新型微孔聚合物材料的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孔材料在分离、多相催化和气体储存等多个领域具有很好的应用前景。在过去几十年中,科学家们研究了一系列孔材料,除传统的沸石和活性炭以外,还包括金属有机网络(MOFs),多孔有机笼子(Porous Organic Cages)和微孔有机聚合物(MOPs)等孔材料。其中,MOPs具有高比表面积、低骨架密度、高化学稳定性等独特的性质,还能在孔结构中引入功能性的化学官能团,近年来引起高度关注。开发具有更高比表面积、孔尺寸可控和功能性可调的MOPs是当前研究的热点。目前面临的主要问题是,合成共轭微孔聚合物(CMPs)和其它一些MOPs需要使用过渡金属催化剂或贵金属催化剂,成本高昂,只能用于实验室规模的生产。此外,合成MOPs的单体一般需含卤素、乙炔基或立体结构(如螺环),也难以合成。因此,发展低成本、可大规模生产MOPs是一个巨大的挑战。
     本博士论文的主要工作是探寻新方法,用于设计合成低成本、功能化的MOPs。新方法获得的MOPs通过氮气吸附-解吸附等温线,固体核磁技术进行表征。根据这些MOPs的特性,将其分别作为气体吸附材料、多相催化剂和有毒金属离子吸附剂,开展了不同领域的应用性研究。论文主要包括以下内容:
     第一章对微孔材料的研究背景,MOPs的特点以及其在气体吸附、多相催化、分离提纯和光电等领域的应用情况进行了综述。
     在二至四章中对MOPs孔径调控、合成方法进行了研究。
     第二章描述了精确调控超交联聚合物(HCPs)孔尺寸和孔分布的方法,最终获得含有均匀微孔结构的HCPs。随着DVB含量从0%增加至10%,HCPs的微孔孔尺寸变小,孔分布范围变窄,微孔孔体积与总孔体积的比例从6.82%增加到61.90%。当DVB含量高于7%时,HCPs变为纯微孔聚合物。实验数据显示,更小的微孔孔尺寸和更高的微孔孔体积有助于提高H2,CO2的气体吸附量。此外,还对对二乙烯基苯(DVB)调控孔结构的机理进行了探讨。
     第三章和第四章提出了两种合成低成本、功能化MOPs的新方法。第三章提出了一种新的合成策略,即使用外交联剂编织刚性芳环结构单元获得编织微孔聚合物网络(KAPs)。通过廉价的外交联剂与普通低官能度的芳香化合物发生傅-克反应,简单一步法高效地合成了高比表面积的微孔聚合物。第四章的新方法基于Scholl反应,是以Lewis酸为催化剂的两个芳香化合物的偶联反应。这种廉价的方法能引入多样的官能团或功能性结构,适用于芳环、稠环或杂环化合物,最重要的是可以合成低成本的共轭的微孔聚合物。因此,这种方法可以灵活地实现MOPs的多功能化应用,例如,作为气体吸附材料,光电材料和半导体材料。
     最后在五至八章对MOPs在气体储存、催化和水处理等方面的应用进行了探讨。
     第五章研制了一种新型微孔聚合物纳米颗粒。首先通过乳液聚合法制备氯甲基苯乙烯-二乙烯基苯(VBC-DVB)前体纳米颗粒,再将前体纳米颗粒傅-克超交联,最终获得微孔聚合物纳米颗粒(MPNs)。调节前体制备过程中乳化剂用量可以调控纳米颗粒尺寸,其范围为36-131nm。MPNs的BET比表面积最高为1500m2/g,储氢量为1.59wt%。与先前报道的多分散微米尺寸的类似物相比,MPNs具有更高的微孔孔体积(0.56cm3/g),更高的氢气吸附量(1.59wt.%),更高的氢气吸附热和更快的吸附速率。
     第六章和第七章主要探索了MOPs在多相催化领域的应用。通过KAPs和Scholl偶联方法分别合成了含有三苯基膦官能团的两种微孔聚合物。这两种材料与PdCl2配位后,用于催化水相中芳氯的Suzuki-Miyaura偶联反应。这两种多相催化剂对于不同的芳氯、芳硼酸底物都具有很高的催化活性。而且,这两项工作说明了含有三苯基磷配体的微孔聚合物骨架能有效地分散Pd来提高催化活性,在相似的条件下催化活性高于均相催化剂。
     在最后一章中,探索了MOPs在水处理领域的应用。通过磺酸基改性合成了磺化超交联微孔聚合物,作为有毒金属离子的高容量吸附剂。表征结果表明改性树脂保留了它们的有机微孔结构和球形形态,成功引入磺酸基作为亲水基团和活性点。吸附实验表明磺化超交联微孔聚合物对金属离子具有很好的吸附能力,这是由于微孔孔结构和吸附活性点的协同效应。吸附动力学数据符合准二级动力学模型,在不同温度获得的吸附等温线符合Langmuir模型。另外,热力学参数,如,吸附过程的吉布斯自由能变(△G0),焓变(△H0),熵变(△S0)被计算得出,结果表明吸附过程是自发的吸热过程。而且,这些改性树脂能循环使用,吸附量仅少量下降,因此具有潜在的工业应用前景。
The porous materials have diverse potential applications in separation, heterogeneouscatalysis and gas storage. During the last few decades, the surge to develop such usefulmaterials has led the scientists to produce a number of novel porous materials such asmetal organic frameworks (MOFs), porous organic cages and microporous organicpolymers (MOPs), in addition to traditional porous materials such as zeolites and activatedcarbon etc. Among these porous materials, MOPs have some unique properties such aslarge surface area, low skeletal density and high chemical stability. Very recently, aparticular advantage of MOPs has attracted enormous scientific attention due to theirpotential to introduce a range of useful chemical functionalities within the porousframework. In these years, many approaches reported have aimed to develop newmicroporous organic materials with higher surface areas, controlled pore sizes andfunctions. However, the transition metal catalysts or noble metal catalysts used forsynthesis of CMPs, PAFs and some other MOPs are expensive and only lab-scale. It isoften also complicated to synthesize the monomers which must bear halogen, ethynyl orstereocontrolled structures such as spirocyclic monomers used in MOPs. Hence, thesustainable mass production of MOPs is an unanswered challenge.
     Accordingly, the main task of this PhD thesis is to explore some new versatilemethods to design and synthesize cost-effective and functional MOPs. Characterization ofthese MOPs was realized by nitrogen adsorption/desorption isotherms, solid-state NMRtechniques. Application of these MOPs as gas adsorption materials, heterogeneouscatalysts and toxic metal ion adsorbent were also exploited.
     Chapter I introduce the research background on microporous materials, andhighlighted the history of MOPs and their application in gas adsorption, heterogenouscatalysts, separation and purification and photoelectric filed.
     Chapter II describe the method to produce hypercrosslinked polymers (HCPs) with afair control over the pore size and the pore size distribution, and to generate polymer withuniform microporous structure eventually. The mechanism of DVB content controlling thepore structure is proposed. With the DVB content varying from0to10%, the pore size ofHCPs decreases, the pore size distribution become narrower and the micropore volumecontent increases from6.82to61.90%. When the DVB content is higher than7%, theHCPs changes to pure microporous organic polymer. The experimental data indicate that the smaller micropore size and higher microporous volume favor the H2and CO2gasadsorption.
     Chapter III and Chapter IV propose two kind of new method to synthesizecost-effective and functional MOPs. One method,‘knitting’ rigid building blocks with anexternal crosslinker, use a simple one-step Friedel-Crafts reaction of a low-cost crosslinkerwith ordinary, low functionality aromatic compounds to produce cost-effectivemicroporous polymers with very high surface areas and the only byproduct was methanol.The other method is based on Scholl reaction, a coupling reaction between two arenecompounds with the aid of a Lewis acid. This low-cost method can introduce a very broadvariety of functional groups or functional structures. This method suits for aryl ring, fusering or heterocyclic ring compound, hence, using this method can functionalize MOPs inextensive field, such as gas adsorption, photoelectricity and semiconductor
     Chapter V describe the synthesis of uniform “Davankov-type” microporous polymernanoparticles via emulsion polymerization method and followed by a Friedel-Crafts-typehypercrosslinking. The particles size (39-131nm) are tunable via adjusting emulsifier dose.Friedel-Crafts-type hypercrosslinking reaction of the precursor yields monodispersenanoporous polymer nanoparticles (MPNs) with extremely high surface areas up to ca.1500m2/g (BET surface area). Moreover, MPNs present more micropore volume (0.56cm3/g), higher hydrogen adsorption capacity (1.59wt.%), higher hydrogen adsorptionisosteric heats and faster adsorption rate compared to polydisperse micro-size analogpreviously reported.
     In Chapter VI and VII, the two methods in Chapter III and Chapter IV are used tosynthesize two kind of MOPs with triphenylphosphine functional group respectively.These two kind functionalized MOPs coordinated with PdCl2are excellent heterogeneouscatalyst of Suzuki-Miyaura coupling reactions of aryl chlorides in aqueous media. Forvarious aryl halide and arylboronic acid, the heterogeneous catalysts all exhibit high yields.Moreover, these work demonstrate that the microporous polymer backbone knitting withphosphine ligand can efficiently disperse Pd to promote the catalytic activity, which ismuch higher than that of homogeneous catalysts under the similar conditions.
     In the last Chapter, sulfonic acid-modified microporous hypercrosslinked polymerssynthesized by sulfonation of microporous hypercrosslinked polymers have beeninvestigated as a high-capacity adsorbent for toxic metal ions. The results show that themodified resins retained their original microporous structure and spherical morphology,and possess sulfonic acid groups as hydrophilic groups and active sites. Sulfonic acids-modified materials have been found to attain very good adsorption capacity formetal ions, which is due to the synergic effect of microporous structure and active sites.The kinetic data obtained from of adsorption experiments supports a pseudo-second ordermodel and adsorption isotherms obtained at different temperatures are all fitted with theLangmuir isotherms. In addition, the thermodynamic parameters, i.e. Gibbs free energychange (△G0), enthalpy change (△H0), entropy change (△S0) of the adsorption processwere calculated, and the results confirmed the adsorption to be spontaneous andendothermic. Moreover, these modified resins can be recycled several times with minimalloss of adsorption capacity and thus may have potential industrial applications.
引文
[1] Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., Reporting Physisorption Datafor Gas/Solid Systems with Special Reference to the Determination of SurfaceArea and Porosity, Pure&Appl. Chem.,1985,57(4):603-619.
    [2] Klinowski, J., Solid-State Nmr Studies of Molecular Sieve Catalysts, Chem. Rev.,1991,91(7):1459-1479.
    [3] Nijkamp, M. G., Raaymakers, J., van Dillen, A. J., et al., Hydrogen Storage UsingPhysisorption-Materials Demands, Appl. Phys. A: Mater. Sci. Process.,2001,72(5):619-623.
    [4] Muto, A., Bhaskar, T., Tsuneishi, S., et al., Activated Carbon Monoliths fromPhenol Resin and Carbonized Cotton Fiber for Methane Storage, Energy Fuels,2005,19(1):251-257.
    [5] Iijima, S., Helical Microtubules of Graphitic Carbon Nature,1991,354,56-58.
    [6] Rowsell, J. L. C. and Yaghi, O. M., Metal-Organic Frameworks: A New Class ofPorous Materials, Microporous Mesoporous Mater.,2004,73(1-2):3-14.
    [7] McKeown, N. B., Budd, P. M., Msayib, K. J., et al., Polymers If IntrinsicMicroporosity (Pims), Chem.-Eur. J.,2005,11(9):2610-2620.
    [8] Wood, C. D., Tan, B., Trewin, A., et al., Hydrogen Storage in MicroporousHypercrosslinked Organic Polymer Networks, Chem. Mater.,2007,19(8):2034-2048.
    [9] McKeown, N. B., Makhseed, S. and Budd, P. M., Phthalocyanine-BasedNanoporous Network Polymers, Chem. Commun.,2002(23):2780-2781.
    [10] Tsyurupa, M. P. and Davankov, V. A., Hypercrosslinked Polymers: Basic Principleof Preparing the New Class of Polymeric Materials, React. Funct. Polym.,2002,53(2-3):193-203.
    [11] Cote, A. P., Benin, A. I., Ockwig, N. W., et al., Porous, Crystalline, CovalentOrganic Frameworks, Science,2005,310(5751):1166-1170.
    [12] Jiang, J.-X., Su, F., Trewin, A., et al., Conjugated MicroporousPoly(Aryleneethynylene) Networks, Angew. Chem. Int. Ed.,2007,46(45):8574-8578.
    [13] McKeown, N. B., Hanif, S., Msayib, K., et al., Porphyrin-Based NanoporousNetwork Polymers, Chem. Commun.,2002(23):2782-2783.
    [14] Budd, P. M., Ghanem, B. S., Makhseed, S., et al., Polymers of IntrinsicMicroporosity (PIMs): Robust, Solution-Processable, Organic NanoporousMaterials, Chem. Commun.,2004(2):230-231.
    [15] McKeown, N. B., Gahnem, B., Msayib, K. J., et al., Towards Polymer-BasedHydrogen Storage Materials: Engineering Ultramicroporous Cavities withinPolymers of Intrinsic Microporosity, Angew. Chem. Int. Ed.,2006,45(11),1084-1087.
    [16] Ghanem, B. S., Msayib, K. J., McKeown, N. B., et al., A Triptycene-BasedPolymer of Intrinsic Microposity That Displays Enhanced Surface Area andHydrogenAdsorption, Chem. Commun.,2007(1):67-69.
    [17] Ghanem, B. S., McKeown, N. B., Budd, P. M., et al., Polymers of IntrinsicMicroporosity Derived from Bis(Phenazyl) Monomers, Macromolecules,2008,41(5):1640-1646.
    [18] Ghanem, B. S., McKeown, N. B., Budd, P. M., et al., Synthesis, Characterization,and Gas Permeation Properties of a Novel Group of Polymers with IntrinsicMicroporosity: Pim-Polyimides, Macromolecules,2009,42(20):7881-7888.
    [19] Ghanem, B. S., Hashem, M., Harris, K. D. M., et al., Triptycene-Based Polymersof Intrinsic Microporosity: Organic Materials That Can Be Tailored for GasAdsorption, Macromolecules,2010,43(12):5287-5294.
    [20] Germain, J., Hradil, J., Frechet, J. M. J., et al., High Surface Area NanoporousPolymers for Reversible Hydrogen Storage, Chem. Mater.,2006,18(18):4430-4435.
    [21] Ahn, J. H., Jang, J. E., Oh, C. G., et al., Rapid Generation and Control ofMicroporosity, Bimodal Pore Size Distribution, and Surface Area inDavankov-Type Hyper-Cross-Linked Resins, Macromolecules,2006,39(2):627-632.
    [22] Wood, C. D., Tan, B., Trewin, A., et al., Hydrogen Storage in MicroporousHypercrosslinked Organic Polymer Networks, Chem. Mater.,2007,19(8):2034-2048.
    [23] Tsyurupa, M. P. and Davankov, V. A., Porous Structure of HypercrosslinkedPolystyrene: State-of-the-Art Mini-Review, React. Funct. Polym.,2006,66(7):768-779.
    [24] Chang, C.-F., Chang, C.-Y., Hsu, K.-E., et al., Adsorptive Removal of the PesticideMethomyl Using Hypercrosslinked Polymers, J. Hazard. Mater.,2008,155(1-2):295-304.
    [25] Davankov, V., Pavlova, L., Tsyurupa, M., et al., Polymeric Adsorbent forRemoving Toxic Proteins from Blood of Patients with Kidney Failure, J.Chromatogr., B,2000,739(1):73-80.
    [26] Tsyurupa, M. P., Tarabaeva, O. G., Pastukhov, A. V., et al., Sorption of Ions ofHeavy Metals by Neutral Hypercrosslinked Polystyrene, Int. J. Polym. Mater.,2003,52(5):403-414.
    [27] Li, B., Su, F., Luo, H.-K., et al., Hypercrosslinked Microporous Polymer Networksfor Effective Removal of Toxic Metal Ions from Water, Microporous MesoporousMater.,2011,138(1-3):207-214.
    [28] Long, C., Li, Q., Li, Y., et al., Adsorption Characteristics ofBenzene-Chlorobenzene Vapor on Hypercrosslinked Polystyrene Adsorbent and aPilot-Scale Application Study, Chem. Eng. J.,2010,160(2):723-728.
    [29] Davankov, V., Tsyurupa, M., Ilyin, M., et al., Hypercross-Linked Polystyrene andIts Potentials for Liquid Chromatography: AMini-Review, J. Chromatogr. A,2002,965(1-2):65-73.
    [30] Sychov, C. S., Ilyin, M. M., Davankov, V. A., et al., Elucidation of RetentionMechanisms on Hypercrosslinked Polystyrene Used as Column Packing Materialfor High-Performance Liquid Chromatography, J. Chromatogr. A,2004,1030(1-2):17-24.
    [31] Sidorov, S. N., Volkov, I. V., Davankov, V. A., et al., Platinum-ContainingHyper-Cross-Linked Polystyrene as a Modifier-Free Selective Catalyst forL-Sorbose Oxidation, J. Am. Chem. Soc.,2001,123(43):10502-10510.
    [32] Sidorov, S. N., Bronstein, L. M., Davankov, V. A., et al., Cobalt NanoparticleFormation in the Pores of Hyper-Cross-Linked Polystyrene: Control ofNanoparticle Growth and Morphology, Chem. Mater.,1999,11(11):3210-3215.
    [33] Davankov, V. A., Rogozhin, S. V. and Tsyurupa, M. P., US3729457,1971.
    [34] Davankov, V. A. and Tsyurupa, M. P., Structure and Properties of HypercrosslinkedPolystyrene--the First Representative of a New Class of Polymer Networks, React.Polym.,1990,13(1-2):27-42.
    [35] Tsyurupa, M. P. and Davankov, V. A., Hypercrosslinked Polymers: Basic Principleof Preparing the New Class of Polymeric Materials, React. Funct. Polym.,2002,53(2-3):193-203.
    [36] Veverka, P. and Jerabek, K., Mechanism of Hypercrosslinking ofChloromethylated Styrene-Divinylbenzene Copolymers, React. Funct. Polym.,1999,41(1-3):21-25.
    [37] Fontanals, N., Cortes, J., Galia, M., et al., Synthesis of Davankov-TypeHypercrosslinked Resins Using Different Isomer Compositions of VinylbenzylChloride Monomer, and Application in the Solid-Phase Extraction of PolarCompounds, J. Polym. Sci., Part A: Polym. Chem.,2005,43(8),1718-1728.
    [38] Ahn, J. H., Jang, J. E., Oh, C. G., et al., Rapid Generation and Control ofMicroporosity, Bimodal Pore Size Distribution, and Surface Area inDavankov-Type Hyper-Cross-Linked Resins, Macromolecules,2006,39(2),627-632.
    [39] Wood, C. D., Tan, B., Trewin, A., et al., Microporous Organic Polymers forMethane Storage, Adv. Mater.,2008,20(10):1916-1921.
    [40] Kitagawa, S., Kitaura, R. and Noro, S., Functional Porous Coordination Polymers,Angew. Chem. Int. Ed.,2004,43(18):2334-2375.
    [41] Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., et al., Reticular Synthesis and theDesign of New Materials, Nature,2003,423(6941):705-714.
    [42] Eddaoudi, M., Kim, J., Rosi, N., et al., Systematic Design of Pore Size andFunctionality in Isoreticular Mofs and Their Application in Methane Storage,Science,2002,295(5554):469-472.
    [43] El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., et al., Designed Synthesis of3d Covalent Organic Frameworks, Science,2007,316(5822):268-272.
    [44] Kuhn, P., Antonietti, M. and Thomas, A., Porous, Covalent Triazine-BasedFrameworks Prepared by Ionothermal Synthesis, Angew. Chem. Int. Ed.,2008,47(18):3450-3453.
    [45] Kuhn, P., Thomas, A. and Antonietti, M., Toward Tailorable Porous OrganicPolymer Networks: A High-Temperature Dynamic Polymerization Scheme BasedonAromatic Nitriles, Macromolecules,2009,42(1):319-326.
    [46] Uribe-Romo, F. J., Hunt, J. R., Furukawa, H., et al., A Crystalline Imine-Linked3-D Porous Covalent Organic Framework, J. Am. Chem. Soc.,2009,131(13):4570-4571.
    [47] Spitler, E. L. and Dichtel, W. R., Lewis Acid-Catalysed Formation ofTwo-Dimensional Phthalocyanine Covalent Organic Frameworks, Nat. Chem.,2010,2(8):672-677.
    [48] Jiang, J. X., Su, F., Niu, H., et al., Conjugated Microporous Poly(PhenyleneButadiynylene)S, Chem. Commun.,2008(4):486-488.
    [49] Weber, J. and Thomas, A., Toward Stable Interfaces in Conjugated Polymers:Microporous Poly(P-Phenylene) and Poly(Phenyleneethynylene) Based on aSpirobifluorene Building Block, J. Am. Chem. Soc.,2008,130(20):6334-6335.
    [50] Dawson, R., Su, F. B., Niu, H. J., et al., Mesoporous Poly(Phenylenevinylene)Networks, Macromolecules,2008,41(5):1591-1593.
    [51] Jiang, J. X., Trewin, A., Su, F. B., et al., MicroporousPoly(Tri(4-Ethynylphenyl)Amine) Networks: Synthesis, Properties, and AtomisticSimulation, Macromolecules,2009,42(7):2658-2666.
    [52] Jiang, J. X., Laybourn, A., Clowes, R., et al., High Surface Area ContortedConjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene,Macromolecules,2010,43(18):7577-7582.
    [53] Yuan, S. W., Dorney, B., White, D., et al., Microporous Polyphenylenes withTunable Pore Size for Hydrogen Storage, Chem. Commun.,2010,46(25):4547-4549.
    [54] Weber, J., Antonietti, M. and Thomas, A., Microporous Networks ofHigh-Performance Polymers: Elastic Deformations and Gas Sorption Properties,Macromolecules,2008,41(8):2880-2885.
    [55] Pandey, P., Katsoulidis, A. P., Eryazici, I., et al., Imine-Linked MicroporousPolymer Organic Frameworks, Chem. Mater.,2010,22(17):4974-4979.
    [56] Uribe-Romo, F. J., Hunt, J. R., Furukawa, H., et al., A Crystalline Imine-Linked3-D Porous Covalent Organic Framework, J. Am. Chem. Soc.,2009,131(13):4570-4571.
    [57] Schmidt, J., Weber, J., Epping, J. D., et al., Microporous ConjugatedPoly(Thienylene Arylene) Networks, Adv. Mater.,2009,21(6):702-705.
    [58] Holst, J. R., Sto ckel, E., Adams, D. J., et al., High Surface Area Networks fromTetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and“Click” Chemistry, Macromolecules,2010,43(20):8531-8538.
    [59] Pandey, P., Farha, O. K., Spokoyny, A. M., et al., A "Click-Based" Porous OrganicPolymer from Tetrahedral Building Blocks, J. Mater. Chem.,2011,21(6):1700-1703.
    [60] Ben, T., Ren, H., Ma, S., et al., Targeted Synthesis of a Porous AromaticFramework with High Stability and Exceptionally High Surface Area, Angew.Chem. Int. Ed.,2009,48(50):9457-9460.
    [61] Yuan, D., Lu, W., Zhao, D., et al., Highly Stable Porous Polymer Networks withExceptionally High Gas-Uptake Capacities, Adv. Mater.,2011,23(32):3723-3725.
    [62] Yuan, S. W., Kirklin, S., Dorney, B., et al., Nanoporous Polymers ContainingStereocontorted Cores for Hydrogen Storage, Macromolecules,2009,42(5):1554-1559.
    [63] Jiang, J.-X., Laybourn, A., Clowes, R., et al., High Surface Area ContortedConjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene,Macromolecules,2010,43(18):7577-7582.
    [64] Jiang, J. X., Su, F., Trewin, A., et al., Synthetic Control of the Pore Dimension andSurface Area in Conjugated Microporous Polymer and Copolymer Networks, J.Am. Chem. Soc.,2008,130(24):7710-7720.
    [65] Grant, P. M., Hydrogen Lifts Off--with a Heavy Load, Nature,2003,424(6945):129-130.
    [66] Kanan, M. W. and Nocera, D. G., In Situ Formation of an Oxygen-EvolvingCatalyst in Neutral Water Containing Phosphate and Co2+, Science,2008,321(5892):1072-1075.
    [67] Schlapbach, L. and Zuttel, A., Hydrogen-Storage Materials for MobileApplications, Nature,2001,414(6861):353-358.
    [68] Cummings, D. L. and Powers, G. J., The Storage of Hydrogen as Metal Hydrides,Ind. Eng. Chem., Process Des. Develop.,1974,13(2):182-192.
    [69] Chen, P., Xiong, Z., Luo, J., et al., Interaction of Hydrogen with Metal Nitrides andImides, Nature,2002,420(6913):302-304.
    [70] Chen, P., Wu, X., Lin, J., et al., High H2Uptake by Alkali-Doped CarbonNanotubes under Ambient Pressure and Moderate Temperatures, Science,1999,285(5424):91-93.
    [71] Nijkamp, M. G., Raaymakers, J., van Dillen, A. J., et al., Hydrogen Storage UsingPhysisorption-Materials Demands, Appl. Phys. A,2001,72(5):619-623.
    [72] Wong-Foy, A. G., Matzger, A. J. and Yaghi, O. M., Exceptional H2SaturationUptake in Microporous Metal-Organic Frameworks, J. Am. Chem. Soc.,2006,128(11):3494-3495.
    [73] McKeown N B, B. P. M., Book D, Microporous Polymers as Potential HydrogenStorage Materials, Macromol. Rapid Commun.,2007,28(9):995-1002.
    [74] Li, A., Lu, R. F., Wang, Y., et al., Lithium-Doped Conjugated MicroporousPolymers for Reversible Hydrogen Storage, Angew. Chem. Int. Ed.,2010,49(19):3330-3333.
    [75] Chen, Q., Luo, M., Hammersh j, P., et al., Microporous Polycarbazole with HighSpecific Surface Area for Gas Storage and Separation, J. Am. Chem. Soc.,2012,134(14):6084-6087.
    [76] Lastoskie, C., Caging Carbon Dioxide, Science,2010,330(6004):595-596.
    [77] Bert Metz, O. D., Heleen de Coninck, Manuela Loos and Leo Meyer CarbonDioxide Capture and Storage, IPCC [M]. Cambridge University Press, Cambridge,UK.,2005431.
    [78] Schreiber, A., Zapp, P. and Kuckshinrichs, W., Environmental Assessment ofGerman Electricity Generation from Coal-Fired Power Plants with Amine-BasedCarbon Capture, Int. J. Life Cycle Assess,2009,14(6):547-559.
    [79] Stopek, D. J., Madugula, R., Hasler, D., et al., Site Specific Considerations forCarbon Dioxide Capture at Existing Pc Plants, Mega Symposium Baltimore,Maryland,2008.
    [80] Ma, S. Q. and Zhou, H. C., Gas Storage in Porous Metal-Organic Frameworks forClean EnergyApplications, Chem. Commun.,2010,46(1):44-53.
    [81] Phan, A., Doonan, C. J., Uribe-Romo, F. J., et al., Synthesis, Structure, and CarbonDioxide Capture Properties of Zeolitic Imidazolate Frameworks, Acc. Chem. Res.,2010,43(1):58-67.
    [82] Millward, A. R. and Yaghi, O. M., Metal-Organic Frameworks with ExceptionallyHigh Capacity for Storage of Carbon Dioxide at Room Temperature, J. Am. Chem.Soc.,2005,127(51):17998-17999.
    [83] Llewellyn, P. L., Bourrelly, S., Serre, C., et al., High Uptakes of Co2and Ch4inMesoporous Metals-Organic Frameworks Mil-100and Mil-101, Langmuir,2008,24(14):7245-7250.
    [84] Czaja, A. U., Trukhan, N. and Muller, U., Industrial Applications of Metal-OrganicFrameworks, Chem. Soc. Rev.,2009,38(5):1284-1293.
    [85] Schr der, M., Jiang, J.-X. and Cooper, A., in Functional Metal-OrganicFrameworks: Gas Storage, Separation and Catalysis, Springer Berlin/Heidelberg,2010, pp.1-33.
    [86] Furukawa, H. and Yaghi, O. M., Storage of Hydrogen, Methane, and CarbonDioxide in Highly Porous Covalent Organic Frameworks for Clean EnergyApplications, J. Am. Chem. Soc.,2009,131(25):8875-8883.
    [87] Dawson, R., Adams, D. J. and Cooper, A. I., Chemical Tuning of CO2Sorption inRobust Nanoporous Organic Polymers, Chemical Science,2011,2(6):1173-1177.
    [88] Holst, J. R., St ckel, E., Adams, D. J., et al., High Surface Area Networks fromTetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and“Click” Chemistry, Macromolecules,2010,43(20):8531-8538.
    [89] Lu, W., Yuan, D., Sculley, J., et al., Sulfonate-Grafted Porous Polymer Networksfor Preferential CO2Adsorption at Low Pressure, J. Am. Chem. Soc.,2011,133(45):18126-18129.
    [90] Torrisi, A., Bell, R. G. and Mellot-Draznieks, C., Functionalized Mofs forEnhanced CO2Capture, Cryst. Growth Des.,2010,10(7):2839-2841.
    [91] Mackintosh, H. J., Budd, P. M. and McKeown, N. B., Catalysis by MicroporousPhthalocyanine and Porphyrin Network Polymers, J. Mater. Chem.,2007,18(5):573-578.
    [92] Du, X., Sun, Y. L., Tan, B. E., et al., Troger's Base-Functionalised OrganicNanoporous Polymer for Heterogeneous Catalysis, Chem. Commun.,2010,46(6):970-972.
    [93] Chen, L., Yang, Y. and Jiang, D. L., Cmps as Scaffolds for Constructing PorousCatalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity andSelectivity Based on Nanoporous Metalloporphyrin Polymers, J. Am. Chem. Soc.,2010,132(26):9138-9143.
    [94] Makhseed, S., Al-Kharafi, F., Samuel, J., et al., Catalytic Oxidation of SulphideIons Using a Novel Microporous Cobalt Phthalocyanine Network Polymer inAqueous Solution, Catal. Commun.,2009,10(9):1284-1287.
    [95] Jiang, J. X., Wang, C., Laybourn, A., et al., Metal–Organic ConjugatedMicroporous Polymers, Angew. Chem. Int. Ed.,2011,50(5):1072-1075.
    [96] Zhang, Y., Riduan, S. N. and Ying, J. Y., Microporous Polyisocyanurate and ItsApplication in Heterogeneous Catalysis, Chem.-Eur. J.,2009,15(5):1077-1081.
    [97] Xie, Z., Wang, C., deKrafft, K. E., et al., Highly Stable and Porous Cross-LinkedPolymers for Efficient Photocatalysis, J. Am. Chem. Soc.,2011,133(7):2056-2059.
    [98] Ding, S.-Y., Gao, J., Wang, Q., et al., Construction of Covalent OrganicFramework for Catalysis: Pd/Cof-Lzu1in Suzuki–Miyaura Coupling Reaction, J.Am. Chem. Soc.,2011,133(49):19816-19822.
    [99]高强,于万樵,季涛, et al.,活性炭纤维结构设计及功能控制,产业用纺织品,2007(20):42-45.
    [100] Fontanals, N., Galia, M., Cormack, P., et al., Evaluation of a NewHypercrosslinked Polymer as a Sorbent for Solid-Phase Extraction of PolarCompounds, J. Chromatogr., A,2005,1075(1-2):51-56.
    [101] McKeown, N. B. and Budd, P. M., Polymers of Intrinsic Microporosity (PIMs):Organic Materials for Membrane Separations, Heterogeneous Catalysis andHydrogen Storage, Chem. Soc. Rev.,2006,35,675-683.
    [102] Budd, P. M., Elabas, E. S., Ghanem, B. S., et al., Solution-Processed, OrganophilicMembrane Derived from a Polymer of Intrinsic Microporosity, Adv. Mater.,2004,16(5):456-459.
    [103] McKeown, N. B., Budd, P. M., Msayib, K. J., et al., Polymers of IntrinsicMicroporosity (PIMs): Bridging the Void between Microporous and PolymericMaterials, Chem.-Eur. J.,2005,11(9):2610-2620.
    [104] Park, H. B., Jung, C. H., Lee, Y. M., et al., Polymers with Cavities Tuned for FastSelective Transport of Small Molecules and Ions, Science,2007,318(5848):254-258.
    [105] Budd, P. M., Ghanem, B., Msayib, K., et al., A Nanoporous Network PolymerDerived from Hexaazatrinaphthylene with Potential as an Adsorbent and CatalystSupport, J. Mater. Chem.,2003,13(11):2721-2726.
    [106] Maffei, A. V., Budd, P. M. and McKeown, N. B., Adsorption Studies of aMicroporous Phthalocyanine Network Polymer, Langmuir,2006,22(9):4225-4229.
    [107] Ding, X., Chen, L., Honsho, Y., et al., An N-Channel Two-Dimensional CovalentOrganic Framework, J. Am. Chem. Soc.,2011,133(37):14510-14513.
    [108] Kou, Y., Xu, Y., Guo, Z., et al., Supercapacitive Energy Storage and Electric PowerSupply Using an Aza-Fused Π-Conjugated Microporous Framework, Angew. Chem.Int. Ed.,2011,123(37):8912-8916.
    [109] Xu, Y., Chen, L., Guo, Z., et al., Light-Emitting Conjugated Polymers withMicroporous Network Architecture: Interweaving Scaffold Promotes ElectronicConjugation, Facilitates Exciton Migration, and Improves Luminescence, J. Am.Chem. Soc.,2011,133(44):17622-17625.
    [1] McKeown, N. B. and Budd, P. M., Polymers of Intrinsic Microporosity (PIMs):Organic Materials for Membrane Separations, Heterogeneous Catalysis andHydrogen Storage, Chem. Soc. Rev.,2006,35(8):675-683.
    [2] Du, X., Sun, Y., Tan, B., et al., Troger's Base-Functionalised Organic NanoporousPolymer for Heterogeneous Catalysis, Chem. Commun.,2010,46(6):970-972.
    [3] Dang, D., Wu, P., He, C., et al., Homochiral Metal Organic Frameworks forHeterogeneous Asymmetric Catalysis, J. Am. Chem. Soc.,2010,132(41):14321-14323.
    [4] Furukawa, H. and Yaghi, O. M., Storage of Hydrogen, Methane, and CarbonDioxide in Highly Porous Covalent Organic Frameworks for Clean EnergyApplications, J. Am. Chem. Soc.,2009,131(25):8875-8883.
    [5] McKeown, N. B., Gahnem, B., Msayib, K. J., et al., Towards Polymer-BasedHydrogen Storage Materials: Engineering Ultramicroporous Cavities withinPolymers of Intrinsic Microporosity, Angew. Chem., Int. Ed.,2006,118(11):1836-1839.
    [6] Wood, C. D., Tan, B., Trewin, A., et al., Microporous Organic Polymers forMethane Storage, Adv. Mater.,2008,20(10):1916-1921.
    [7] Li, B., Huang, X., Liang, L., et al., Synthesis of Uniform Microporous PolymerNanoparticles and Their Applications for Hydrogen Storage, J. Mater. Chem.,2010,20(35):7444-7450.
    [8] Eddaoudi, M., Kim, J., Rosi, N., et al., Systematic Design of Pore Size andFunctionality in Isoreticular Mofs and Their Application in Methane Storage,Science,2002,295(5554):469-472.
    [9] Budd, P. M., Ghanem, B. S., Makhseed, S., et al., Polymers of IntrinsicMicroporosity (Pims): Robust, Solution-Processable, Organic NanoporousMaterials, Chem. Commun.,2004(2):230-231.
    [10] Cote, A. P., Benin, A. I., Ockwig, N. W., et al., Porous, Crystalline, CovalentOrganic Frameworks, Science,2005,310(5751):1166-1170.
    [11] El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., et al., Designed Synthesis of3d Covalent Organic Frameworks, Science,2007,316(5822):268-272.
    [12] Tsyurupa, M. P. and Davankov, V. A., Hypercrosslinked Polymers: Basic Principleof Preparing the New Class of Polymeric Materials, React. Funct. Polym.,2002,53(2-3):193-203.
    [13] Ahn, J. H., Jang, J. E., Oh, C. G., et al., Rapid Generation and Control ofMicroporosity, Bimodal Pore Size Distribution, and Surface Area inDavankov-Type Hyper-Cross-Linked Resins, Macromolecules,2006,39(2):627-632.
    [14] Jiang, J.-X., Su, F., Trewin, A., et al., Conjugated MicroporousPoly(Aryleneethynylene) Networks, Angew. Chem. Int. Ed.,2007,46(45):8574-8578.
    [15] Jiang, J. X., Su, F., Trewin, A., et al., Synthetic Control of the Pore Dimension andSurface Area in Conjugated Microporous Polymer and Copolymer Networks, J.Am. Chem. Soc.,2008,130(24):7710-7720.
    [16] Ben, T., Ren, H., Ma, S., et al., Targeted Synthesis of a Porous AromaticFramework with High Stability and Exceptionally High Surface Area13, Angew.Chem. Int. Ed.,2009,48(50):9457-9460.
    [17] Yuan, D., Lu, W., Zhao, D., et al., Highly Stable Porous Polymer Networks withExceptionally High Gas-Uptake Capacities, Adv. Mater.,2011,23(32):3723-3725.
    [18] Davankov, V. A., Rogozhin, S. V. and Tsyurupa, M. P., US3729457,1971.
    [19] Tsyurupa, M. P. and Davankov, V. A., Porous Structure of HypercrosslinkedPolystyrene: State-of-the-Art Mini-Review, React. Funct. Polym.,2006,66(7):768-779.
    [20] Chang, C.-F., Chang, C.-Y., Hsu, K.-E., et al., Adsorptive Removal of the PesticideMethomyl Using Hypercrosslinked Polymers, J. Hazard. Mater.,2008,155(1-2):295-304.
    [21] Davankov, V., Pavlova, L., Tsyurupa, M., et al., Polymeric Adsorbent forRemoving Toxic Proteins from Blood of Patients with Kidney Failure, J.Chromatogr. B,2000,739(1):73-80.
    [22] Tsyurupa, M. P., Tarabaeva, O. G., Pastukhov, A. V., et al., Sorption of Ions ofHeavy Metals by Neutral Hypercrosslinked Polystyrene, Int. J. Polym. Mater.,2003,52(5):403-414.
    [23] Li, B., Su, F., Luo, H.-K., et al., Hypercrosslinked Microporous Polymer Networksfor Effective Removal of Toxic Metal Ions from Water, Microporous MesoporousMater.,2011,138(1-3):207-214.
    [24] Long, C., Li, Q., Li, Y., et al., Adsorption Characteristics ofBenzene-Chlorobenzene Vapor on Hypercrosslinked Polystyrene Adsorbent and aPilot-Scale Application Study, Chemical Engineering Journal,2010,160(2):723-728.
    [25] Wood, C. D., Tan, B., Trewin, A., et al., Microporous Organic Polymers forMethane Storage, Adv. Mater.,2008,20(10):1916-1921.
    [26] Wood, C. D., Tan, B., Trewin, A., et al., Hydrogen Storage in MicroporousHypercrosslinked Organic Polymer Networks, Chem. Mater.,2007,19(8):2034-2048.
    [27] Davankov, V., Tsyurupa, M., Ilyin, M., et al., Hypercross-Linked Polystyrene andIts Potentials for Liquid Chromatography: AMini-Review, J. Chromatogr. A,2002,965(1-2):65-73.
    [28] Sychov, C. S., Ilyin, M. M., Davankov, V. A., et al., Elucidation of RetentionMechanisms on Hypercrosslinked Polystyrene Used as Column Packing Materialfor High-Performance Liquid Chromatography, J. Chromatogr. A,2004,1030(1-2):17-24.
    [29] Sidorov, S. N., Volkov, I. V., Davankov, V. A., et al., Platinum-ContainingHyper-Cross-Linked Polystyrene as a Modifier-Free Selective Catalyst forL-Sorbose Oxidation, J. Am. Chem. Soc.,2001,123(43):10502-10510.
    [30] Sidorov, S. N., Bronstein, L. M., Davankov, V. A., et al., Cobalt NanoparticleFormation in the Pores of Hyper-Cross-Linked Polystyrene: Control ofNanoparticle Growth and Morphology, Chem. Mater.,1999,11(11):3210-3215.
    [31] Davankov, V. A. and Tsyurupa, M. P., Structure and Properties of HypercrosslinkedPolystyrene--the First Representative of a New Class of Polymer Networks, React.Polym.,1990,13(1-2):27-42.
    [32] Tsyurupa, M. P. and Davankov, V. A., Hypercrosslinked Polymers: Basic Principleof Preparing the New Class of Polymeric Materials, React. Funct. Polym.,2002,53(2-3):193-203.
    [33] Veverka, P. and Jerabek, K., Mechanism of Hypercrosslinking ofChloromethylated Styrene-Divinylbenzene Copolymers, React. Funct. Polym.,1999,41(1-3):21-25.
    [34] Fontanals, N., Cortes, J., Galia, M., et al., Synthesis of Davankov-TypeHypercrosslinked Resins Using Different Isomer Compositions of VinylbenzylChloride Monomer, and Application in the Solid-Phase Extraction of PolarCompounds, J. Polym. Sci., Part A: Polym. Chem.,2005,43(8):1718-1728.
    [35] Nijkamp, M. G., Raaymakers, J., van Dillen, A. J., et al., Hydrogen Storage UsingPhysisorption-Materials Demands, Appl. Phys. A: Mater. Sci. Process.,2001,72(5):619-623.
    [36] Martín, C. F., St ckel, E., Clowes, R., et al., Hypercrosslinked Organic PolymerNetworks as Potential Adsorbents for Pre-Combustion Co2Capture, J. Mater.Chem.,2011,21(14):5475.
    [1] McKeown, N. B. and Budd, P. M., Polymers of Intrinsic Microporosity (PIMs):Organic Materials for Membrane Separations, Heterogeneous Catalysis andHydrogen Storage, Chem. Soc. Rev.,2006,35(8):675-683.
    [2] Li, B., Su, F., Luo, H.-K., et al., Hypercrosslinked Microporous Polymer Networksfor Effective Removal of Toxic Metal Ions from Water, Microporous MesoporousMater.,2011,138(1-3):207-214.
    [3] Du, X., Sun, Y., Tan, B., et al., Troger's Base-Functionalised Organic NanoporousPolymer for Heterogeneous Catalysis, Chem. Commun.,2010,46(6):970-972.
    [4] Dang, D., Wu, P., He, C., et al., Homochiral Metal Organic Frameworks forHeterogeneous Asymmetric Catalysis, J. Am. Chem. Soc.,2010,132(41):14321-14323.
    [5] Furukawa, H. and Yaghi, O. M., Storage of Hydrogen, Methane, and CarbonDioxide in Highly Porous Covalent Organic Frameworks for Clean EnergyApplications, J. Am. Chem. Soc.,2009,131(25):8875-8883.
    [6] Wood, C. D., Tan, B., Trewin, A., et al., Microporous Organic Polymers forMethane Storage, Adv. Mater.,2008,20(10):1916-1921.
    [7] Li, B., Huang, X., Liang, L., et al., Synthesis of Uniform Microporous PolymerNanoparticles and Their Applications for Hydrogen Storage, J. Mater. Chem.,2010,20(35):7444-7450.
    [8] Holst, J. R. and Cooper, A. I., Ultrahigh Surface Area in Porous Solids, Adv. Mater.,2010,22(45):5212-5216.
    [9] McKeown, N. B., Gahnem, B., Msayib, K. J., et al., Towards Polymer-BasedHydrogen Storage Materials: Engineering Ultramicroporous Cavities withinPolymers of Intrinsic Microporosity, Angew. Chem., Int. Ed.,2006,118(11):1836-1839.
    [10] Ferey, G., Mellot-Draznieks, C., Serre, C., et al., A Chromium Terephthalate-BasedSolid with Unusually Large Pore Volumes and Surface Area, Science,2005,309(5743):2040-2042.
    [11] Tozawa, T., Jones, J. T. A., Swamy, S. I., et al., Porous Organic Cages, Nat. Mater.,2009,8(12):973-978.
    [12] Jiang, J.-X. and Cooper, A., in Functional Metal-Organic Frameworks: GasStorage, Separation and Catalysis, ed. M. Schr der, Springer Berlin/Heidelberg,2010, pp.1-33.
    [13] Davankov, V. A., Rogozhin, S. V. and Tsyurupa, M. P., US3729457,1971.
    [14] Ahn, J. H., Jang, J. E., Oh, C. G., et al., Rapid Generation and Control ofMicroporosity, Bimodal Pore Size Distribution, and Surface Area inDavankov-Type Hyper-Cross-Linked Resins, Macromolecules,2006,39(2)627-632.
    [15] Macintyre, F. S., Sherrington, D. C. and Tetley, L., Synthesis of Ultrahigh SurfaceArea Monodisperse Porous Polymer Nanospheres, Macromolecules,2006,39(16):5381-5384.
    [16] Tsyurupa, M. P. and Davankov, V. A., Porous Structure of HypercrosslinkedPolystyrene: State-of-the-Art Mini-Review, React. Funct. Polym.,2006,66(7):768-779.
    [17] Germain, J., Frechet, J. M. J. and Svec, F., Nanoporous, HypercrosslinkedPolypyrroles: Effect of Crosslinking Moiety on Pore Size and Selective GasAdsorption, Chem. Commun.,2009(12):1526-1528.
    [18] Germain, J., Svec, F. and Frechet, J. M. J., Preparation of Size-SelectiveNanoporous Polymer Networks of Aromatic Rings: Potential Adsorbents forHydrogen Storage, Chem. Mater.,2008,20(22):7069-7076.
    [19] Cote, A. P., Benin, A. I., Ockwig, N. W., et al., Porous, Crystalline, CovalentOrganic Frameworks, Science,2005,310(5751):1166-1170.
    [20] El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., et al., Designed Synthesis of3d Covalent Organic Frameworks, Science,2007,316(5822):268-272.
    [21] McKeown, N. B., Gahnem, B., Msayib, K. J., et al., Towards Polymer-BasedHydrogen Storage Materials: Engineering Ultramicroporous Cavities withinPolymers of Intrinsic Microporosity, Angew. Chem. Int. Ed.,2006,118(11):1836-1839.
    [22] Jiang, J. X., Su, F., Trewin, A., et al., Synthetic Control of the Pore Dimension andSurface Area in Conjugated Microporous Polymer and Copolymer Networks, J.Am. Chem. Soc.,2008,130(24):7710-7720.
    [23] Schmidt, J., Werner, M. and Thomas, A., Conjugated Microporous PolymerNetworks Via Yamamoto Polymerization, Macromolecules,2009,42(13):4426-4429.
    [24] Ben, T., Ren, H., Ma, S., et al., Targeted Synthesis of a Porous AromaticFramework with High Stability and Exceptionally High Surface Area, Angew.Chem. Int. Ed.,2009,48(50):9457-9460.
    [25] Yuan, S., Dorney, B., White, D., et al., Microporous Polyphenylenes with TunablePore Size for Hydrogen Storage, Chem. Commun.,2010,46(25):4547-4549.
    [26] Kuhn, P., Antonietti, M. and Thomas, A., Porous, Covalent Triazine-BasedFrameworks Prepared by Ionothermal Synthesis, Angew. Chem. Int. Ed.,2008,47(18):3450-3453.
    [27] Weber, J., Antonietti, M. and Thomas, A., Microporous Networks ofHigh-Performance Polymers: Elastic Deformations and Gas Sorption Properties,Macromolecules,2008,41(8):2880-2885.
    [28] Pandey, P., Katsoulidis, A. P., Eryazici, I., et al., Imine-Linked MicroporousPolymer Organic Frameworks, Chem. Mater.,2010,22(17):4974-4979.
    [29] Holst, J. R., Sto ckel, E., Adams, D. J., et al., High Surface Area Networks fromTetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and“Click” Chemistry, Macromolecules,2010,43(20):8531-8538.
    [30] Pandey, P., Farha, O. K., Spokoyny, A. M., et al., A "Click-Based" Porous OrganicPolymer from Tetrahedral Building Blocks, J. Mater. Chem.,2011,21(6):1700-1703.
    [31] Yuan, S. W., Kirklin, S., Dorney, B., et al., Nanoporous Polymers ContainingStereocontorted Cores for Hydrogen Storage, Macromolecules,2009,42(5):1554-1559.
    [32] Jiang, J.-X., Laybourn, A., Clowes, R., et al., High Surface Area ContortedConjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene,Macromolecules,2010,43(18):7577-7582.
    [33] Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., Reporting Physisorption Datafor Gas/Solid Systems with Special Reference to the Determination of SurfaceArea and Porosity, Pure&Appl. Chem.,1985,57(4):603-619.
    [34] Wood, C. D., Tan, B., Trewin, A., et al., Hydrogen Storage in MicroporousHypercrosslinked Organic Polymer Networks, Chem. Mater.,2007,19(8):2034-2048.
    [35] Trewin, A., Willock, D. J. and Cooper, A. I., Atomistic Simulation of MicroporeStructure, Surface Area, and Gas Sorption Properties for Amorphous MicroporousPolymer Networks, J. Phys. Chem. C,2008,112(51):20549-20559.
    [36] Connolly, M., Solvent-Accessible Surfaces of Proteins and Nucleic Acids, Science,1983,221(4612):709-713.
    [37] Dawson, R., Laybourn, A., Clowes, R., et al., Functionalized ConjugatedMicroporous Polymers, Macromolecules,2009,42(22):8809-8816.
    [38] Jiang, J.-X., Wang, C., Laybourn, A., et al., Metal–Organic ConjugatedMicroporous Polymers, Angew. Chem. Int. Ed.,2011,50(5):1072-1075.
    [1] Ben, T., Ren, H., Ma, S., et al., Targeted Synthesis of a Porous AromaticFramework with High Stability and Exceptionally High Surface Area, Angew.Chem. Int. Ed.,2009,48(50):9457-9460.
    [2] Chen, L., Yang, Y. and Jiang, D., Cmps as Scaffolds for Constructing PorousCatalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity andSelectivity Based on Nanoporous Metalloporphyrin Polymers, J. Am. Chem. Soc.,2010,132(26):9138-9143.
    [3] Jiang, J.-X., Su, F., Trewin, A., et al., Conjugated MicroporousPoly(Aryleneethynylene) Networks, Angew. Chem. Int. Ed.,2007,46(45):8574-8578.
    [4] Ding, X., Chen, L., Honsho, Y., et al., An N-Channel Two-Dimensional CovalentOrganic Framework, J. Am. Chem. Soc.,2011,133(37):14510-14513.
    [5] Kou, Y., Xu, Y., Guo, Z., et al., Supercapacitive Energy Storage and Electric PowerSupply Using an Aza-Fused Π-Conjugated Microporous Framework, Angew. Chem.Int. Ed.,2011,123(37):8912-8916.
    [6] Xu, Y., Chen, L., Guo, Z., et al., Light-Emitting Conjugated Polymers withMicroporous Network Architecture: Interweaving Scaffold Promotes ElectronicConjugation, Facilitates Exciton Migration, and Improves Luminescence, J. Am.Chem. Soc.,2011,133(44):17622-17625.
    [7] Nenitzesou, C. D. and Balaban, A. T., eds.,"Friedel-Crafts and Related Reactions,"Vol.11, G. A. Olah, Ed., Interscience, New York, N. Y.,1964, p979.
    [8] Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., Reporting Physisorption Datafor Gas/Solid Systems with Special Reference to the Determination of SurfaceArea and Porosity, Pure&Appl. Chem.,1985,57(4):603-619.
    [1] Davis, M. E., Ordered Porous Materials for Emerging Applications, Nature,2002,417(6891):813-821.
    [2] Liu, J., Stace-Naughton, A., Jiang, X., et al., Porous Nanoparticle Supported LipidBilayers (Protocells) as Delivery Vehicles, J. Am. Chem. Soc.,2009,131(4):1354-1355.
    [3] Torney, F., Trewyn, B. G., Lin, V. S. Y., et al., Mesoporous Silica NanoparticlesDeliver DNAand Chemicals into Plants, Nat. Nanotechnol.,2007,2(5):295-300.
    [4] Uemura, T., Hoshino, Y., Kitagawa, S., et al., Effect of Organic Polymer Additiveon Crystallization of Porous Coordination Polymer, Chem. Mater.,2006,18(4):992-995.
    [5] Wang, Y., Price, A. D. and Caruso, F., Nanoporous Colloids: Building Blocks for aNew Generation of Structured Materials, J. Mater. Chem.,2009,19,6451-6464.
    [6] Ahn, J. H., Jang, J. E., Oh, C. G., et al., Rapid Generation and Control ofMicroporosity, Bimodal Pore Size Distribution, and Surface Area inDavankov-Type Hyper-Cross-Linked Resins, Macromolecules,2006,39627-632.
    [7] Davankov, V. A., Rogozhin, S. V. and Tsyurupa, M. P., US,1971.
    [8] Penner, N., Nesterenko, P., Ilyin, M., et al., Investigation of the Properties ofHypercrosslinked Polystyrene as a Stationary Phase for High-Performance LiquidChromatography, Chromatographia,1999,50(9):611-620.
    [9] Davankov, V. A., Sychov, C. S., Ilyin, M. M., et al., Hypercrosslinked Polystyreneas a Novel Type of High-Performance Liquid Chromatography Column PackingMaterial: Mechanisms of Retention, Journal of Chromatography A,2003,987(1-2):67-75.
    [10] Macintyre, F. S., Sherrington, D. C. and Tetley, L., Synthesis of Ultrahigh SurfaceArea Monodisperse Porous Polymer Nanospheres, Macromolecules,2006,39(16):5381-5384.
    [11] Liu, Q., Monodisperse Polystyrene Nanospheres with Ultrahigh Surface Area:Application for Hydrogen Storage, Macromol. Chem. Phys.,2010,211(9):1012-1017.
    [12] Davankov, V. A., Ilyin, M. M., Tsyurupa, M. P., et al., From a DissolvedPolystyrene Coil to an Intramolecularly-Hyper-Cross-Linked "Nanosponge",Macromolecules,1996,29(26):8398-8403.
    [13] Davankov, V. A., Timofeeva, G. I., Ilyin, M. M., et al., Formation of RegularClusters through Self-Association of Intramolecularly HypercrosslinkedPolystyrene-Type Nanosponges, Journal of Polymer Science Part A: PolymerChemistry,1997,35(17):3847-3852.
    [14] Grant, P. M., Hydrogen Lifts Off [Mdash] with a Heavy Load, Nature,2003,424(6945):129-130.
    [15] Schlapbach, L. and Zuttel, A., Hydrogen-Storage Materials for MobileApplications, Nature,2001,414(6861):353-358.
    [16] Bhatia, S. K. and Myers, A. L., Optimum Conditions for Adsorptive Storage,Langmuir,2006,22,(4)1688-1700.
    [17] Wood, C. D., Tan, B., Trewin, A., et al., Hydrogen Storage in MicroporousHypercrosslinked Organic Polymer Networks, Chem. Mater.,2007,19(8):2034-2048.
    [18] Harkins, W. D., AGeneral Theory of the Mechanism of Emulsion Polymerization1,J. Am. Chem. Soc.,1947,69(6):1428-1444.
    [19] Rouquerol, J., Avnir, D., Fairbridge, C. W., et al., Physical and BiophysicalChemistry Division Commission on Colloid and Surface Chemistry IncludingCatalysis-Recommendations for the Characterization of Porous Solids (TechnicalReport), Pure Appl. Chem.,1994,66(8):1739-1758.
    [20] Rouquerol, F., Rouquerol, J. and Sing, K., Adsorption by Powders and PorousSolids., Academic Press (London),1999.
    [21] Sun, Z., Bai, F., Wu, H., et al., Hydrogen-Bonding-Assisted Self-Assembly:Monodisperse Hollow Nanoparticles Made Easy, J. Am. Chem. Soc.,2009,131(38):13594-13595.
    [1] McKeown, N. B. and Budd, P. M., Polymers of Intrinsic Microporosity (PIMs):Organic Materials for Membrane Separations, Heterogeneous Catalysis andHydrogen Storage, Chem. Soc. Rev.,2006,35675-683.
    [2] Li, B., Su, F., Luo, H.-K., et al., Hypercrosslinked Microporous Polymer Networksfor Effective Removal of Toxic Metal Ions from Water, Microporous MesoporousMater.,2011,138(1-3):207-214.
    [3] Du, X., Sun, Y., Tan, B., et al., Troger's Base-Functionalised Organic NanoporousPolymer for Heterogeneous Catalysis, Chem. Commun.,2010,46(6):970-972.
    [4] Dang, D., Wu, P., He, C., et al., Homochiral Metal Organic Frameworks forHeterogeneous Asymmetric Catalysis, J. Am. Chem. Soc.,2010,132(41):14321-14323.
    [5] Furukawa, H. and Yaghi, O. M., Storage of Hydrogen, Methane, and CarbonDioxide in Highly Porous Covalent Organic Frameworks for Clean EnergyApplications, J. Am. Chem. Soc.,2009,131(25):8875-8883.
    [6] McKeown, N. B., Gahnem, B., Msayib, K. J., et al., Towards Polymer-BasedHydrogen Storage Materials: Engineering Ultramicroporous Cavities withinPolymers of Intrinsic Microporosity, Angew. Chem., Int. Ed.,2006,118(11):1836-1839.
    [7] Wood, C. D., Tan, B., Trewin, A., et al., Microporous Organic Polymers forMethane Storage, Adv. Mater.,2008,20(10):1916-1921.
    [8] Li, B., Huang, X., Liang, L., et al., Synthesis of Uniform Microporous PolymerNanoparticles and Their Applications for Hydrogen Storage, J. Mater. Chem.,2010,20(35):7444-7450.
    [9] Holst, J. R. and Cooper, A. I., Ultrahigh Surface Area in Porous Solids, Adv. Mater.,2010,22(45):5212-5216.
    [10] Ferey, G., Mellot-Draznieks, C., Serre, C., et al., A Chromium Terephthalate-BasedSolid with Unusually Large Pore Volumes and Surface Area, Science,2005,309(5743):2040-2042.
    [11] Cote, A. P., Benin, A. I., Ockwig, N. W., et al., Porous, Crystalline, CovalentOrganic Frameworks, Science,2005,310(5751):1166-1170.
    [12] El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., et al., Designed Synthesis of3d Covalent Organic Frameworks, Science,2007,316(5822):268-272.
    [13] Tozawa, T., Jones, J. T. A., Swamy, S. I., et al., Porous Organic Cages, Nat. Mater.,2009,8(12):973-978.
    [14] Jiang, J.-X. and Cooper, A., in Functional Metal-Organic Frameworks: GasStorage, Separation and Catalysis, ed. M. Schr der, Springer Berlin/Heidelberg,2010, pp.1-33.
    [15] Du, X., Sun, Y., Tan, B., et al., Troger's Base-Functionalised Organic NanoporousPolymer for Heterogeneous Catalysis, Chem. Commun.,2010,46(6):970-972.
    [16] Jiang, J.-X., Wang, C., Laybourn, A., et al., Metal–Organic ConjugatedMicroporous Polymers, Angew. Chem. Int. Ed.,2011,50(5):1072-1075.
    [17] Xie, Z., Wang, C., deKrafft, K. E., et al., Highly Stable and Porous Cross-LinkedPolymers for Efficient Photocatalysis, J. Am. Chem. Soc.,2011,133(7):2056-2059.
    [18] Chen, L., Yang, Y. and Jiang, D., Cmps as Scaffolds for Constructing PorousCatalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity andSelectivity Based on Nanoporous Metalloporphyrin Polymers, J. Am. Chem. Soc.,2010,132(26):9138-9143.
    [19] Mackintosh, H. J., Budd, P. M. and McKeown, N. B., Catalysis by MicroporousPhthalocyanine and Porphyrin Network Polymers, J. Mater. Chem.,2008,18(5):573-578.
    [20] Shultz, A. M. S. A. M., Farha, O. K., Hupp, J. T., et al., Synthesis of CatalyticallyActive Porous Organic Polymers from Metalloporphyrin Building Blocks, Chem.Sci.,2011,2(4):686-689.
    [21] Miyaura, N., Yamada, K. and Suzuki, A., ANew Stereospecific Cross-Coupling bythe Palladium-Catalyzed Reaction of1-Alkenylboranes with1-Alkenyl or1-Alkynyl Halides, Tetrahedron Lett.,1979,20(36):3437-3440.
    [22] Miyaura, N. and Suzuki, A., Palladium-Catalyzed Cross-Coupling Reactions ofOrganoboron Compounds, Chem. Rev.,1995,95(7):2457-2483.
    [23] Wu, X. F., Anbarasan, P., Neumann, H., et al., From Noble Metal to Nobel Prize:Palladium\Catalyzed Coupling Reactions as Key Methods in Organic Synthesis,Angew. Chem. Int. Ed.,2010,49(48):9047-9050.
    [24] Littke, A. F. and Fu, G. C., Palladium-Catalyzed Coupling Reactions of ArylChlorides, Angew. Chem. Int. Ed.,2002,41(22):4176-4211.
    [25] Nicolaou, K., Bulger, P. G. and Sarlah, D., Palladium-Catalyzed Cross-CouplingReactions in Total Synthesis, Angew. Chem. Int. Ed.,2005,44(29):4442-4489.
    [26] Martin, R. and Buchwald, S. L., Palladium-Catalyzed Suzuki-MiyauraCross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands, Acc.Chem. Res.,2008,41(11):1461-1473.
    [27] Arpad, M., Efficient, Selective, and Recyclable Palladium Catalysts inCarbon-Carbon Coupling Reactions, Chem. Rev.,2011,111(3):2251-2320.
    [28] Jana, R., Pathak, T. P. and Sigman, M. S., Advances in Transition Metal(Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-Organometallics asReaction Partners, Chem. Rev.,2011,111(3):1417-1492.
    [29] Altenhoff, G., Goddard, R., Lehmann, C. W., et al., An N-Heterocyclic CarbeneLigand with Flexible Steric Bulk Allows Suzuki Cross-Coupling of StericallyHindered Aryl Chlorides at Room Temperature, Angew. Chem. Int. Ed.,2003,42(31):3690-3693.
    [30] Herrmann, W. A., fele, K., Schneider, S. K., et al., A Carbocyclic Carbene as anEfficient Catalyst Ligand for C C Coupling Reactions, Angew. Chem. Int. Ed.,2006,45(23):3859-3862.
    [31] Tang, W. J., Capacci, A. G., Wei, X. D., et al., A General and Special Catalyst forSuzuki-Miyaura Coupling Processes, Angew. Chem. Int. Ed.,2010,49(34):5879-5883.
    [32] Lee, D. H. and Jin, M. J., An Extremely Active and General Catalyst for SuzukiCoupling Reaction of Unreactive Aryl Chlorides, Org. Lett.,2011,13(2):252-255.
    [33] Snelders, D. J. M., van Koten, G. and Gebbink, R., Hexacationic DendriphosLigands in the Pd-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction: Scope andMechanistic Studies, J. Am. Chem. Soc.,2009,131(32):11407-11416.
    [34] Phan, N. T. S., Van Der Sluys, M. and Jones, C. W., On the Nature of the ActiveSpecies in Palladium Catalyzed Mizoroki¨Check and Suzuki¨CmiyauraCouplings¨Chomogeneous or Heterogeneous Catalysis, a Critical Review, Adv.Synth. Catal.,2006,348(6):609-679.
    [35] Yin, L. and Liebscher, J., Carbon-Carbon Coupling Reactions Catalyzed byHeterogeneous Palladium Catalysts, Chem. Rev.,2007,107(1):133-173.
    [36] Han, J., Liu, Y. and Guo, R., Facile Synthesis of Highly Stable Gold Nanoparticlesand Their Unexpected Excellent Catalytic Activity for Suzuki-MiyauraCross-Coupling Reaction in Water, J. Am. Chem. Soc.,2009,131(6):2060-2061.
    [37] Yuan, B. Z., Pan, Y. Y., Li, Y. W., et al., AHighly Active Heterogeneous PalladiumCatalyst for the Suzuki-Miyaura and Ullmann Coupling Reactions of ArylChlorides in Aqueous Media, Angew. Chem. Int. Ed.,2010,49(24):4054-4058.
    [38] Jin, M. J. and Lee, D. H., A Practical Heterogeneous Catalyst for the Suzuki,Sonogashira, and Stille Coupling Reactions of Unreactive Aryl Chlorides, Angew.Chem. Int. Ed.,2010,49(6):1119-1122.
    [39] Yang, W. B., Liu, C. and Qiu, J. S., In Situ Formation of N,O-Bidentate Ligand Viathe Hydrogen Bond for Highly Efficient Suzuki Reaction of Aryl Chlorides, Chem.Commun.,2010,46(15):2659-2661.
    [40] Karimi, B., Elhamifar, D., Clark, J. H., et al., Ordered Mesoporous Organosilicawith Ionic-Liquid Framework: An Efficient and Reusable Support for thePalladium-Catalyzed Suzuki-Miyaura Coupling Reaction in Water, Chem.-Eur. J.,2010,16(27):8047-8053.
    [41] Shylesh, S., Wang, L. and Thiel, W. R., Palladium (Ii)-Phosphine ComplexesSupported on Magnetic Nanoparticles: Filtration-Free, Recyclable Catalysts forSuzuki-Miyaura Cross-Coupling Reactions, Adv. Synth. Catal.,2010,352(2-3):425-432.
    [42] Miyaura, N., Yanagi, T. and Suzuki, A., The Palladium-Catalyzed Cross-CouplingReaction of Phenylboronic Acid with Haloarenes in the Presence of Bases, Synth.Commun.,1981,11(7):513-519.
    [43] Inada, K. and Miyaura, N., The Cross-Coupling Reaction of Arylboronic Acidswith Chloropyridines and Electron-Deficient Chloroarenes Catalyzed by aPolymer-Bound Palladium Complex, Tetrahedron,2000,56(44):8661-8664.
    [44] Shin, J., Bertoia, J., Czerwinski, K. R., et al., A New Homogeneous PolymerSupport Based on Syndiotactic Polystyrene and Its Application inPalladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions, Green Chem.,2009,11(10):1576-1580.
    [45] Zapf, A., Ehrentraut, A. and Beller, M., A New Highly Efficient Catalyst Systemfor the Coupling of Nonactivated and Deactivated Aryl Chlorides with ArylboronicAcids, Angew. Chem. Int. Ed.,2000,39(22):4153-4155.
    [46] Akiyama, R. and Kobayashi, S., The Polymer Incarcerated Method for thePreparation of Highly Active Heterogeneous Palladium Catalysts, J. Am. Chem.Soc.,2003,125(12):3412-3413.
    [47] Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., Reporting Physisorption Datafor Gas/Solid Systems with Special Reference to the Determination of SurfaceArea and Porosity, Pure&Appl. Chem.,1985,57(4):603-619.
    [1] McKeown, N. B. and Budd, P. M., Polymers of Intrinsic Microporosity (PIMs):Organic Materials for Membrane Separations, Heterogeneous Catalysis andHydrogen Storage, Chem. Soc. Rev.,2006,35675-683.
    [2] Li, B., Su, F., Luo, H.-K., et al., Hypercrosslinked Microporous Polymer Networksfor Effective Removal of Toxic Metal Ions from Water, Microporous MesoporousMater.,2011,138(1-3):207-214.
    [3] Du, X., Sun, Y., Tan, B., et al., Troger's Base-Functionalised Organic NanoporousPolymer for Heterogeneous Catalysis, Chem. Commun.,2010,46(6):970-972.
    [4] Dang, D., Wu, P., He, C., et al., Homochiral Metal Organic Frameworks forHeterogeneous Asymmetric Catalysis, J. Am. Chem. Soc.,2010,132(41):14321-14323.
    [5] Furukawa, H. and Yaghi, O. M., Storage of Hydrogen, Methane, and CarbonDioxide in Highly Porous Covalent Organic Frameworks for Clean EnergyApplications, J. Am. Chem. Soc.,2009,131(25):8875-8883.
    [6] McKeown, N. B., Gahnem, B., Msayib, K. J., et al., Towards Polymer-BasedHydrogen Storage Materials: Engineering Ultramicroporous Cavities withinPolymers of Intrinsic Microporosity, Angew. Chem., Int. Ed.,2006,118(11):1836-1839.
    [7] Wood, C. D., Tan, B., Trewin, A., et al., Microporous Organic Polymers forMethane Storage, Adv. Mater.,2008,20(10):1916-1921.
    [8] Li, B., Huang, X., Liang, L., et al., Synthesis of Uniform Microporous PolymerNanoparticles and Their Applications for Hydrogen Storage, J. Mater. Chem.,2010,20(35):7444-7450.
    [9] Holst, J. R. and Cooper, A. I., Ultrahigh Surface Area in Porous Solids, Adv. Mater.,2010,22(45):5212-5216.
    [10] Ferey, G., Mellot-Draznieks, C., Serre, C., et al., A Chromium Terephthalate-BasedSolid with Unusually Large Pore Volumes and Surface Area, Science,2005,309(5743):2040-2042.
    [11] Cote, A. P., Benin, A. I., Ockwig, N. W., et al., Porous, Crystalline, CovalentOrganic Frameworks, Science,2005,310(5751):1166-1170.
    [12] El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., et al., Designed Synthesis of3d Covalent Organic Frameworks, Science,2007,316(5822):268-272.
    [13] Tozawa, T., Jones, J. T. A., Swamy, S. I., et al., Porous Organic Cages, Nat. Mater.,2009,8(12):973-978.
    [14] Jiang, J.-X. and Cooper, A., in Functional Metal-Organic Frameworks: GasStorage, Separation and Catalysis, ed. M. Schr der, Springer Berlin/Heidelberg,2010, pp.1-33.
    [15] Du, X., Sun, Y., Tan, B., et al., Troger's Base-Functionalised Organic NanoporousPolymer for Heterogeneous Catalysis, Chem. Commun.,2010,46(6):970-972.
    [16] Jiang, J.-X., Wang, C., Laybourn, A., et al., Metal–Organic ConjugatedMicroporous Polymers, Angew. Chem. Int. Ed.,2011,50(5):1072-1075.
    [17] Xie, Z., Wang, C., deKrafft, K. E., et al., Highly Stable and Porous Cross-LinkedPolymers for Efficient Photocatalysis, J. Am. Chem. Soc.,2011,133(7):2056-2059.
    [18] Chen, L., Yang, Y. and Jiang, D., Cmps as Scaffolds for Constructing PorousCatalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity andSelectivity Based on Nanoporous Metalloporphyrin Polymers, J. Am. Chem. Soc.,2010,132(26):9138-9143.
    [19] Mackintosh, H. J., Budd, P. M. and McKeown, N. B., Catalysis by MicroporousPhthalocyanine and Porphyrin Network Polymers, J. Mater. Chem.,2008,18(5):573-578.
    [20] Shultz, A. M. S. A. M., Farha, O. K., Hupp, J. T., et al., Synthesis of CatalyticallyActive Porous Organic Polymers from Metalloporphyrin Building Blocks, Chem.Sci.,2011,2(4):686-689.
    [21] Miyaura, N., Yamada, K. and Suzuki, A., ANew Stereospecific Cross-Coupling bythe Palladium-Catalyzed Reaction of1-Alkenylboranes with1-Alkenyl or1-Alkynyl Halides, Tetrahedron Lett.,1979,20(36):3437-3440.
    [22] Miyaura, N. and Suzuki, A., Palladium-Catalyzed Cross-Coupling Reactions ofOrganoboron Compounds, Chem. Rev.,1995,95(7):2457-2483.
    [23] Wu, X. F., Anbarasan, P., Neumann, H., et al., From Noble Metal to Nobel Prize:Palladium\Catalyzed Coupling Reactions as Key Methods in Organic Synthesis,Angew. Chem. Int. Ed.,2010,49(48):9047-9050.
    [24] Littke, A. F. and Fu, G. C., Palladium-Catalyzed Coupling Reactions of ArylChlorides, Angew. Chem. Int. Ed.,2002,41(22):4176-4211.
    [25] Nicolaou, K., Bulger, P. G. and Sarlah, D., Palladium\CatalyzedCross\Coupling Reactions in Total Synthesis, Angew. Chem. Int. Ed.,2005,44(29):4442-4489.
    [26] Martin, R. and Buchwald, S. L., Palladium-Catalyzed Suzuki-MiyauraCross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands, Acc.Chem. Res.,2008,41(11):1461-1473.
    [27] Arpad, M., Efficient, Selective, and Recyclable Palladium Catalysts inCarbon-Carbon Coupling Reactions, Chem. Rev.,2011,111(3):2251-2320.
    [28] Jana, R., Pathak, T. P. and Sigman, M. S., Advances in Transition Metal(Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-Organometallics asReaction Partners, Chem. Rev.,2011,111(3):1417-1492.
    [29] Altenhoff, G., Goddard, R., Lehmann, C. W., et al., An N\Heterocyclic CarbeneLigand with Flexible Steric Bulk Allows Suzuki Cross\Coupling of StericallyHindered Aryl Chlorides at Room Temperature, Angew. Chem. Int. Ed.,2003,42(31):3690-3693.
    [30] Herrmann, W. A., fele, K., Schneider, S. K., et al., A Carbocyclic Carbene as anEfficient Catalyst Ligand for C C Coupling Reactions, Angew. Chem. Int. Ed.,2006,45(23):3859-3862.
    [31] Tang, W. J., Capacci, A. G., Wei, X. D., et al., A General and Special Catalyst forSuzuki-Miyaura Coupling Processes, Angew. Chem. Int. Ed.,2010,49(34):5879-5883.
    [32] Lee, D. H. and Jin, M. J., An Extremely Active and General Catalyst for SuzukiCoupling Reaction of Unreactive Aryl Chlorides, Org. Lett.,2011,13(2):252-255.
    [33] Snelders, D. J. M., van Koten, G. and Gebbink, R., Hexacationic DendriphosLigands in the Pd-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction: Scope andMechanistic Studies, J. Am. Chem. Soc.,2009,131(32):11407-11416.
    [34] Phan, N. T. S., Van Der Sluys, M. and Jones, C. W., On the Nature of the ActiveSpecies in Palladium Catalyzed Mizoroki¨Check and Suzuki¨CmiyauraCouplings¨Chomogeneous or Heterogeneous Catalysis, a Critical Review, Adv.Synth. Catal.,2006,348(6):609-679.
    [35] Yin, L. and Liebscher, J., Carbon-Carbon Coupling Reactions Catalyzed byHeterogeneous Palladium Catalysts, Chem. Rev.,2007,107(1):133-173.
    [36] Han, J., Liu, Y. and Guo, R., Facile Synthesis of Highly Stable Gold Nanoparticlesand Their Unexpected Excellent Catalytic Activity for Suzuki-MiyauraCross-Coupling Reaction in Water, J. Am. Chem. Soc.,2009,131(6):2060-2061.
    [37] Yuan, B. Z., Pan, Y. Y., Li, Y. W., et al., AHighly Active Heterogeneous PalladiumCatalyst for the Suzuki-Miyaura and Ullmann Coupling Reactions of ArylChlorides in Aqueous Media, Angew. Chem. Int. Ed.,2010,49(24):4054-4058.
    [38] Jin, M. J. and Lee, D. H., A Practical Heterogeneous Catalyst for the Suzuki,Sonogashira, and Stille Coupling Reactions of Unreactive Aryl Chlorides, Angew.Chem. Int. Ed.,2010,49(6):1119-1122.
    [39] Yang, W. B., Liu, C. and Qiu, J. S., In Situ Formation of N,O-Bidentate Ligand Viathe Hydrogen Bond for Highly Efficient Suzuki Reaction of Aryl Chlorides, Chem.Commun.,2010,46(15):2659-2661.
    [40] Karimi, B., Elhamifar, D., Clark, J. H., et al., Ordered Mesoporous Organosilicawith Ionic-Liquid Framework: An Efficient and Reusable Support for thePalladium-Catalyzed Suzuki-Miyaura Coupling Reaction in Water, Chem.-Eur. J.,2010,16(27):8047-8053.
    [41] Shylesh, S., Wang, L. and Thiel, W. R., Palladium (Ii)-Phosphine ComplexesSupported on Magnetic Nanoparticles: Filtration-Free, Recyclable Catalysts forSuzuki-Miyaura Cross-Coupling Reactions, Adv. Synth. Catal.,2010,352(2-3):425-432.
    [42] Miyaura, N., Yanagi, T. and Suzuki, A., The Palladium-Catalyzed Cross-CouplingReaction of Phenylboronic Acid with Haloarenes in the Presence of Bases, Synth.Commun.,1981,11(7):513-519.
    [43] Inada, K. and Miyaura, N., The Cross-Coupling Reaction of Arylboronic Acidswith Chloropyridines and Electron-Deficient Chloroarenes Catalyzed by aPolymer-Bound Palladium Complex, Tetrahedron,2000,56(44):8661-8664.
    [44] Shin, J., Bertoia, J., Czerwinski, K. R., et al., A New Homogeneous PolymerSupport Based on Syndiotactic Polystyrene and Its Application inPalladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions, Green Chem.,2009,11(10):1576-1580.
    [45] Zapf, A., Ehrentraut, A. and Beller, M., A New Highly Efficient Catalyst Systemfor the Coupling of Nonactivated and Deactivated Aryl Chlorides with ArylboronicAcids, Angew. Chem. Int. Ed.,2000,39(22):4153-4155.
    [46] Akiyama, R. and Kobayashi, S., The Polymer Incarcerated Method for thePreparation of Highly Active Heterogeneous Palladium Catalysts, J. Am. Chem.Soc.,2003,125(12):3412-3413.
    [47] Lysén, M. and K hler, K., Palladium on Activated Carbon-a Recyclable Catalystfor Suzuki-Miyaura Cross-Coupling of Aryl Chlorides in Water, Synthesis,2006(4):692-698.
    [48] Yang, H., Wang, Y., Qin, Y., et al., One-Pot Preparation of MagneticN-Heterocyclic Carbene-Functionalized Silica Nanoparticles for theSuzuki–Miyaura Coupling of Aryl Chlorides: Improved Activity and FacileCatalyst Recovery, Green Chem.,2011,13(5):1352-1361.
    [49] Yang, H., Li, G., Ma, Z., et al., Three-Dimensional Cubic Mesoporous Materialswith a Built-in N-Heterocyclic Carbene for Suzuki–Miyaura Coupling of ArylChlorides and C (Sp3)-Chlorides, J. Catal.,2010,276(1):123-133.
    [50] Yuan, B., Pan, Y., Li, Y., et al., AHighly Active Heterogeneous Palladium Catalystfor the Suzuki–Miyaura and Ullmann Coupling Reactions of Aryl Chlorides inAqueous Media, Angew. Chem. Int. Ed.,2010,49(24):4054-4058.
    [51] Ding, S. Y., Gao, J., Wang, Q., et al., Construction of Covalent Organic Frameworkfor Catalysis: Pd/Cof-Lzu1in Suzuki-Miyaura Coupling Reaction, J. Am. Chem.Soc.,2011,133(49):19816-19822.
    [1] Wolterbeek, H. T. and Verburg, T. G., Predicting Metal Toxicity Revisited: GeneralProperties Vs. Specific Effects, Sci. Total Environ.,2001,279(1-3):87-115.
    [2] Ibrahim, D., Froberg, B., Wolf, A., et al., Heavy Metal Poisoning: ClinicalPresentations and Pathophysiology, Clin. Lab. Med.,2006,26(1):67-97.
    [3] Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., et al., Physico-Chemical TreatmentTechniques for Wastewater Laden with Heavy Metals, Chem. Eng. J.,2006,118(1-2):83-98.
    [4] Jaber, M., Miehe-Brendle, J., Michelin, L., et al., Heavy Metal Retention byOrganoclays: Synthesis, Applications, and Retention Mechanism, Chem. Mater.,2005,17(21):5275-5281.
    [5] Zhu, J. Z., Deng, B. L., Yang, J., et al., Modifying Activated Carbon with HybridLigands for Enhancing Aqueous Mercury Removal, Carbon,2009,47(8):2014-2025.
    [6] Wingenfelder, U., Hansen, C., Furrer, G., et al., Removal of Heavy Metals fromMine Waters by Natural Zeolites, Environ. Sci. Technol.,2005,39(12):4606-4613.
    [7] Deng, S. B. and Ting, Y. P., Polyethylenimine-Modified Fungal Biomass as aHigh-Capacity Biosorbent for Cr(Vi) Anions: Sorption Capacity and UptakeMechisms, Environ. Sci. Technol.,2005,39(21):8490-8496.
    [8] Yang, R. T., Adsorbents: Fundamentals and Applications, A JOHN WILEY&SONS, INC.,2003.
    [9] He, B. and Huang, W., Ion Exchangers and Polymeric Adsorbents, ShanghaiScientific and Technical Education, Shanghai,1995.
    [10] http://rsh.nst.pku.edu.cn/element.
    [11] Jiang, J. X., Su, F., Trewin, A., et al., Conjugated MicroporousPoly(Aryleneethynylene) Networks, Angew. Chem. Int. Ed.,2007,46(45):8574-8578.
    [12] Jiang, J. X., Su, F., Trewin, A., et al., Synthetic Control of the Pore Dimension andSurface Area in Conjugated Microporous Polymer and Copolymer Networks, J.Am. Chem. Soc.,2008,130(24):7710-7720.
    [13] Tsyurupa, M. P. and Davankov, V. A., Porous Structure of HypercrosslinkedPolystyrene: State-of-the-Art Mini-Review, React. Funct. Polym.,2006,66(7):768-779.
    [14] Davankov, V. A., Rogozhin, S. V. and Tsyurupa, M. P., US3729457,1971.
    [15] Ahn, J. H., Jang, J. E., Oh, C. G., et al., Rapid Generation and Control ofMicroporosity, Bimodal Pore Size Distribution, and Surface Area inDavankov-Type Hyper-Cross-Linked Resins, Macromolecules,2006,39(2):627-632.
    [16] Macintyre, F. S., Sherrington, D. C. and Tetley, L., Synthesis of Ultrahigh SurfaceArea Monodisperse Porous Polymer Nanospheres, Macromolecules,2006,39(16):5381-5384.
    [17] Fontanals, N., Manesiotis, P., Sherrington, D. C., et al., Synthesis of SphericalUltra-High-Surface-Area Monodisperse Amphipathic Polymer Sponges in theLow-Micrometer Size Range, Adv. Mater.,2008,20(7):1298-1302.
    [18] Fontanals, N., Cortes, J., Galia, M., et al., Synthesis of Davankov-TypeHypercrosslinked Resins Using Different Isomer Compositions of VinylbenzylChloride Monomer, and Application in the Solid-Phase Extraction of PolarCompounds, J. Polym. Sci., Part A: Polym. Chem.,2005,43(8):1718-1728.
    [19] Fontanals, N., Marcé, R. M., Cormack, P. A. G., et al., Monodisperse,Hypercrosslinked Polymer Microspheres as Tailor-Made Sorbents for HighlyEfficient Solid-Phase Extractions of Polar Pollutants from Water Samples, Journalof Chromatography A,2008,1191(1-2):118-124.
    [20] Fontanals, N., Cormack, P. A. G. and Sherrington, D. C., HypercrosslinkedPolymer Microspheres with Weak Anion-Exchange Character: Preparation of theMicrospheres and Their Applications in Ph-Tuneable, Selective Extractions ofAnalytes from Complex Environmental Samples, J. Chromatogr. A,2008,1215(1-2):21-29.
    [21] Fontanals, N., Cormack, P. A. G., Sherrington, D. C., et al., Weak Anion-ExchangeHypercrosslinked Sorbent in on-Line Solid-Phase Extraction-LiquidChromatography Coupling to Achieve Automated Determination with an EffectiveClean-Up, J. Chromatogr. A,2010,1217(17):2855-2861.
    [22] Bratkowska, D., Marcé, R. M., Cormack, P. A. G., et al., Synthesis and Applicationof Hypercrosslinked Polymers with Weak Cation-Exchange Character for theSelective Extraction of Basic Pharmaceuticals from Complex Environmental WaterSamples, J. Chromatogr. A,2010,1217(10):1575-1582.
    [23] Bratkowska, D., Fontanals, N., Borrull, F., et al., Hydrophilic HypercrosslinkedPolymeric Sorbents for the Solid-Phase Extraction of Polar Contaminants fromWater, J. Chromatogr. A,2010,1217(19):3238-3243.
    [24] Tsyurupa, M. P. and Davankov, V. A., Hypercrosslinked Polymers: Basic Principleof Preparing the New Class of Polymeric Materials, React. Funct. Polym.,2002,53(2-3):193-203.
    [25] Wood, C. D., Tan, B., Trewin, A., et al., Hydrogen Storage in MicroporousHypercrosslinked Organic Polymer Networks, Chem. Mater.,2007,19(8):2034-2048.
    [26] Lee, J. Y., Wood, C. D., Bradshaw, D., et al., Hydrogen Adsorption in MicroporousHypercrosslinked Polymers, Chem. Commun.,2006(25):2670-2672.
    [27] Wood, C. D., Tan, B., Trewin, A., et al., Microporous Organic Polymers forMethane Storage, Adv. Mater.,2008,20(10):1916-1921.
    [28] Chang, C. F., Chang, C. Y., Hsu, K. E., et al., Adsorptive Removal of the PesticideMethomyl Using Hypercrosslinked Polymers, J. Hazard. Mater.,2008,155(1-2):295-304.
    [29] Pau, A. C. and Gan, I. B., Elf Acquitaine Production, France, US005990356A,1999.
    [30] Courbevoie, A. C. and Lanneplaa, F. H., Elf Atochem, France, US006123850A,2000.
    [31] Chang, C.-F., Chang, C.-Y., Hsu, K.-E., et al., Adsorptive Removal of the PesticideMethomyl Using Hypercrosslinked Polymers, J. Hazard. Mater.,2008,155(1-2):295-304.
    [32] Tsyurupa, M. P., Tarabaeva, O. G., Pastukhov, A. V., et al., Sorption of Ions ofHeavy Metals by Neutral Hypercrosslinked Polystyrene, Int. J. Polymer. Mater.,2003,52(5):403-414.
    [33] The Standard of China's Electric Power Industry DL/T502.14-2006.
    [34] Canterino, M., Di Somma, I., Marotta, R., et al., Kinetic Investigation of Cu(II)Ions Photoreduction in Presence of Titanium Dioxide and Formic Acid, Water Res.,2008,42(17):4498-4506.
    [35] Rogozhin, S. V., Korshak, V. V., Davankov, V. A., et al., Vysokomol. Soedin,(Rus.),1966,181275-1278.
    [36] Rouquerol, J., Avnir, D., Fairbridge, C. W., et al., Physical and BiophysicalChemistry Division Commission on Colloid and Surface Chemistry IncludingCatalysis-Recommendations for the Characterization of Porous Solids (TechnicalReport), Pure Appl. Chem.,1994,66(8):1739-1758.
    [37] Rouquerol, F., Rouquerol, J. and Sing, K., Adsorption by Powders and PorousSolids., Academic Press (London),1999.
    [38] Demirbas, A., Pehlivan, E., Gode, F., et al., Adsorption of Cu(II), Zn(II), Ni(II),Pb(II), and Cd(II) from Aqueous Solution on Amberlite Ir-120Synthetic Resin, J.Colloid Interface Sci.,2005,282(1):20-25.
    [39] Dabrowski, A., Hubicki, Z., Podkoscielny, P., et al., Selective Removal of theHeavy Metal Ions from Waters and Industrial Wastewaters by Ion-ExchangeMethod, Chemosphere,2004,56(2):91-106.
    [40] Goyal, M., Rattan, V. K., Aggarwal, D., et al., Removal of Copper from AqueousSolutions by Adsorption on Activated Carbons, Colloid Surf. A-Physicochem. Eng.Asp.,2001,190(3):229-238.
    [41] Ajmal, M., Hussain Khan, A., Ahmad, S., et al., Role of Sawdust in the Removalof Copper(II) from Industrial Wastes, Water Res.,1998,32(10):3085-3091.
    [42] Ho, Y. S. and McKay, G., Pseudo-Second Order Model for Sorption Processes,Process Biochem.,1999,34(5):451-465.
    [43] Kula, I., Ugurlu, M., Karaoglu, H., et al., Adsorption of Cd(II) Ions from AqueousSolutions Using Activated Carbon Prepared from Olive Stone by Zncl2Activation,Bioresour. Technol.,2008,99(3):492-501.
    [44] Gundogan, R., Acemioglu, B. and Alma, M. H., Copper(II) Adsorption fromAqueous Solution by Herbaceous Peat, J. Colloid Interface Sci.,2004,269(2):303-309.
    [45] Reddad, Z., Gerente, C., Andres, Y., et al., Adsorption of Several Metal Ions onto aLow-Cost Biosorbent: Kinetic and Equilibrium Studies, Environ. Sci. Technol.,2002,36(9):2067-2073.
    [46] Lee, S. M. and Davis, A. P., Removal of Cu(II) and Cd(II) from Aqueous Solutionby Seafood Processing Waste Sludge, Water Res.,2001,35(2):534-540.
    [47] Cay, S., Uyanik, A. and Ozasik, A., Single and Binary Component Adsorption ofCopper(II) and Cadmium(II) from Aqueous Solutions Using Tea-Industry Waste,Sep. Purif. Technol.,2004,38(3):273-280.
    [48] Davis, T. A., Volesky, B. and Vieira, R., Sargassum Seaweed as Biosorbent forHeavy Metals, Water Res.,2000,34(17):4270-4278.
    [49] Sheng, P. X., Ting, Y. P., Chen, J. P., et al., Sorption of Lead, Copper, Cadmium,Zinc, and Nickel by Marine Algal Biomass: Characterization of BiosorptiveCapacity and Investigation of Mechanisms, J. Colloid Interface Sci.,2004,275(1):131-141.
    [50] Klimmek, S., Stan, H. J., Wilke, A., et al., Comparative Analysis of the Biosorptionof Cadmium, Lead, Nickel, and Zinc by Algae, Environ. Sci. Technol.,2001,35(21):4283-4288.
    [51] Aman, T., Kazi, A. A., Sabri, M. U., et al., Potato Peels as Solid Waste for theRemoval of Heavy Metal Copper(II) from Waste Water/Industrial Effluent, ColloidSurf. B-Biointerfaces,2008,63(1):116-121.
    [52] Lim, S. F., Zheng, Y. M., Zou, S. W., et al., Characterization of Copper Adsorptiononto an Alginate Encapsulated Magnetic Sorbent by a Combined Ft-Ir, Xps, andMathematical Modeling Study, Environ. Sci. Technol.,2008,42(7):2551-2556.
    [53] Liu, J. F., Zhao, Z. S. and Jiang, G. B., Coating Fe3o4Magnetic Nanoparticles withHumic Acid for High Efficient Removal of Heavy Metals in Water, Environ. Sci.Technol.,2008,42(18):6949-6954.
    [54] Pehlivan, E., Ozkan, A. M., Dinc, S., et al., Adsorption of Cu2+and Pb2+Ion onDolomite Powder, J. Hazard. Mater.,2009,167(1-3):1044-1049.
    [55] Zhu, B., Fan, T. and Zhang, D., Adsorption of Copper Ions from Aqueous Solutionby Citric Acid Modified Soybean Straw, J. Hazard. Mater.,2008,153(1-2):300-308.
    [56] Chen, A. H., Liu, S. C., Chen, C. Y., et al., Comparative Adsorption of Cu(II),Zn(II), and Pb(II) Ions in Aqueous Solution on the Crosslinked Chitosan withEpichlorohydrin, J. Hazard. Mater.,2008,154(1-3):184-191.
    [57] Chen, C. Y., Lin, M. S. and Hsu, K. R., Recovery of Cu(II) and Cd(II) by aChelating Resin Containing Aspartate Groups, J. Hazard. Mater.,2008,152(3):986-993.
    [58] Atkins, P. W., Physical Chemisty, Oxford University Press, London,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700