研究了粉煤灰混凝土的酸雨侵蚀规律,分析了不同酸雨侵蚀影响因素对评价指标的影响。结果表明,酸雨不仅使混凝土表面出现剥蚀、骨料外露,还使混凝土质量减小、强度降低、中性化深度加大。
     首次考虑酸雨和CO_2的共同作用,在分析混凝土酸雨侵蚀机理、碳化机理以及二者共同作用特点的基础上,设计了酸雨和碳化共同作用试验模式,通过一般大气环境中酸雨侵蚀和碳化共同作用粉煤灰混凝土的耐久性试验,研究了粉煤灰混凝土在酸雨侵蚀和碳化共同作用下的性能退化规律,分析了二者之间的耦合效应,得出了混凝土酸雨侵蚀和碳化共同作用的机理。
     考虑应力状态对混凝土耐久性的影响,研究了一般大气环境承载混凝土在不同侵蚀介质作用下的耐久性能,通过承载混凝土试件的快速碳化试验、酸雨侵蚀试验、酸雨和碳化共同作用循环试验,分析了弯曲荷载水平对粉煤灰混凝土侵蚀规律及中性化的影响,提出了混凝土中性化弯曲应力影响系数的计算公式。
     分析了影响粉煤灰混凝土碳化的主要因素,在粉煤灰混凝土碳化机理的基础上进行了粉煤灰混凝土碳化模型的推导,建立了粉煤灰混凝土的碳化深度预测模型。通过对混凝土水化过程、碳化机理的深入分析,提出了模型参数——完全碳化时单位体积混凝土吸收二氧化碳的量m_0的计算方法,并给出了工程中常用粉煤灰混凝土的简化实用公式;基于气体在混凝土中扩散机理的分析,给出了另一个重要的模型参数——二氧化碳在混凝土中有效扩散系数D_e的计算公式。
     从传质学理论入手,首次建立了酸雨侵蚀混凝土中性化理论模型,研究了模型中各参数的取值,从材料因素和环境因素两方面确立了酸雨侵蚀粉煤灰混凝土有效扩散系数D_A的计算公式。以混凝土碳化作用为主,首次建立了一般大气环境下考虑酸雨作用和荷载影响的粉煤灰混凝土中性化深度预测模型。通过模型计算值和试验结果的比较验证了中性化深度预测模型,计算值与试验结果吻合较好,该模型为一般大气环境下粉煤灰混凝土结构的寿命预测提供了科学依据。
There are a great number of concrete structures existing in the atmospheric environment.The process of industrialization has led to the severe air pollution.The CO_2 concentration increases and acid rain areas expand so that the neutralization of concrete is increasingly concerned about.The neutralization of concrete and the steel corrosion are the main aspects in the durability of concrete structures,and the neutralization of concrete is the prerequisite for steel corrosion.Moreover,the durability of concrete is greatly influenced by the stress state as the actual structures are under external loads.Therefore,the neutralization of fly ash concrete under load subjected to the simultaneous attack of acid rain and carbonation should be investigated,which is significant for the durability design and assessment and for the further investigation of reinforcement corrosion and service life prediction of concrete structures.
     In this paper,the multi-factor durability program and how to carry out the tests were designed based on the combination of the mechanical(bending load) and environmental factors(CO_2 and acid rain).Then the effects of single,double and multiple influencing factors on the neutralization of fly ash concrete were investigated, and the action mechanism and the rule of performance degradation were revealed. Finally,a predicting model of neutralization depth of fly ash concrete in the atmospheric environment was proposed.The main contents of this paper are as follows:
     Firstly,the neutralization process of CO_2 and acid rain was analyzed through the theory of diffusion and mass transfer and the mechanism of carbonation and acid rain attack together was revealed.The method to simulating acid rain solution in laboratory was proposed and the cyclic soaking-drying to accelerate the acid rain attack was introduced on the basis of the survey and analysis on the components of acid rain around China.The advantages and disadvantages of the load devices for durability test were analyzed,and the devices suitable for the multi-factor durability tests were adopted.The above works would be helpful to carry out the neutralization tests and establish the predicting model of neutralization depth for fly ash concrete.
     Secondly,laboratory accelerated carbonation tests were carried out.The two dimensional diffusion of CO_2 on the carbonation depth of the corner concrete was investigated,and the carbonation rule of fly ash concrete was obtained considering the influencing factors(water-binder ratio,the amount of fly ash,casting surface).At the same time,the accelerated acid rain tests were carried out in the laboratory.Parameters such as surface condition,mass,cube compressive strength and neutralization depth of concrete were used to evaluate the acid rain resistance of fly ash concrete.Then,the degree of the different influencing factors on the evaluating index was analyzed.The acid rain attack not only made concrete surface desquamate,aggregates denudate,but also made concrete mass decrease,compressive strength reduce and neutralization depth increase.
     Thirdly,test modes of acid rain and carbonation working together were built up on the basis of the mechanism and the characteristics of acid rain and carbonation separately.Then,durability tests of acid rain and carbonation working together on fly ash concrete were carried out.It is the first time that acid rain and CO_2 in the atmospheric environment as two important corrosive media were considered.The coupling effects were further analyzed and the mechanism of acid rain and carbonation working together was obtained.
     Fourthly,accelerated carbonation test,acid rain attack test,and simultaneous attack test of acid rain and carbonation of concrete under load were carried out.The neutralization and corrosion mechanism of fly ash concrete under load was investigated in different corrosive media.The calculation formula of the bending stress coefficient of concrete neutralization was suggested.By virtue of the bending stress coefficient of concrete neutralization,the influence of stress levels on concrete neutralization was analyzed.
     Fifthly,a predicting model of carbonation depth of fly ash concrete was established on the basis of analysis of carbonation mechanism and main influencing factors of fly ash concrete.The calculation of parameter m_0,that is the amount of CO_2 absorbed by unit volume of concrete completely carbonated,was proposed by the analysis of concrete hydration process and carbonation mechanism,and the simplification formula of fly ash concrete applied in practice was suggested.The calculation of another important parameter D_e,that is the effective diffusion coefficient,was also proposed on the basis of the mechanism gas diffusion in concrete.
     Finally,a neutralization model for fly ash concrete subjected to acid rain attack was proposed for the first time on the basis of the theory of diffusion and mass transfer.The values of the model parameters were studied,and the calculation formula of effective diffusion coefficient DA was established considering both material and environmental aspects.A neutralization predicting model of fly ash concrete in the atmospheric environment emphasizing the role of carbonation was established for the first time on the basis of carbonation model.The effects of acid rain and bending loads were taken into account in this model.The model is reasonable as the results calculated by the model agree well with test results,and it can be used as a reference for the predicting of service life of fly ash concrete structures.
引文
[1]毛新奇,王晓刚,赵铁军.绿色高性能混凝土[J].粉煤灰综合利用,2003,(4):46-49.
    [2]吴中伟,绿色高性能混凝土与科技创新[J].建筑材料学报,1998,1(1):1-7.
    [3]吴中伟.绿色高性能混凝土——混凝土的发展方向[J].混凝土与水泥制品,1998,(1):3-6.
    [4]王学武,赵风清.粉煤灰综合利用研究述评[J].粉煤灰综合利用,2001,(6):39-40.
    [5]Davis R E,Carlson R W,Kelly J W,Davis H E..Properties of Cement and Concretes Containing Fly Ash[R]//Proc.ACI[C].May-June,1937.
    [6]刘旭晨.大掺量粉煤灰高性能混凝土研究及应用[D].哈尔滨,哈尔滨工业大学硕士学位论文,2003.
    [7]R.E.Davis.Historical Accounts of Mass Concrete.//Symposium on Mass Concrete[C].1963.
    [8]S.P.shah.High performance concrete:Past,present and future.//Proceedings of the International Symposium on High Performance concrete[C].Hong Kong and Shenzhen,China.2000,12.p3-27.
    [9]Sydney Mindess.High performance concrete:The Canadian experience.//Proceedings of the International Symposium on High Performance concrete[C].Hong Kong and Shenzhen,China.2000,12.p135-144.
    [10]Evolution and applications of high performance concrete in china.//Proceedings of the International Symposium on High Performance Concrete[C].Hong Kong and Shenzhen,China.2000,12.p31-38.
    [11]文俊强.广州珠江黄埔大桥超大掺量粉煤灰混凝土的初步研究[D].暨南大学硕士学位论文,2006.
    [12]钱觉时.粉煤灰特性与粉煤灰混凝土[M].科学出版社.2002.
    [13]王爱勤.粉煤灰三大效应的研究及其在三峡工程中的应用[D].东南大学博士学位论文,1999.
    [14]赵全胜.大掺量粉煤灰混凝土在工程中的应用研究[D].河北工业大学硕士学位论文,2002.
    [15]JGJ28-86《粉煤灰在混凝土和砂浆中应用技术规程》[S].北京:中国建筑工业出版社.
    [16]GBJ146-90 《粉煤灰混凝土应用技术规范》[S].北京:中国计划出版社.
    [17]JTJ/T273-97《港口工程粉煤灰混凝土技术规程》[S].北京:人民交通出版社.
    [18]GB1596-2005《用于水泥和混凝土中的粉煤灰》[S].北京:中国标准出版社.
    [19]DL/T5055-2007 《水工混凝土掺用粉煤灰技术规范》[S].北京:中国电力出版社.
    [20]王元,郭佩玲,陈翠红.C80高性能粉煤灰砼在和泰大厦工程的应用研究[J].粉煤灰综合利用,1998,(3):4-7.
    [21]余成行,师卫科,宋元旭.大掺量粉煤灰混凝土在中央电视台新台址工程中的应用[J],混凝土,2006,(8):88-91.
    [22]王思恭.粉煤灰混凝土在北京西客站工程中的应用[J].施工技术,1995,(5):29-30.
    [23]宣怀平,董金道.我国粉煤灰综合利用现状及若干实用技术的介绍[J].粉煤灰,2005,(3):29-32.
    [24]Smith W H.Air pollution and forests-Interactions between air contaminants and forest ecosystems[M].New York:Springer-Verlag.1981:178-191.
    [25]姜安玺,王琨,马承愚等.空气污染控制[M].化京:化学工业出版社.2003:84-94.
    [26]美国世界资源研究所等编.世界资源报告[R].北京:中国环境科学出版社.1999:173-183.
    [27]衣北宇,闫波,徐桂芹等.空气环境污染对混凝土建构筑物寿命的影响[J].环境保护科学,2007,33(1):4-7.
    [28]阿列克谢耶夫著,黄可信,吴兴祖等译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983.
    [29]Ikuta K,Suzuki Y,Kitamura S.Effects of low pH on the reproductive behavior of salmonid fishes[J].Fish physiology and biochemistry,2003,28:407-410.
    [30]匡凤娣.酸雨[J].北京水利,1997,(4):60.
    [31]Sandoy S,Langaker R M.Atlantic salmon and acidification in southern Norway:a disaster in the 20th Century,but a hope for the Future?[J].Water,Air,and Soil pollution,2001,130:343-348.
    [32]杨本宏.我国酸雨危害现状及防治对策[J].合肥联合大学学报,2000,6(2):102-106.
    [33]Barbara Walna,Jeizy Siepak,Stanislaw Dizymala.Soil degradation in Wielkopolski National Park(Poland) as an Effect of Acid Rain Simulation[J].Water,Air and Soil Pollution,2001,130:1727-1732.
    [34]高太忠,戚鹏,张杨等.酸雨对土壤营养元素迁移转化的影响[J].生态环境,2004,13(1):23-26.
    [35]杨学春,朱亚萍.酸沉降对土壤化学性质的影响[J].四川环境,1995,14(1):6-9.
    [36]花日茂,李湘琼.我国酸雨的研究进展(综述)[J].安徽农业大学学报,1998,25(2):206-210.
    [37]任国栋,王景红.酸雨的危害[J].陕西气象,1997,(2):42.
    [38]林慧萍.酸雨对陆生植物的影响机理[J].福建林业科技,2005,32(1):60-64.
    [39]陈复,柴发合.我国酸沉降控制策略[J].环境科学研究,1997,10(1):27-31.
    [40]任仁.中国酸雨的过去,现在和将来[J].北京工业大学学报,1997,23(30):128-132.
    [41]Cowling E B.Acid precipitation in historical perspective[J].Environ.Sci.Tec.,1982,16(2):110-123.
    [42]Od(?)n S.The acidity problem-an outline of concepts[A].//Dochinger L S and Seliga Y A.1st.Internat.Symp.Acid Precipitation and the Forest Ecosystem[C].Rep.NE-23,Pennsylvania,1976.p1-36.
    [43]樊后保.世界酸雨研究概况[J].福建林学院学报,2002,22(4):371-375.
    [44]Tamaki M,Katou T,Sekiguchi K,et al.Acid precipitation chemistry over Japan[J].J.Jpn.Chemi.Soc.,1991(5):667-674.
    [45]Lee B K,Hong S H,Lee D S.Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula[J].Atmos.Environ.,2000,34:563-575.
    [46]齐文启,席俊清,汪志国等.酸雨研究的现状和发展趋势[J].中国环境监测,2002,18(1):6-10.
    [47]Ottar B.Organization of long range transport of air pollution monitoring in Europe[A].Dochinger L S and Seliga T A.1st.Internat.Symp.Acid Precipitation and the Forest Ecosystem[C].Rep.NE-23,Pennsylvania,1976.p105-117.
    [48]高梁,高佳编著.环境保护与农业丰收[M].天津:天津科技翻译出版公司,1994:122-125.
    [49]程新金,黄美元.降水化学特性的一种分类分析方法[J].气候与环境研究,1998,3(1):82-88.
    [50]王自发,高超,谢富莹.中国酸雨模式研究回顾与所面临的挑战[J].自然杂志,2007,29(2):78-82.
    [51]陈剑雄,吴建成,陈寒斌.严重酸雨环境下建筑物的耐久性调查[J].混凝土,2001,(11):44-47.
    [52]陈寒斌.严重酸雨环境下混凝土性能与环境性评价[D].重庆大学博士学位论文,2006.
    [53]宋志刚,杨圣元,刘铮等.昆明市区酸雨对混凝土结构侵蚀状况调查[J].混凝土,2007,(11):23-27.
    [54]邵敏,赵美萍.环境化学[M].北京:中国环境科学出版社,2001.3
    [55]王金潮.污染大气中浑仪、筒仪的带锈防护[J].文物保护与考古科学,1995,7(1):1-9.
    [56]萧以德,王光雍,李小刚等.我国西部地区大气环境腐蚀性及材料腐蚀特征[J].中国腐蚀与防护学报,2003,23(4):248-255.
    [57]马鸣图,李志刚.重庆市公共汽车的腐蚀现状[J].汽车工艺与材料,2002,(8/9):108-115.
    [58]李治国,病害隧道调查及裂缝整治技术[J].现代隧道技术,2002,(增刊):15-21.
    [59]陈肇元.混凝土结构的耐久性设计方法//《土建结构工程的安全性与耐久性》[M].北京:建筑工业出版社,2003:174-187.
    [60]田俊峰,王胜年,黄君哲,潘德强.海港工程混凝土耐久性设计与寿命预测[J].中国港湾建设,2004,133(6):1-3.
    [61]文邦伟.美国国防部挑战腐蚀的新政策,美国军事网,2005年5月.
    [62]洪定海.大掺量矿渣微粉高性能混凝土应用范例[J].建筑材料学报,1998,1(1):82-87.
    [63]孙伟.荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命[J].东南大学学报,2006,36(SupⅡ):7-14.
    [64]Yuan Yong,Walrawen J,Yle Guang.Serviceability ofunderground structures.//Proceeding of the First International Workshop on Service Life for Underground Structures[c].上海:同济大学出版社,2006:205-294.
    [65]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[D].东南大学博士学位论文,2006.
    [66]General guidelines for durability design and redesign,The European Union-Brite Euram ⅢDocument BE95-1347/R15,Feb,2000.
    [67]《混凝土结构耐久性设计规范》[S].建设部,2006,4.
    [68]唐明述.提高基建工程的寿命是最大的节约.//全国耐久性学术交流会[C].杭州,2005.
    [69]郭向勇,孙常青.混凝土耐久性设计的系统工程方法[J].苏州城建环保学院学报,2002,15(2):64-67.
    [70]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海:上海科学技术版社,2003.
    [71]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [72]L Yingyu,W Guidong.The mechanism of carbonation of mortar and the dependence of carbonation on pore structure.//Proc Katharine and Bryant Mather Int Conf on Concrete Durability.Atlanta[C].1987,22:1915-1943.
    [73]Houst Y.F.,Wittmann F.H..Influence of porosity and water content on the diffusivity of CO_2and O_2 through hydrated cement paste[J].Cement and Concrete Research,1994,(24):1165-1176.
    [74]Parrott L.J.,et al.Carbonation in a 36 year old in-situ concrete[J].Cement and Concrete Research,1989,19:649-656.
    [75]叶绍勋.混凝土碳化反应的热力学计算[J].硅酸盐通报,1989,(8):2-5.
    [76]Papadakis V.G.,Vayenas C.G.,Fardis M.N..A reaction engineering approach to the problem of concrete carbonation[J].AICHE Journal,1989,35(10):1639-1650.
    [77]Papadakis V.G.,Vayenas C.G.,Fardis M.N..Physical and chemical characteristics affecting the durability of concrete[J].ACI Materials Journal,1991,88:186.
    [78]Papadakis V.G.,Vayenas C.G,Fardis M.N..Fundamental modeling and experimental investigation of concrete carbonation[J].ACI Materials Journal,1991,88:363-373.
    [79]Papadakis V.G.,Vayenas C.G.,Fardis M.N..Experimental investigation and mathematical modeling of the concrete carbonation problem[J].Chemical Engineering Science,1991,46:1333-1338.
    [80]日本建筑学会建筑设计标准委员会编,张富春译.建筑物的损伤和耐久性对策[M].北京:中国建筑工业出版社,1988:23-28.
    [81]Ho D.W.S.,Lewis R.L..The carbonation of concrete and its prediction[J].Cement and Concrete Research,1987,17:489-504.
    [82]Dhir R.K.,Hewlett P.C.,Chan Y.N..Near surface characteristics of concrete:prediction of carbonation resistance[J].Magazine of Concrete Research,1989,41:137-143.
    [83]方暻,梅国兴,陆采荣.影响混凝土碳化主要因素及钢筋锈蚀因素试验研究[J].混凝土,1993(2):23-26.
    [84]Thomas M.D.A.,Matthews J.D..Carbonation of fly ash concrete[J].Magazine of Concrete Research,1992,44:217-228.
    [85]Hobbs D.W..Carbonation of concrete containing PFA[J].Magazine of Concrete Research,1994,46:35-38.
    [86]Ceukelaire L.D.,Nieuwenbeg D.V..Accelerated carbonation of a blast-furnace cement concrete[J].Cement and Concrete Research,1993,3:442-452.
    [87]Sakai E.,Kosuge K.,Teramura S.,et al.Durability of concrete,1991,ACI SP-126:989-1000.
    [88]马文海.水泥用量对碳化深度的影响[J].低温建筑技术,1986,(1):27-32.
    [89]张誉,蒋利学,等.混凝土碳化深度的计算与实验研究[J].混凝土,1996,(4):12-17.
    [90]Kobayashi K.,Uno Y..Influence of alkakion carbonation of concrete(part Ⅰ)—preliminary tests with mortar specimens[J].Cement and Concrete Research,1989,(19):821-826.
    [91]李果,袁迎曙,耿欧.气候条件对混凝土碳化速度的影响[J].混凝土,2004(11):49-51.
    [92]徐道富.环境气候条件下混凝土碳化速度研究[J].西部探矿工程,2005(10):147-149.
    [93]阿列克谢耶夫著,黄可信,吴兴祖等译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983.
    [94]V.G.Papadakis,C.G..Vayenas,M.N.Fardis..Fundamental Modeling and Experimental Investigation of Concrete Carbonation[J].ACI Materials Journal,1991,88(4):363-373.
    [95]#12
    [96]许丽萍,黄士元.预测混凝土中碳化深度的数学模型[J].上海建材学院学报,1991,4(4):347-356.
    [97]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [98]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992,(6):18-22.
    [99]邸小坛,周燕.旧建筑物的检测加固与维修[M].北京:地震出版社,1992.
    [100]蒋利学,张誉.混凝土部分碳化区长度的分析与计算[J].工业建筑,1999,29(1):4-7.
    [101]刘伯,沈旦申等.上海市粉煤灰应用技术手册[M].上海:同济大学出版社,1995.
    [102]沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989.
    [103]张云莲.粉煤灰与混凝土结构的耐久性[J].腐蚀与防护,2002,23(7):305-307.
    [104]M.D.A.Thomas,J.D.Matthews.The permeability of fly ash concrete[J].M.S.1992,25:388-396.
    [105]Parrot L.J.A study of carbonation-induced corrosion[J].M.C.R.1994,166(46):23-28.
    [106]金祖权等.粉煤灰混凝土的多因素寿命预测模型[J].东南大学学报,2005,35(S1):149-154.
    [107]杜晋军等.粉煤灰混凝土的碳化研究[J].粉煤灰,2005,(6):9-11.
    [108]单旭辉.高性能混凝土试验研究[D].北京交通大学硕士学位论文,2006.
    [109]朱艳芳等.大掺量粉煤灰混凝土的抗碳化性能研究[J].建筑材料学报,1999,2(4):319-323.
    [110]Cengiz Duran Atis.Accelerated carbonation and testing of concrete made with fly ash[J].Construction and Building Materials,2003,(17):147-152.
    [111]王培铭,朱艳芳,计亦奇等.掺粉煤灰和矿渣大流动度混凝土的碳化性能[J].建筑材料学报,2001,(4):305-310.
    [112]秦鸿根,潘刚华,李松泉等.掺粉煤灰高性能混凝土耐久性研究[J].混凝土与水泥制品,2000,(5):11-13.
    [113]徐子芳等.粉煤灰混凝土的碳化性能[J].粉煤灰综合利用,2005,(2):17-19.
    [114]张云升等.弯拉应力下粉煤灰混凝土的多维碳化及寿命预测模型[J].东南大学学报, 2006,36(S2):226-223.
    [115]韩同春,王海青.热力学在混凝土腐蚀研究中的应用[J].焦作工学院学报,1997,4(16):65-70.
    [116]魏有仪,罗健等.水泥砂浆酸性侵蚀试验研究Ⅰ非流动酸性水侵蚀试验[J].硅酸盐学报,1998,26(4):417-423.
    [117]鲁照玲.酸性气氛下钢筋混凝土结构腐蚀行为及其机理[J].中国腐蚀与防护学报,2007,27(2):119-123.
    [118]张虎元,高全全,董兴玲等.酸雨对混凝土的类碳化作用[J].混凝土,2008(2):12-14.
    [119]Paul F Schuster,Michael M Reddy.Material Performance,1994,33(1):76.
    [120]赵烨,李永良,刘光等.酸雨对普通硅酸盐建筑物表面腐蚀的形态模拟研究[J].北京师范大学学报(自然科学版),1999,35(1):136-139.
    [121]Haneef S.J.,Johnson J.B.,Thompson G.E.,et al.Crros.Sci,1993,34:497.
    [122]胡晓波,候晓燕,龙亭等.酸雨侵蚀下的水泥石组成变化分析[J].铁道科学与工程学报,2007,4(4):47-51.
    [123]谢绍东,周定,岳奇贤.酸沉降对非金属建筑材料腐蚀机理的探讨[J].环境科学研究,1998,11(2):15-17.
    [124]贾锋,韩传峰,李积华.受硫酸侵蚀的混凝土抗压强度的试验研究[J].山东建筑工程学院学报,1996,11(2):41-45.
    [125]于忠,胡蔚儒.化工大气环境中混凝土的腐蚀机理及性能研究[J].工业建筑,2000,30.(5):16-20.
    [126]谢绍东,周定,岳奇贤等.模拟酸雨对砂浆的强度、物相和孔结构影响的研究[J].环境科学学报,1997,17(1):25-31.
    [127]陈烽,肖佳,唐咸燕.模拟酸雨环境下粉煤灰对水泥砂浆抗蚀性能影响的试验研究[J].科学研究,2006(6):11-13.
    [128]Hiroshi,et al.Deterioration of concrete structures by acid deposition—an assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens[J].Atmospheric Environment,2000,34:2937-2945.
    [129]罗永帅,周飞鹏,王立久等.酸雨对水泥基材料的腐蚀[J].广东建材,2005(10):13-15.
    [130]霍润科.酸性环境下砂浆、砂岩材料的受酸腐蚀过程及其基本特性劣化规律的试验研究[D].西安理工大学,2006.
    [131]胡晓波.酸雨侵蚀混凝土的试验模拟分析[J].硅酸盐学报,2008,36(S1):147-152.
    [132]Tsutomu Kanazu,et al.Effect of simulated acid on deterioration of concrete[J].Water,Air,and Soil Pollution,2001,130:1481-1486.
    [133]刘惠玲,周定,谢绍东.我国西南地区酸雨对混凝土性能影响的研究[J].1997,29(6):101-104.
    [134]赵卓,张玲,赵磊.酸性环境下结构受弯构件的加速腐蚀试验[J].郑州工业大学学报,2000,21(3):57-59.
    [135]周飞鹏.混凝土的酸雨腐蚀模型研究[D].大连理工大学,2005.
    [136]王中平等.单轴压缩作用对混凝土气体渗透性的影响[J].建筑材料学报,2001,4(2):127-131.
    [137]Castel A,Francois R,Arliguie G.Effect of Loading on Carbonation Penetration in Reinforced Concrete Elements[J].Cement and Concrete Research,1999,29:561.
    [138]袁承斌,张德峰,刘荣桂.混凝土在不同应力状态下碳化速度的研究.//新世纪海峡两岸高性能混凝土研究与应用学术会议论文集[C].上海:同济大学出版社,2002.
    [139]金祖权,孙伟,张云升等.粉煤灰混凝土的多因素寿命预测模型[J].东南大学学报,2005,35(S1):149-154.
    [140]刘亚芹.混凝土碳化引起的钢筋锈蚀实用计算模式[D].同济大学硕士论文,1997.
    [141]张云升等.弯拉应力作用下粉煤灰混凝土的ID和2D碳化[J].东南大学学报,2007,37(1):118-122.
    [142]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报,2003,33(5):573-576.
    [1]沙庆云.传递原理[M].大连:大连理工大学出版社,2003.230-235.
    [2]王涛,朴香兰,朱慎林.高等传递过程原理[M].北京:化学工业出版社,2005.254-258.
    [3]王运东,骆广生,刘谦.传递过程原理[M].北京:清华大学出版社,2002.244-248.
    [4]蒋利学.混凝土碳化深度的计算模型及试验研究[D].上海,同济大学硕士学位论文,1996.
    [5]JTJ 071-1998.公路工程质量检验评定标准[S].
    [6]张虎元,高全全,董兴玲,张满银,王宝.酸雨对混凝土的类碳化作用[J].混凝土,2008(2):12-14.
    [7]柳俊哲.混凝土碳化研究与进展(1)——碳化机理及碳化程度评价[J].混凝土,2005,(11):10-13.
    [8]Taylor H.E W..Cement Chemistry,2nd.ed.[M].London:Thomas Telford Publishing,1997.
    [9]兰俊康,王焰新.酸性气体对混凝土耐久性的影响及研究进展[J].地质灾害与环境保护,2002,13(2):22-26.
    [10]魏有仪,罗健,肖允发,钟生军,巫锡勇.水泥砂浆酸性侵蚀试验研究Ⅰ非流动性酸性水侵蚀试验[J].硅酸盐学报,1998,26(4):417-423.
    [11]肖佳,周士琼.低钙粉煤灰对水泥砂浆在酸雨条件下硫酸盐侵蚀的影响[R]//生态环境与混凝土技术国际学术研讨会[C].2005,乌鲁木齐,73-78.
    [12]Gabrisova A,Havlica J,Sahu S.Stability of calcium sulphoaluminate hydrates in water solutions with various pH values[J].Cement and Concrete Research,1991,21(6):1023.
    [13]Atkins M,Macphee D,Kindness A,et al.Solubility properties of ternary and quaternary compounds in the CaO-Al_2O_3-SO_3-H_2O system[J].Cement and Concrete Research,1991,21(6):991.
    [1]《普通混凝土长期性能和耐久性能试验方法》GBJ82-85[J].北京,1985.
    [2]程新金,黄美元.降水化学特性的一种分类分析方法[J].气候与环境研究,1998,3(1):82-88.
    [3]蓝俊康.模拟酸雨对灰岩的侵蚀性研究[J]_桂林工学院学报,1997,17(2):165-168.
    [4]孙占英,李大纲,吴正元,葛伟.人工模拟海水和酸雨条件对塑木复合材料性能的影响[J].塑料工业,2005,33(增刊):156-158.
    [5]魏有仪,罗健,肖允发,钟生军,巫锡勇.水泥砂浆酸性侵蚀试验研究Ⅰ非流动酸性水侵蚀试验[J].硅酸盐学报,1998,26(4):417-423.
    [6]霍润科.酸性环境下砂浆、砂岩材料的受酸腐蚀过程及其基本特性劣化规律的试验研究[D].西安,西安理工大学博士学位论文,2006.
    [7]谢绍东,周定,岳奇贤等.模拟酸雨对砂浆的强度、物相和孔结构影响的研究[J].环境科学学报.1997,17(1):25-31.
    [8]陈烽,肖佳,唐咸燕.模拟酸雨环境下粉煤灰对水泥砂浆抗蚀性能影响的试验研究[J].粉煤灰,2006,(6):11-13.
    [9]罗永帅,周飞鹏,王立久,等.酸雨对水泥基材料的腐蚀[J].广东建材.2005,(10):13-15.
    [10]周飞鹏.混凝土的酸雨腐蚀模型研究[D].大连,大连理工大学硕士学位论文,2005.
    [11]胡晓波.酸雨侵蚀混凝土的试验模拟分析[J].硅酸盐学报,2008,36(S1):147-152.
    [12]赵烨,李永良,刘光,等.酸雨对普通硅酸盐建筑物表面腐蚀的形态模拟研究[J].北京师范大学学报(自然科学版).1999,35(1):136-139.
    [13]Hiroshi,et al..Deterioration of concrete structures by acid deposition——an assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens[J].Atmospheric Environment,2000,(34):2937-2945.
    [14]刘惠玲,周定,谢绍东.我国西南地区酸雨对混凝土性能影响的研究[J].1997,29(6):101-104.
    [15]张学元,安百刚,韩恩厚,李洪锡.酸雨对材料的腐蚀/冲刷研究现状[J].腐蚀科学与防护技术.2002,14(3):157-160.
    [16]马孝轩,冷发光,郭向勇.混凝土材料抗硫酸盐腐蚀试验方法研究[R].//冷发光,张仁瑜,主编.混凝土标准规范及工程应用[M].北京:中国建材工业出版社,2005.19-23.
    [17]林毓梅,冯林,在海水中混凝土应力腐蚀实验研究[J].水利学报,1995,(2):40-45.
    [18]U.Schneider,E.Nagele,F.Dumai..Stress Corrosion Initiated Cracking of concrete[J].Cement and Concrete Research,1986,16(4):535-544.
    [19]刘斯凤.荷载——复合离子——干湿交替下生态混凝土的损伤过程与寿命[D].南京,东南大学博士学位论文,2004.
    [20]严安.在荷载与冻融双因素作用下混凝土的损伤过程[D].南京,东南大学硕士学位论文,1998.
    [21]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京,东南大学博士学位论文,2000.
    [22]邢峰,冷发光,冯乃谦,马冬花.长期持续荷载对素混凝土氯离子渗透性的影响[J].混凝土,2004,(5):3-8.
    [23]A.Castel,R.Francois,G.Arliguie..Effect of loading on carbonation penetration in reinforced concrete elements[J].Cement and Concrete Research,1999,29:561-565.
    [24]李金玉,曹建国著.水工混凝土耐久性的研究和应用[M].北京:中国电力出版社,2004.264-265.
    [25]邹超英,徐天水,胡琼.应力状态对抗冻混凝土力学性能的影响[J].低温建筑技术,2005,6(总108期):6-7.
    [26]袁承斌,张德峰,刘荣桂,梁正平,吕志涛.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报,2003,31(1):50-54.
    [27]何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究[D].大连,大连理工大学博士论文,2004.
    [1]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社.2003.
    [2]陈剑雄,吴建成,陈寒斌.严重酸雨环境下建筑物的耐久性调查[J].混凝土,2001,(11):44-47.
    [3]刘慧玲,周定,谢绍东.我国西南地区酸雨对混凝土性能影响的研究[J].哈尔滨工业大学学报,1997,29(6):101-104.
    [4]谢绍东,周定,岳奇贤.酸沉降对非金属建筑材料腐蚀机理的探讨[J].环境科学研究,1998,11(2):15-17.
    [5]张倩,赵洁,成华.酸雨对水泥砼强度影响的模拟及其腐蚀的化学机理分析[J].重庆交通学院学报,2005,24(3):49-51.
    [6]谢绍东,周定.模拟酸雨对钢筋混凝土和三种外装饰材料影响的研究[J].四川师范学院学报,1995,16(1):43-50.
    [7]魏有仪,罗健,肖允发,钟生军,巫锡勇.水泥砂浆酸性侵蚀试验研究Ⅰ非流动酸性水侵蚀试验[J].硅酸盐学报,1998,26(4):417-423.
    [1]Sun Wei,Zhang Yamei,Yan Handong,et al.Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cyeles[J].Cement and Concrete Research, 1999,29(9):1519-1523.
    [2]ZHOU Y.,COHEN M.D.,DOLCH L.W..Effect of external loads on the frost-resistant properties of mortar with and without silica fume[J].ACI Mater J,1994,91(6):595-601.
    [3]SCHNEIDER U,CHEN S W.The chemomecharlical effect and the mechanochemical effect on high-performance concrete subjected to stress corrosion[J].Cement and Concrete Research,1998,28(4):509-522.
    [4]SCHNEIDER U,CHEN S W.Behaviour of high-performance concrete under ammonium nitrate solution and sustained load[J].ACI Mater J,1999,96(1):47-51.
    [5]王爱勤,曹建国,李金玉等.高浓度和荷载条件下混凝土硫酸盐侵蚀特性及抗侵蚀技术[R].//阎培渝,姚燕主编.水泥基复合材料科学与技术[C].北京:中国建材工业出版社,1999,179-183.
    [6]余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].南京,东南大学博士学位论文,2004.
    [7]张云升,孙伟,陈树东,郭飞,赵庆新.弯拉应力作用下粉煤灰混凝土的1D和2D碳化[J].东南大学学报,2007,37(1):118-122.
    [1]蒋清野等.混凝土碳化数据库与混凝土碳化分析,攀登计划——钢筋锈蚀与混凝土冻融破坏的预测模型1997年度研究报告[R],1997.12.
    [2]李果等.气候条件对混凝土碳化速度的影响[J].混凝土,2004,(11):49-53.
    [3]B.M.莫斯克文等著,倪继淼等译.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社,1988.
    [4]#12
    [5]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [6]陈立亭.混凝土碳化模型及其参数研究[D].西安,西安建筑科技大学硕士学位论文,2007.
    [7]悉尼·明德斯等著,方秋清等译.混凝土[M].北京:中国建筑工业出版社,1989:23-24.
    [8]中国建筑科学研究院混凝土研究所.混凝土实用手册[M].北京:中国建筑工业出版社,1987:13-14.
    [9]郭成举著.混凝土的物理和化学[M].北京:中国铁道出版社,2004.
    [10]GB175-1999.硅酸盐水泥、普通硅酸盐水泥[S].国家质量监督局,1999.
    [11]蒋利学.混凝土碳化深度的计算模型及试验研究[D].上海,同济大学硕士学位论文,1996.
    [12]万治华,李斌怀.粉煤灰及其对水泥和混凝土性能的影响[J].湖北教育学院学报,2003,20(5):39-41.
    [13]Vagelis G.Papadakis.Effect of fly ash on Portland cement systems Part Ⅰ:Low-calcium fly ash [J].Cement and Concrete Research,1999,29:1727-1736.
    [14]Lam L.,Wong Y.L.,Poon C.S..Degree of hydration and gel/space ratio of high-volume fly ash/cement systems[J].Cement and Concrete Research,2000,30(5):747-756.
    [15]Zhang M.H..Microstructure,crack propagation,and mechanical properties of cement pastes containing high volumes of fly ashes.Cement and Concrete Research,1995,25(6):1165-1178.
    [16]郑克仁,孙伟,贾艳涛,郭丽萍.水泥矿渣粉煤灰体系中矿渣和粉煤灰反应程度测定方法[J].东南大学学报,2004,34(3):361-365.
    [17]袁春林,张金明,段玖祥,王洁.我国火电厂粉煤灰的化学成分特征[J].电力环境保护,1998,14(1):9-14.
    [18]Papadakis V.G.,Vayenas C.G.,Fardis M.N..Fundamental modeling and experimental investigation of concrete carbonation[J].ACI Materials Journal,1991,88(4):363-373.
    [19]Vagelis G.papadakis.Experimental investigation and theoretical modeling of silica fume activity in concrete[J].Cement and Concrete Research,1999,29:79-86.
    [20]Papadakis V.G.,Vayenas C.G.,Fardis M.N..Physical and chemical characteristics affecting the durability of concrete[J].ACI Materials Journal,1991,88(4):186-195
    [21]Taylor H.F.W..Cement Chemistry[M].2nd.ed.,London:Thomas Telford Publishing,1997.
    [22]谭家利.大掺量粉煤灰混凝土的试验研究[J].中外建筑,2001,(3):78-79.
    [23]邢世海.超掺粉煤灰混凝土耐久性研究与应用[J].混凝土,2004,(7):48-49.
    [24]陈迅捷,张燕驰,欧阳幼玲.活性掺合料对混凝土抗碳化耐久性的影响[J].混凝土与水泥制品,2002,(3):7-9.
    [25]林力勋,丁志贤.清镇电厂风选粉煤灰混凝土的抗碳化性能[J].施工技术,1997,(5):14-15.
    [26]苏祖平.芜湖长江大桥泵送粉煤灰混凝土耐久性研究[J].粉煤灰,2000,(1):10-12.
    [1]周飞鹏.混凝土的酸雨腐蚀模型研究[D].大连,大连理工大学硕士学位论文,2005.
    [2]张扬.酸雨环境下粉煤灰混凝土耐久性研究[D].西安,西安建筑科技大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700