微透镜集成大功率垂直腔面发射激光器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂直腔面发射激光器(VCSELs)作为一种结构紧凑,性能优良的新型光源被广泛应用于光通信、光互联、光存储等领域。与传统的边发射激光器(EELs)相比垂直腔面发射激光器有如下优点:有源区体积小,具有很小的阈值电流;圆形对称光斑,发散角小,容易与光纤高效耦合,有利于进行光束整形;出光窗口面积大,不易发生光学灾变损伤;谐振腔腔长短,极易实现动态单纵模工作;可以二维集成,制作高功率二维面阵;焊接封装容易,适合大批量生产。特别是单模VCSELs对于许多领域有着重要的应用,像自由空间的光互联、激光读写、医疗诊断、机载光探测和激光测距系统等都需要VCSELs光束具有高功率单模、低的远场发散角等特点。然而垂直腔面发射激光器的有源区和出光窗口具有一定的横向宽度,因此会有一些横模被激发出来。有源区载流子和多种横模的光子的相互作用导致的空间烧孔效应,是产生多横模的主要原因,因而通常的大口径垂直腔面发射激光器多为多横模单纵模出射。
     本论文采用在垂直腔面发射激光器窗口表面直接制作GaAs微透镜的技术,来提高器件的光束质量,压缩发散角。首先理论上分析和计算了微透镜耦合垂直腔面发射激光器的基本原理,对影响器件性能的几个主要参数进行了分析,包括有效反射率,阈值电流,微分量子效率,电光转换效率,模式特性,光谱特性等,通过深入研究氧化限制型VCSELs的结构,合理安排了微透镜集成底发射VCSELs的工艺流程,并且优化了器件制作过程中的几个关键技术,然后采用限制扩散湿法刻蚀法直接在GaAs衬底上制作出不同直径的微透镜和微透镜阵列,得到了较好的表面形貌。通过对微透镜集成VCSELs器件进行测试表明,在出光窗口表面制作微透镜,可以明显的改善光束质量,压缩发散角。对于400μm的单管器件,室温下当工作电流为4A时,最高输出功率200mW,激射波长为978.1nm,光谱半高宽0.8nm,器件的远场发散角为8.4°和8.7°,而没有微透镜的器件远场发散角为18.9°和19.8°,并对有无微透镜的器件的光束质量因子进行了测试。对于6×6微透镜集成垂直腔面发射激光器列阵进行了测试,列阵共有36个发光单元,单元圆心间距为120μm,有源区直径为90μm ,出光口径为100μm ,室温下最高连续输出功率大于1W,相应的功率密度为0.44KW/cm2,斜率效率0.36W/A,微透镜的耦合效率为85%。当驱动电流1A到4A变化时,有微透镜器件的远场发散角小于6.6°,实验测试结果与理论预期计算的结果基本一致。
Vertical cavity surface emitting lasers (VCSELs) as a compact structure, excellent performance of novel light sources are widely applied for optical interconnection communication, optical communication, optical storage and other fields. Compared to the conventional edge-emitting lasers (EELs), VCSELs have the following advantages: lower threshold current; circular output beam, small divergence angle, efficiently fiber coupling and easy beam shaping; not prone to catastrophic optical damage due to large emitting windows; operating on dynamic single longitudinal mode; highly integrated two-dimensional area array with high power; easy welding and package; easy mass production. Particularly for single-mode VCSELs have important applications in many fields, such as free space optical interconnection, laser written, medical diagnostics, airborne light detection and laser ranging system, and so high power single-mode VCSELs with excellent beam quality and low divergence far-field angle are necessary. However, because vertical-cavity surface-emitting laser’s active region has a transverse width, so there will be some high order transverse modes are emitted. Thus, vertical cavity surface emitting lasers with large emitting windows usually operated on multi-transverse-mode and single longitudinal mode.
     In this paper, the main parts include directly fabricating microlens on the emitting windows of vertical cavity surface emitting laser in order to improve the beam quality of the device and compress far-field divergence angle. Firstly, the basic principle of the microlens coupling vertical-cavity surface-emitting lasers is theoretically analysised and calculated. The important parameters such as the effective reflectivety, threshold current, differential quantum efficiency, electro-optical conversion efficiency and spectral characteristics are demonstrated. We also optimize the structure of the device wafer and the key to the device manufacturing process technology. And then GaAs microlens and microlens array with different diameter are directly fabricated by using limited-diffusion wet etching technique on the substrate. The maximum continuous output power of microlens-integrated single device with an emitting windows of 400μm at room temperature is more than 200mW at a current of 4A, and the far field divergence angles of that are 8.4°and 8.7°, respectively. However, the far-field divergence angle of the same structure without microlens devices is 18.9°and 19.8°. For the 6×6 microlens-integrated vertical-cavity surface-emitting laser array, the maximum continuous output power at room temperature is more than 1W, and the far field divergence angle is less than 6.6°. Yet, the far-field divergence angle of the same structure without microlens devices is more than 15°. The results of experiment are basically consistent with the results of theoretical simulation.
引文
[1]. Iga, K.,Koyama, F.,Kinoshita, S. Surface emitting semiconductor lasers [J].IEEE J. Quantum Electron., 1988 24(9):1845-1855.
    [2]. Kenichi Iga, Surface Emitting Lasers [J]. Electronics and Communications in Japan, 1999 82(10): 70-82.
    [3]. Tell. B,Lee, Y. H,Brown‐Goebeler, K. F,Jewell, J. L,Leibenguth, R. E.,Asom, M. T.,Livescu, G.,Luther, L.,Mattera, V. D., High-power cw vertical-cavity top surface-emitting GaAs quantum well lasers [J]. Appl Phys Lett, 1990, 57: 1855-1857.
    [4]. Huffaker D L, Deppe D G, Kumar K, Rogers, T. J, Native-oxide defined ring contact for low threshold vertical-cavity lasers [J]. Appl Phys Lett, 1994, 65: 97-99
    [5]. Choquette K D, Hou H Q, Vertical-cavity surface emitting laser: Moving from research to manufacturing [J]. Proc IEEE, 1997, 85: 1730-1739.
    [6]. Huffaker D L, Graham L A, Deng H, D.G Deppe, Sub-40μA continuous-wave lasing in an oxidized vertical-cavity surface emitting laser with dielectric mirrors [J]. IEEE Photon Technol Lett, 1996, 8: 874-976.
    [7]. Miller M, Grabherr M, King R, Jager, R., Michalzik, R., Ebeling, K.J.,Improved output performance of high-power VCSEL’s [J]. IEEE J Sel Top Quantum Electron, 2001, 7: 210-216.
    [8]. R. Michalzik and K. J. Ebeling, H. E. Li and K. Iga, Operating principle of VCSELs Vertical-Cavity-Surface-Emitting-Laser Device, 2003,6:53-98.
    [9]. R.P.Schneider,Jr.,K.D.Choquette,J.A.Lott,K.L.Lear,J.J.Fiegel and K.J.Mally.Efficient room-temperature continuous-wave AlGaP/AlGaAs visible (670nm) vertical-cavity surface emitting laser diodes [J], Photon.Tech.Lett.,1994, 6(3):313-316.
    [10]. M. H. Crawford, K. D. Choquette, R. J. Hickman, and K. M. Geib, Performance of selectively oxidized AlGaInP based visible VCSELs [J], OSA Trends Optics Photon. Series, 1998,Vol. 15:104–105.
    [11]. C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, Nonlinear distortion anddynamic range of red (670 nm) oxide confined VCSELs [J], IEEE Photon. Technol. Lett., 2001,Vol. 13(4):358–360
    [12]. M.Zorn , A.Knigge , U.Zeimer , et al . MOVPE growth of visible vertical-cavity surface-emitting lasers (VCSELs)[J], J.Crystal Growth,2003, 248:186-193.
    [13]. ?ukasz Piskorski,Robert P. Sarza?a,W?odzimierz Nakwaski,Enhanced single-fundamental LP01 mode operation of 650-nm GaAs-based GaInP/AlGaInP quantum-well VCSELs[J], Appl Phys A, 2010, 98: 651–657.
    [14]. Jean-Francois Seurin, Guoyang Xu, Viktor Khalfin, Aleksandr Miglo, James D. Wynn, Prachi Pradhan, Chuni L. Ghosh, and L. Arthur D’Asaro, Progress in high-power high-efficiency VCSEL arrays [J], Proc. of SPIE 2009, 7229:722903-1-722903-11.
    [15]. Yong-Qin Hao, Yan Luo, Yuan Feng, Chang-Ling Yan, Ying-Jie Zhao, Yu-Xia Wang, Xiao-Hua Wang, Yi Qu, and Guo-Jun Liu, Large aperture vertical cavity surface emittinglaser with distributed-ring contact [J], APPLIED OPTICS 2011 50(7): 1034-1037.
    [16]. Pepeljugoski,Petar,Kuchta,et al.15.6-Gb/s Transmission over 1 km of next generation multimode fiber [J], IEEE Photon.Technol.Lett.2002, 14(5):717-719.
    [17]. Wen-Jang Jiang,Lung-Chien Chen,Meng-Chyi Wu,et al.A new process to improve the performance of 850 nm wavelength GaAs VCSELs [J], J.Solid-state Electron, 2002, 46:2287-2289.
    [18]. SHI Jingjing, TIAN Zhenhua, QIN Li, ZHANG Yan, WANG Zhenfu1, LIANG Xuemei, YANG Ye, NING Yongqiang, LIU Yun, WANG Lijun, 850 nm high power vertical cavity surface emitting lasers [J], Journal of Optoelectronics Laser 2010, 21(10):1445-1448.
    [19]. W. Schmid, D. Wiedenmann, M. Grabber, R. Jager, R. Michalzik, and K. J.Ebeling, CW operation of a diode cascade InGaAs quantum well VCSEL [J], Electron. Lett.,1998, 34(6): 553–555.
    [20]. M. Miller, M. Grabberr, R. Jager, and K. J. Ebeling, High power VCSEL arrays for emission in Watt regime at room temperature [J], IEEE Photon. Technol. Lett.,2001, 13(3): 173–175.
    [21]. L. Arthur D’Asaro, Jean-Francois Seurin and James D. Wynn, High-power, High-efficiency VCSELs pursue the goal [J], Photonics Spectra, 2005:64-66.
    [22]. P. Salet, F. Gaborit, Ph. Pagnod-Rossiaux, A. Plais, E. Derouin, J, Pasquier, and J. Jacquet, Room temperature pulsed operating of 1.3μm vertical cavity lasers including bottomInGaAsP/InP multilayer bragg mirrors [J], Electron. Lett., 1997, 33(24):2048–2049.
    [23]. J. Boucart, C. Starck, F. Gaborit, A. Plais, N. Bouche, E. Derouin, L. Goldstein, C. Fortin, D. Carpentier, P. Salet, F. Brillouet, and J. Jacquet, 1 mW CW-RT Monolithic VCSEL at 1.55μm [J], IEEE Photon. Technol. Lett., 1999, 11(5):629–631.
    [24]. M. A. Holm, D. Burns, P. Cusumano, A. I. Ferguson, and M.D. Dawson, High-power diode-pumped AlGaAs surface emitting laser [J], Appl. Opt. 1999, 38:5781–5784.
    [25]. Jean-Francois Seurin, Chuni L. Ghosh, Viktor Khalfin, Aleksandr Miglo, Guoyang Xu, James D. Wynn, Prachi Pradhan, and L. Arthur D’Asaro, High-power vertical-cavity surface-emitting arrays [J], Proc. of SPIE 2008, 6876:68760D-1- 68760D-9.
    [26]. Li Te, Ning Yongqiang, Sun Yanfang et al,.Beam quality of 980nm high power vertical-cavity surface-emitting laser [J]. Chinese J. Lasers,2007, 34(5):641-645.
    [27]. Fumio Koyama, New functions of VCSEL-based optical devices [J]. Chinese Optics Letters, 2008, 6(10):755-762.
    [28]. Wang Jinfei, Hu Guijun, Qu Renhui, He Xiaodong, Multimode fiber communication system based on mode group diversity multiplexing [J]. Chinese J. Lasers, 2008, 35(12):1966-1969.
    [29]. Martinsson, H., Vukusic, J.A., Grabberr, M., Michalzik, R., Jager, R., Ebeling, K.J., Larsson, A. Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief [J], Photonics Technology Letters, IEEE, 1999,11(12):1536– 1538.
    [30]. Michael C. Y. Huang, Ye Zhou, and Connie J. Chang-Hasnain, Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers [J], Appl. Phys. Lett. 2008,92 (17):171108.
    [31]. Delai Zhou; Mawst, L.J. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers [J], Quantum Electronics, IEEE, 2002 ,38(12): 1599– 1606.
    [32]. Giudice, G.E.; Kuksenkov, D.V.; De Peralta, L.G.; Temkin, H. Single-mode operation from an external cavity controlledvertical-cavity surface-emitting laser [J], Photonics Technology Letters, IEEE, 1999,11 (12):1545– 1547.
    [33]. Dae-Sung Song, Se-Heon Kim, Hong-Gyu Park, Chang-Kyu Kim, and Yong-Hee Lee, Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers [J], Appl.Phys. Lett. 2002, 80(21):3901-3903.
    [34]. Yanrong Song, Peng Zhang, Xinping Zhang et al,.Intracavity frequency-doubled green vertical external cavity surface emitting laser [J]. Chinese Optics Letters, 2008, 6(4):271-273.
    [35]. Si-Hyun Park, Yeonsang Park, Hyejin Kim, and Heonsu Jeon, Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation [J]. Applied Physics Letters, 2002, 80(2):183-185.
    [36]. G.A.Keeler, D.K.Serkland, K.M.Geib, G.M.Peake et al. Single transverse mode operation of electrically pumped vertical-external-cavity surface-emitting lasers with micromirrors [J].IEEE Photonics Technology Letters. 2005, 17(3): 522-524.
    [37]. Ihab Kardosh, Frank Demaria, Fernando Rinaldi, Susanne Menzel et a1.High-power single transverse mode vertical-cavity surface-emitting lasers with monolithically integrated curved dielectric mirrors [J].IEEE Photonics Technology Letters. 2008, 20(24): 2084-2086.
    [38]. Yongqi Fu , Integration of Microdiffractive Lens with Continuous Relief with Vertical-Cavity Surface-Emitting Lasers Using Focused Ion Beam Direct Milling,IEEE Photonics Technology Letters,2001,13(5):424-426.
    [39]. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers, New York: Wiley, 2003.
    [40]. Joanne Y. Law and Govind P. Agrawal, Effects of Optical Feedback on Static and Dynamic Characteristics of Vertical-Cavity Surface-Emitting Lasers [J], IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3(2):353-358.
    [41]. JENS HENRIK OSMUNDSEN AND NIELS GADE, Influence of Optical Feedback on Laser Frequency Spectrum and Threshold Conditions [J], IEEEJOURNAL OF QUANTUM ELECTRONICS, 1983, QE-19, (3):465-469.
    [42]. Ulrich Fiedler, and Karl Joachim Ebeling, Design of VCSEL’s for Feedback Insensitive Data Transmission and External Cavity Active Mode-Locking [J],IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1995, 1(2):442-447.
    [43]. Martin Grabherr, Michael Miller, Roland J¨ager, High-power VCSEL’s: single devices and densrly packed 2-D-arrays [J], IEEE select. Topics Quantum. Electron. 1999, 5(3):495-502.
    [44].韩力英,贾春辉,刘磊,刘立艳,张存善,赵红东,垂直腔面发射激光器的特性分析[J],光子技术, 2006, 4:181-184.
    [45]. D. L. Huffaker and D. G. Deppe, T. J. Rogers, Transverse mode behavior in native-oxide-defined low threshold vertical-cavity lasers [J], Appl. Phys. Lett. 1994, 65 (13):1611-1613.
    [46]. K. Tai and Y. Lai K. F. Huang, T. C. Huang, T. D. Lee, and C. C. Wu, Transverse mode emission characteristics of gain-guided surface emitting lasers [J], Appl. Phys. Lett. 63 (19):2624-2626.
    [47]. Y. C. Chung and Y. H. Lee, Spectral Characteristics of Vertical-Cavity Surface-Emitting Lasers with External Optical Feedback [J], IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3(7):597-599.
    [48]. Shijun Jiang, Zeqi Pan, Mario Dagenais, Robert A. Morgan, and Keisuke Kojima, Influence of Extemal Optical Feedback on Threshold and Spectral Characteristics of Vertical-Cavity Surface-Emitting Lasers [J], IEEE PHOTONICS TECHNOLOGY LETTERS, 1994, 6(1):34-36.
    [49]. C. H. L. Quay, I. Z. Maxwell, and J. A. Hudgings, Coherence collapse and redshifting in vertical-cavity surface-emitting lasers exposed to strong optical feedback [J], JOURNAL OF APPLIED PHYSICS, 2001, 90(12):5856-5858.
    [50]. Oikawa M,Iga K,Sanada T.Array of distributed—index planar micro-lenses prepared from ion exchange technique [J], Jpn.J.App1.Phys,1981,48(1):49-50.
    [51]. Borrelli N F,Morse D L,Bellman R H,et a1.Photolytic technique for producing microlenses in photosensitive glass [J], Applied Optics,1985,24(16):2520-2525.
    [52]. Popovic Z D,Sprague R A,Neville G A.Technique for monolithic fabrication of microlensarray [J], Applied Optics,1998,27(4):1281-1284.
    [53]. Fu Y,Ngoi B K A.Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology [J], Optical Engineering,2001,40(4):511-516.
    [54].张云熙,利用半导体工艺制造的微透镜阵列及其应用[J],世界电子元器件,1998,10:64-65.
    [55].吴非,浅析折射型微透镜阵列制作方法[J],现代显示,2009,104:43-45.
    [56].任智斌,朱丽思,曾皓,姜会林,微透镜阵列的光刻胶热熔制作技术[J],长春理工大学学报, 2006, 29(4):12-15.
    [57].任智斌,卢振武,通过缩短显影时问提高微透镜阵列的填充因子与F数[J], 2005, 16(2):150-154.
    [58].张晓玉,姚汉民,杜春雷,潘丽,邱传凯, AZ926O光刻胶制作连续非球面微透镜阵列的研究[J],微细加工技术, 2003, 4:22-25.
    [59]. Yongqi Fu and Ngoi Kok Ann Bryan, One-step transfer of diffractive structure from a designed pattern to a replica by use of a hybrid solgel film [J], OPTICS EXPRESS 2002, 10(10):436-442.
    [60]. Sung-Kil Lee, Man Geun Kim, Kyung-Woo Jo and Jong-Hyun Lee, Glass Reflowed Microlens Array and its Optical Characteristics [J],IEEE, 2007:75-76.
    [61]. Teng-Kai Shin, Jeng-Rong Ho, and J.-W. John Cheng, A New Approach to Polymeric Microlens Array Fabrication Using Soft Replica Molding [J], IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16(9):2078-2080.
    [62]. Dong Wu, Qi-Dai Chen, Li-Gang Niu, Jian Jiao, Hong Xia, Jun-Feng Song, and Hong-Bo Sun, 100% Fill-Factor Aspheric Microlens Arrays (AMLA) With Sub-20-nm Precision [J], IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21(20):1535-1537.
    [63]. Dong Wu, Si-Zhu Wu, Li-Gang Niu, Qi-Dai Chen, Rui Wang, Jun-Feng Song, Hong-Hua Fang, and Hong-Bo Sun, High numerical aperture microlens arrays of close packing [J], APPLIED PHYSICS LETTERS 2010, 97, 031109-1-031109-3.
    [64]. Si-Hyun PARK, Sangyeon LEE and Heonsu JEON, Mode-Stabilized Operation in a Microlens-Integrated 980nm Vertical-Cavity Surface-Emitting Laser [J], OPTICAL REVIEW 2006, 13(3):146–148.
    [65]. R.Williams, Modern GaAs Processing. Norwood, MA: Artech House, 1990.
    [66]. Yu-Sik Kim, Jaehoon Kim, Joong-Seon Choe, Young-Geun Roh, Heonsu Jeon, and J.C.Woo, Semiconductor microlenses fabricated by one-step wet etching [J].IEEE Photonics technology 2000, 12(5):507-509.
    [67]. M. He, X. -C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, Low-cost and efficient coupling technique using reflowed sol-gel microlens [J], 2003, 11(14):1621-1627.
    [68].张岩,高功率低发散角垂直腔面发射激光器, 2010,中科院研究生院博士学位论文.
    [69]. W.T.Tsang, Self-terminating thermal oxidation of AlAs epilayers grown on GaAs by molecular beam epitaxy [J], Appl. Phys. Lett., 1978, 33(5):426-429.
    [70]. Dallesasse, J. M, Gavrilovic, P, Holonyak, N,Kaliski, R. W, Nam, D. W, Vesely, E. J,Burnham, R. D, Stability of AlAs in AlGaAs-AlAs-GaAs quantum well heterostructures [J], Appl. Phys. Lett., 1990, 56(24):2436-2438.
    [71]. Dallesasse, J. M, Holonyak, N, Sugg, A. R, Richard, T. A, El‐ Zein, N , Hydrolyzation oxidation of AlxGa1-xAs- AlAs-GaAs quantum well heterostructures and superlattices [J], Appl. Phys. Lett., 1990, 57(26):2844-2846.
    [72]. Carol I. H. Ashby, John P. Sullivan, Paula P. Newcomer, Nancy A. Missert, Hong Q. Hou, B. E. Hammons, Michael J. Hafich, and Albert G. Baca, Wet oxidation of AlxGa1-xAs: temporal evolution of composition and microstructure and the implications for metal-insulator semiconductor applications [J], Appl. Phys. Lett., 1997, 70(18):2443-2445.
    [73]. F. A. Kish, S. J. Caracci, N. Holonyak, J. M. Dallesasse, K. C. Hsieh, and M. J. Ries, Planar native oxide index guided AlGaAs-GaAs quantum well heterostructure lasers [J], Appl. Phys. Lett., 1991, 59(14):1755-1757.
    [74]. S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak, Native oxide top and bottom confined narrow stripe p-n AlGaAs-GaAs-InGaAs quantum well heterostructure laser [J], Appl. Phys. Lett., 1993, 63(12):1660-1663.
    [75]. D.L.Huffaker, J.Shin, and D.G.Deppe, Low threshold half-wave vertical-cavity lasers, Electron. Lett., 1994, 30(23):1946-1947.
    [76]. J.M.Dallesasse, N.Holonyak, Native-oxide stripe-geometry AlxGa1-xAs-GaAs quantum well heterostructure lasers [J], Appl. Phys. Lett., 1991, 58(4):394-396.
    [77]. Yong Cheng, P.D. Dapkus, M.H. MacDougal, Gye Mo Yang, Lasing characteristics of high-performance narrow stripe InGaAs-GaAs quantum well lasers confined by AlAs native oxide [J], IEEE Photon. Technol. Lett., 1996, 8(2):176-178.
    [78]. D. L. Huffaker1, D. G. Deppe1, K. Kumar1, and T. J. Rogers, Native-oxide defined ring contact for low threshold vertical-cavity lasers [J], Appl. Phys. Lett., 1994, 65(1):97-99.
    [79]. M.J.Ries, E.I.Chen, and N.Holonyak, Jr., Photo-pumped laser operation of a planar disorder and native oxide defined AlAs-GaAs photonic lattice [J], Appl. Phys. Lett., 1996, 68(15):2035-2037.
    [80]. A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle., Huge birefringence in selectively oxidized GaAs/AlAs optical wave-guides [J], Appl. Phys. Lett., 1996, 68(10):1320-1322.
    [81]. Blum, O, Lear, K.L, Hou, H.Q, Warren, M.E, Buried refractive microlenses formed by selective oxidation of AlGaAs [J], Electron. Lett., 1996, 32(15):1406-1408.
    [82]. E.I.Chen, N.Holonyak, and S.A.Maranowski, AlxGa1-xAs metal-oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs [J], Appl. Phys. Lett., 1995, 66(20):2688-2690.
    [83]. C.I.H.Ashby, J.P.Sullivan, K.D.Choquette et al., Wet oxidation of AlGaAs: The role of hydrogen [J], J. Appl. Phys, 1997, 82: 3134.
    [84]. Kent D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and Robert Hull, Selective oxidation of buried AlGaAs versus AlAs layers [J], Appl. Phys. Lett., 1996, 69(10): 1385-1387.
    [85].伊贺健一,小山二三夫.面发射激光器基础研究与应用,北京:科学出版社, 2002, 105.
    [86]. Choquette, K.D, Geib, K.M, Ashby, C.I.H, Twesten, R.D, Blum, O, Hou, H.Q, Follstaedt, D.M, Hammons, B.E, Mathes, D, Hull, R., Advances in selective wet oxidation of AlGaAs alloys [J], IEEE J. of Sele. Top. in Quantum Electron., 1997, 3(3):916-926.
    [87]. Arto Nurmikko, Jung Han. Blue and near-ultraviolet vertical-cavity surface-emitting lasers, MRS Bulletin, 2002, 27:502.
    [88]. E.H.罗德里克,金属半导体接触,北京:科学出版社, 1984, 108.
    [89].吴鼎芬,颜本达,金属-半导体界面欧姆接触的原理、测试与工艺,上海:上海交通大学, 1989, 146.
    [90]. R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, Transverse Mode Control of Vertical-Cavity Top-Surface-Emitting Lasers [J], IEEE PHOTONICS TECHNOLOGY LETTERS, 1993, 4(4):374-377.
    [91]. P. D. Floyd, M. G. Peters, L. A. Coldren, and J. L. Merz, Suppression of order Transverse Modes in Vertical-Cavity Lasers by Impurity-Induce Disordering [J], IEEE PHOTONICS TECHNOLOGY LETERS, 1995, 7(12):1388-1390.
    [92]. P. Dowd, L. Raddatz, Y. Sumaila, M. Asghari, I. H. White, R. V. Penty, P. J. Heard, G. C. Allen, R. P. Schneider, M. R. T. Tan, and S. Y. Wang, Mode Control in Vertical-Cavity Surface-Emitting Lasers by Post-Processing Using Focused Ion-Beam Etching [J], IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9(9):1193-1195.
    [93]. Y. A. Wu, Gabriel S. Li, Wupen Yuen, C. Caneau, and Constance J. Chang-Hasnain,High-Yield Processing and Single-Mode Operation of Passive Antiguide Region Vertical-Cavity Lasers [J], IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3(2):429-434.
    [94]. H.J. Unold, S.W.Z. Mahmoud, F. Eberhard, R. J?ger, M. Kicherer, F. Mederer, MC. Riedi and K.J. Ebeling, Large-Area Single-Mode Selectively Oxidized VCSELs: Approaches and Experimental [J], Proceedings of SPIE, 3946 (2000): 207-218.
    [95]. A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, High single-mode power observed from a coupled-resonator vertical-cavity laser diode [J], APPLIED PHYSICS LETTERS, 2001 79(25):4079-4081.
    [96]. T.-H. Hsueh, H.-C. Kuo, F.-I. Lai, L.-H. Laih and S.C. Wang, High-speed characteristics of large-area single-transverse-mode vertical-cavity surface-emitting lasers [J], ELECTRONICS LETTERS, 2003, 39(21).
    [97]. Michael W. Wiemer, Rafael I. Aldaz, David A. B. Miller, Fellow, and James S. Harris, A Single Transverse-Mode Monolithically Integrated Long Vertical-Cavity Surface-Emitting Laser [J], IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17(7):1366-1368.
    [98]. Hao-Lin Chen, Daniel Francis, Tho Nguyen, Wupen Yuen, Gabriel Li, and Connie Chang-Hasnain, Collimating Diode Laser Beams from a Large-Area VCSEL-Array Using Microlens Array, IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11(5):506-508.
    [99].李特,宁永强,孙艳芳,崔锦江,郝二娟,秦莉,套格套,刘云,王立军,崔大复,许祖彦, 980 am高功率VCSEL的光束质量[J],中国激光, 2007, 34(5):641-645.
    [100].陈钰清,王静环.激光原理.浙江:浙江大学出版社,1998: 218.
    [101].周文,陈秀峰,杨冬晓.光子学基础.杭州:浙江大学出版社,1999:52.
    [102].周炳琨,高以智,陈倜嵘等.激光原理(第四版).北京:国防工业出版社,2000:75.
    [103]. Eric R. Hegblom, Near M. Margalit, Brian J. Thibeault, Lany A. Coidren and John E. Bowers, Current spreading in apertured vertical cavity lasers [J], SPIE, 2003,3003:176-180.
    [104]. Si-Hyun Park, Yeonsang Park, and Heonsu Jeon, Theory of the mode stabilization mechanism in concave-micromirror-capped vertical-cavity surface-emitting lasers [J], JOURNAL OF APPLIED PHYSICS, 2003, 94(3):1312-1317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700