新的含酰肼分子化合物的合成与结构性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要利用多羧酸与水合肼间的水热原位酰化反应,以不同的金属盐为原料,草酸为第二连接体,1,10-邻菲咯啉、2,2′-联吡啶等为辅助配体,合成出30个单(双)酰肼类配位化合物及2个酰肼分子,其中31个为新化合物。
     1.利用水热原位酰化/还原反应,选取不同的芳香二甲酸,合成出9个芳香类单酰肼配位聚合物1-2,4-10及1个单酰肼分子3。1-3为含4,5-二氯邻苯二甲酰肼(DCPTH)的化合物。1是以phen为辅助配体,两种配位模式不同的DCPTH交替连接形成的单链Pb(Ⅱ)化合物。2是以bpy为辅助配体,DCPTH及4,5-二氯邻苯二甲酸根(dcph)混桥联的双链Cd(Ⅱ)化合物。值得注意的是,dcph分子也出现在该结构中,这是很罕见的。3为DCPTH配体。利用分子间氢键作用自组装为2-D超分子层。4-5为含3-甲基邻苯二甲酰肼(MPTH)的化合物。4是以phen为辅助配体,MPTH桥联的链状Pb(Ⅱ)化合物。5为MPTH配位的双核Cd(Ⅱ)化合物。6-8为含3-氨基邻苯二甲酰肼(APTH)的化合物。有趣的是,APTH由3-硝基邻苯二甲酰肼(NPTH)经水热原位还原反应而得。6与8分别为APTH桥联的层状Pb(Ⅱ)/Mn(Ⅱ)化合物。7为APTH配位的双核Cd(Ⅱ)化合物。6的二维层沿c方向呈波浪形。7利用分子间氢键作用自组装为1-D超分子链。8中APTH上氨基氮原子也与Mn(Ⅱ)配位。9-10为4-羧基邻苯二甲酰肼(CPTH)桥联的层状Pb(Ⅱ)配位聚合物。有趣的是,10是CPTH连接Pb-O带形成的具有一维孔道的2-D层状化合物,分子中出现了罕见的(H2O)8水簇。
     2.利用水热原位酰化反应,选取不同的吡啶二甲羧酸,合成出12个吡啶类单酰肼配位化合物11-22。14-15为单链结构,18-19为双链结构,其余均为单核分子,但它们均通过吡啶单酰肼间的氢键作用自组装为有趣的超分子网络结构。
     3.利用水热原位酰化反应,选取不同的芳香四甲酸,合成出7个双酰肼类配位聚合物23-24,26-30及一个双酰肼分子25。23-25为含4,4′-氧代双邻苯二甲酰肼(ODPTH)的化合物。23为ODPTH配位的双核Pb(Ⅱ)分子,ODPTH呈V型排列。24为ODPTH桥联的链状Cd(Ⅱ)化合物。25为ODPTH配体,V型排列,利用氢键作用自组装为3-D超分子网络结构。26是唯一一例以phen为辅助配体,4,4′-双邻苯二甲酰肼(BPTH)桥联的双链Cd(Ⅱ)化合物。若将BPTH看作一个连接点,则双链呈楼梯状。27-29为含4,4′-酮双邻苯二甲酰肼(DPHKH)的化合物。值得注意的是,在27-29的合成中还发生了另外一种水热原位反应:即羰基与水合肼间的亲核加成反应。27为DPHKH配位的双核Pb(Ⅱ)化合物,Pb(Ⅱ)位于半球型配位场中。28与29分别是以phen为辅助配体,DPHKH桥联的链状Cd(Ⅱ)/Zn(Ⅱ)化合物。30是以phen为辅助配体,4,4′-亚砜双邻苯二甲酰肼(SDPTH)桥联的链状Cd(Ⅱ)化合物。
     4.利用水热原位酰化反应,选取两种不同的芳香/吡啶二甲酸,同时向体系中掺入第二连接体草酸,合成出2个草酸根(ox)拓展的单酰肼Cd(Ⅱ)配位聚合物31-32。31是以bpy为辅助配体,ox-拓展的链状Cd~(2+)-PTH(PTH=邻苯二甲酰肼)化合物。32为ox-拓展的二维层状Cd~(2+)-PDH(PDH=2,3-吡啶二甲酰肼)配位聚合物,该层沿b方向呈波浪型,ox采取了特殊的μ6配位模式。
     5.讨论了反应体系的pH值、有机胺等因素对晶体生长的影响。解析了单晶结构,分析了酰肼分子的配位模式、价态、探讨了反应机理。并对所合成的化合物进行了元素分析、红外、XRD、热重、荧光、磁性等表征,利用DFT理论计算对发光机理进行探讨,为探索配位化合物结构与性能的关系积累了一定的理论数据。
The study on the novel coordination polymers is of current hot topic due to the structuraldiversity and the potential functional properties in adsorption, optics and magnetism. In situ ligandsynthesis has got considerable attention as an effective approach towards the crystal engineeringof coordination polymers. Some unusual organic ligands have been synthesized successfully,which are inaccessible or not easily obtainable via conventional methods. The hydrothermal in situacylation reactions between the organic polycarboxylic acids and N_2H_4H_2O is one of the mostimportant kinds, which provide a new approach to obtain a series of coordinated polymerscontaining novel structure and excellent properties. However, less attention has been paid to thisreaction until now.
     Based on this mechanism, we synthesized thirty di(mono)acylhydrazidate-coordinatedcomplexes as well as two acylhydrazide molecules by the simple hydrothermal self-assembliesbetween metal salts, organic polycarboxylic acids and N_2H_4H_2O sometimes in the presence ofH_2ox, phen or bpy. We discussed the influence of pH and organic N-donor ligands etc. Not onlyresolved their single-crystal structure, also characterized them by element analysis, IR, XRD, TG,fluorescence spectra and magnetism. In order to understand the emission mechanism, the densityfunctional theory (DFT) calculations were carried out on the excited electronic states of somecompounds, which would supply theory basis between the relations of structures and functions forcoordination polymers. The paper includes seven chapters.
     In the first chapter, firstly, we concisely introduced the concepts, histories and sorts ofcoordination polymers. Secondly, we emphasized the mechanism and sorts of thehydro(solvo)thermal in situ ligand syntheses. Finally, we explained the research significance,innovation and the results in this paper.
     In the second chapter, we introduced the principle, methods and the reagent.
     In the third chapter, nine aromatic-monoacylhydrazidate-coordinated polymers as well as onemonoacylhydrazide molecule have been synthesized from the hydrothermal in situ acylationreactions:[Pb_2(DCPTH)_4(phen)_2](1),[Cd_3(DCPTH)_2(dcph)_2(bpy)_2](2),[H(DCPTH)](3),[Pb_2(MPTH)_4(phen)_2](4),[Cd_2(MPTH)_4(phen)_2] H_2O (5),[Pb(APTH)_2]0.25H_2O (6),[Cd_2(APTH)_4(phen)_2]2H_2O (7),[Mn(APTH)_2(H_2O)](8),[Pb(CPTH)(phen)](9),[Pb_4(OH)_2(H_2O)_3(CPTH)_3]·2H_2O (10)(DCPTH=4,5-dichlorophthalhydrazidate, dcph=4,5-dichlorophthalate, MPTH=3-methylphthalhydrazidate, APTH=3-amiophthalhydrazidate,CPTH=4-carboxylphthalhydrazidate, phen=1,10-phenanthroline, bpy=2,2′-bipyridine). In them, APTH derived from the hydrothermal in situ reduction reaction of NPTH(3-nitrophthalhydrazidate), whereas the others derived respectively from the hydrothermal in situacylation reactions of corresponding organic polycarboxylic acids with hydrazine hydrate.Compounds1-3are containing DCPTH complexes. Compound1is a DCPTH-bridged chainedPb(Ⅱ) compound, with ancillary phen. It propagated into a3-D supramolecular network via π πinteractions and hydrogen-bonded interactions. Compound2is a DCPTH and dcph mixed bridgedchained Cd(Ⅱ) compound, with ancillary bpy. It is interesting that dcph also appeared in the finalframework of it. The π π interactions and hydrogen-bonded interactions make the crystalstructure more stabilizing. Compound3is only a monoacylhydrazide ligands. It propagated into a2-D supramolecular layer structure via intermolecular N-H O interactions between the acylaminogroups. Compounds4-5are containing MPTH inorganic coordination polymers. Compound4is aMPTH-bridged chained Pb(Ⅱ) compound, with ancillary phen. It propagated into a2-Dsupramolecular layer via π π interactions. Compound5is a MPTH-coordinated dinuclear Cd(Ⅱ)compound. It propagated into a1-D supramolecular chain via the O Ow interaction between theacylamino O atom and the lattice water molecule. Compounds6-8are containing APTH inorganiccoordination polymers. Compound6and8are APTH-bridged layered Pb(Ⅱ)/Mn(Ⅱ) coordinationpolymers. Compound7is an APTH-containing dinuclear Cd(Ⅱ) complex with ancillary phenmolecule. The2-D layer of compound6shows a wave-type, running down the c direction. It self-assembles into a3-D supramolecular network via the intermolecular N-H O interactions.Compound7self-assembles into a1-D supramolecular chain via hydrogen-bonded. Interestingly,in compound8, the amino N atom of APTH Ⅱ is also involved in the coordination to the Mn(Ⅱ)center. Compound9-10are CPTH-bridged layered Pb(Ⅱ) coordination polymers. Compound9self-assembles into a3-D supramolecular chain via π π interactions. Compound10areCPTH-bridged layered Pb(Ⅱ) coordination polymer with1-D Pb-O ribbons.There is a (H_2O)8dimer. It self-assembles into a3-D supramolecular network via hydrogen-bonded.
     In the fourth chapter, twelve pyridine-monoacylhydrazidate-coordinated complexes havebeen synthesized from the hydrothermal in situ acylation reactions:[Zn(PDH)_2(H_2O)_2](11),[Cd(PDH)_2(H_2O)_2](12),[Pb(MPDH)_2](13),[Cd(MPDH)_2](14),[Mn(MPDH)_2](15),[Co(MPDH)_2(H_2O)_2]2H_2O (16),[Zn(MPDH)_2(H_2O)_2]2H_2O (17),[Pb_2(EPDH)_4(H_2O)](18),[Cd(EPDH)_2(H_2O)](19),[Mn(EPDH)_2(H_2O)_2](20),[Co(EPDH)_2(H_2O)_2](21),[Zn(EPDH)_2(H_2O)_2](22),(PDH=pyridine-2,3-dicarboxylhydrazidate, MPDH=6-methylpyridine-2,3-dicarboxylhydrazidate, EPDH=5-ethylpyridine-2,3-dicarboxylhydrazidate).Note that the acylhydrazidate all derived respectively from the hydrothermal in situ acylationreactions of corresponding organic polycarboxylic acids with hydrazine hydrate. Compounds14-15are1-D single-chained and18-19are1-D double-chained coordination polymers, the othersare the mononuclear molecular entities, but they all further self-assemble into the interestingsupramolecular networks via hydrogen-bonded interactions between pyridine-monoacyl hydrazidate ligands.
     In the fifth chapter, seven diacylhydrazidate-coordinated polymers as well as onediacylhydrazide molecule have been synthesized from the hydrothermal in situ acylation reactions:[Pb_2(ODPTH)_2(phen)_2(H_2O)_2](23),[Cd(ODPTH)(phen)]0.25H_2O (24),[H_2(ODPTH)](25),[Cd(BPTH)(phen)]3.75H_2O (26),[Pb_2(DPHKH)_2(phen)_2]2H_2O (27),[Cd_2(DPHKH)_2(phen)]1.75H_2O (28),[Zn_3(DPHKH)_2(HDPHKH)_2(phen)_2]8H_2O (29),[Cd(SDPTH)(phen)(H_2O)] H_2O (30)(ODPTH=4,4′-oxydiphthalhydrazidate, BPTH=4,4′-biphthalhydrazidate, DPHKH=4,4′-diphthalhydrazidatoketone hydrazone, SDPTH=4,4′-sulfoyldiphthalhydrazidate). Note that the diacylhydrazidate molecules in compounds23-30originated from the in situ acylation reactions between organic polycarboxylic acids andN_2H_4H_2O. Interestingly, another kind of ligand in situ reaction was found in the formation processof DPHKH in compounds27-29: the nucleophilic addition reaction of the keto with N_2H_4H_2O.Compounds23-25are containing ODPTH complexes. Compound23is an ODPTH-coordinateddinuclear Pb(Ⅱ) complex. It self-assembles into a2-D supramolecular layers via hydrogen-bonded.Compound24is an ODPTH-bridged chained Cd(Ⅱ) compound. Via the π π interactions betweenthe adjacent phen rings, the1-D chains further self-assemble into a2-D supramolecular sheet.Compound25is a new organic diacylhydrazide molecule. ODPTH shows a V-shape. Itself-assembles into a3-D supramolecular network through weak interactions. Compound26is aunique BPTH-bridged1-D double-chain Cd(Ⅱ) compound. Compounds27-29are containingDPHKH inorganic coordination polymers. Compound27is a DPHKH-coordinated Pb(Ⅱ)dinuclear compound. Pb(Ⅱ) is involved in a hemisphere-coordinated site. It is only extended into a1-D supramolecular chain owning to only one acylamino group head-to-head hydrogen bonds tothe adjacent acylamino group producing a hydrogen-bonded dimmer. Compound28and29areDPHKH-propagated chained Cd(Ⅱ)/Zn(Ⅱ) compounds with auxiliary phen molecule. Compound30is a SDPTH-extended chained Cd(Ⅱ) compound with auxiliary phen molecule.
     In the sixth chapter, two ox-extended Cd_2+-monoacylhydrazidate coordinated polymers havebeen first synthesized from the hydrothermal in situ acylation reactions:[Cd_2(ox)0.5(HPTH)(PTH)(bpy)_2](31),[Cd_2(ox)(PDH)_2] H_2O (32)(PTH=phthalhydrazidate, PDH=pyridine-2,3-dicarboxylhydrazidate, bpy=2,2′-bipyridine). Note that the acylhydrazidate allderived respectively from the hydrothermal in situ acylation reactions of corresponding organicpolycarboxylic acids with hydrazine hydrate. Compound31is an ox-extended chained Cd_2+-PTHcoordination polymer with ancillary bpy molecules. Neighboring bpy molecules between thechains form the π π packing, propagate the one-dimensional chains into a two-dimensionalsupramolecular layer. Compound32is an ox-propagated layered Cd_2+-PDH coordination polymer.The layer exhibits a wave-like shape, extending along the b-axial direction. Noteworthily, oxexhibits a special μ6coordination mode.
     The solid-state fluorescence spectra show compounds1-3,5,7,9-14,17-19,22-25,30,32 possess good fluorescence emissions. They are the potential fluorescence materials. DFTcalculations have been applied to better understand the emission mechanism of compounds3,11,13,17,32. Two kinds of new charge-transfer paths are found in acylhydrazidate-coordinatedcompounds. Photoluminescence property in aqueous solutions have been studied on compounds4-5,23-25,27-30, all possess good fluorescence emissions, the charge transfer within the phenmolecule should be responsible for the emissions. Magnetic susceptibility datas for compounds8and20indicate antiferromagnetic interactions between Mn(Ⅱ) centers.
     In the seventh chapter, a brief conclusion and outlook are given.
引文
[1] EDDAOUDI M, MOLER D B, Li H L, et al. Modular chemistry: secondary building units as abasis for the design of highly porous and robust metal-organic carboxylate frameworks [J].Acc. Chem. Res.,2001,34(4):319-330.
    [2] YANG C, WANG X P, OMARY M A. Fluorous Metal-Organic Frameworks for High-DensityGas Adsorption [J]. J. AM. CHEM. SOC.,2007,129:15454-15455.
    [3] DUEREN T, BAE Y S, SNURR R Q, Using molecular simulation to characterisemetal-organic frameworks for adsorption applications [J]. Chem. Soc. Rev.,2009,38:1237-1247.
    [4] WALTON K S, MILLWARD A R, DUBBELDAM D, et al. Understanding Inflections andSteps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks [J]. J. Am.Chem. Soc.,2008,130:406-407.
    [5] NOUAR F, ECKERT J, EUBANK J F, et al. Zeolite-like Metal-Organic Frameworks (ZMOFs)as Hydrogen Storage Platform: Lithium and Magnesium Ion-Exchange and H2-(rho-ZMOF)Interaction Studies [J]. J. Am. Chem. Soc.,2009,131:2864-2870.
    [6] DEAK A, TUNYOGI T, PALINKAS G. Synthesis and Structure of a Cyanoaurate-BasedOrganotin Polymer Exhibiting Unusual Ion-Exchange Properties [J]. J. Am. Chem. Soc.,2009,131,2815-2817.
    [7] LIN Z Z, JIANG F L, YUAN D Q, et al. The3D Channel Framework Based onIndium(III)-btec, and Its Ion-Exchange Properties (btec=1,2,4,5-Benzenetetracarboxylate)[J].Eur. J. Inorg. Chem.,2005,1927-1931.
    [8] HORCAJADA P, SERRE C, GROSSO D, et al. Colloidal Route for Preparing Optical ThinFilms of Nanoporous Metal-Organic Frameworks [J]. Adv. Mater.,2009,21:1931-1935.
    [9] CHANDLER B D, CRAMB D T, SHIMIZU G K H. Microporous Metal-Organic FrameworksFormed in a Stepwise Manner from Luminescent Building Blocks [J]. J. Am. Chem. Soc.,2006,128:10403-10412.
    [10] XUE X, WANG X S, YOU X Z, et al. A Cluster Rearrangement of an Open Cubane (Cu4Br4)to a Prismane (Cu6Br6) in a Copper(I)-Olefin Network [J]. Angew. Chem. Int. Ed.,2002,41:2944-2946.
    [11] KURMOO M. Magnetic metal-organic frameworks [J]. Chem. Soc. Rev.,2009,28:1353-1379.
    [12] TAYLOR K L M, RIETER W J, LIN W B, Manganese-Based Nanos cale Metal-OrganicFrameworks for Magnetic Resonance Imaging [J]. J. Am. Chem. Soc.,2008,130:14358-14359.
    [13] TIAN Y Q, CAI C X, REN X M, et al. The Silica-Like Extended Polymorphism of Cobalt(ii)Imidazolate Three-Dimensional Frameworks: X-ray Single-Crystal Structures and MagneticProperties [J]. Chem. Eur. J.,2003,9,5673-5685.
    [14] GOMEZ-LOR B, GUTIENEZ-PUEBLA E, IGLESIAS M, et al. Novel2D and3D IndiumMetal-Organic Frameworks: Topology and Catalytic Properties [J]. Chem. Mater.,2005,17:2568-2573.
    [15] BUNOWS A D, FROST C G, MAHON M F, et al. Subtle structural variation in coppermetal-organic frameworks: syntheses, structures, magnetic properties and catalytic behaviour[J]. Dalton Trans.,2008,47:6788-6795.
    [16] ZOU R Q, SAKURAI H, Xu Q. Preparation, Adsorption Properties, and Catalytic Activity of3D Porous Metal-Organic Frameworks Composed of Cubic Building Blocks and Alkali-MetalIons [J]. Angew. Chem. Int. Ed.,2006,45,2542-2546.
    [17] BAILAR, J. C. Preparative Inorganic Reaction [J]; Interscience: New York,1964.
    [18] HOSKINS B F, ROBSON R. Design and Construction of a New Class of Scaffolding-likeMaterials Comprising Infinite Polymeric Frameworks of3D-Linked Molecular Rods. AReappraisal of the Zn(CN)2and Cd(CN)2structures and the Synthesis and Structure of theDiamond-Related Frameworks [N(CHI3)4][CuZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetrap-henylmethane]BF4·xC6H5NO2[J]. J. Am. Chem. Soc.,1990,112:1546-1554.
    [19] BRUSER H J, SCHWARZENBACH D, PETTER W, et al. The crystal structure of PrussianBlue: Fe4[Fe(CN)6]3·xH2O [J]. Inorg. Chem.,1977,16:2704-2710.
    [20] SCHMIDT G M J. Photodimerization in the solid state [J]. Pure Appl. Chem.,1971,27:647-678.
    [21] ETTER M C Encoding and decoding hydrogen-bond patterns of organic compounds [J]. Acc.Chem. Res.,1990,23:120-126.
    [22] DESIRAJU G R [J]. Acta. Cryst. B.,1989,45:473-482.
    [23] HENNIGAR T L, MACQUARRIE D C, LOSIER P, et al. Supramolecular Isomerism inCoordination Polymers: Conformational Freedom of Ligands in [Co(NO3)2(1,2-bis(4-pyridyl)ethane)1.5]n[J]. Angew. Chem. Int. Ed.,1997,36:972-973.
    [24] WELLS A F. Structural Inorganic Chemistry [M]. Oxford University Press: Oxford, U.K.,1984.
    [25] WELLS A F. Further Studies of Three-Dimensional Nets [M]. American CrystallographicAssociation: Knoxville, TN,1979.
    [26] WELLS A F. Three-Dimensional Nets and Polyhedra [M]. Wiley-Inter science: New York,1977.
    [27] HOSKINS B F, ROBSON R, Infinite polymeric frameworks consisting of threedimensionally linked rod-like segments [J]. J. Am. Chem. Soc.,1989,111:5962-5964.
    [28] FUJITA M, KWON Y J, MIYAZAWA M, et al. One-dimensional coordinate polymerinvolving heptacoordinate cadmium(II) ions [J]. Chem. Commun.,1994:1977-1978.
    [29] YAGHI O M, LI G M, LI H L, Selective binding and removal of guests in a microporousmetal-organic framework [J]. Nature,1995,378:703-706.
    [30] LI H, EDDAOUDI M, O’KEEFFE M, et al. Design and synthesis of an exceptionally stableand highly porous metal-organic framework [J]. Nature,1999,402:276.
    [31] BLAKE A J, CHAMPNESS N R, CHUNG S S M, et al. In situ ligand synthesis andconstruction of an unprecedented three-dimensional array with silcer (i): a new approach toinorganic crystal engineering [J]. Chem. Commun.,1997:1675-1676.
    [32] MUNAKATA M, WU L P, KURODA-SOWA T. Advances in Inorganic Chemistry:Including Bioinorganic Chemistry, Sykes A G, Ed [M]. Academic Press: San Diego, CA,1999,46:175.
    [33] MOULTON B, ZAWOROKO M J. From Molecules to Crystal Engineering: SupramolecularIsomerism and Polymorphism in Network Solids [J]. Chem. Rev.,2001,101:1629-1658.
    [34] RAO C N R, NATARAJAN S, VAIDHYANATHAN R. Metal Carboxylates with OpenArchitectures [J]. Angew. Chem. Int. Ed.,2004,43:1466-1496.
    [35] EDDAOUDI M, MOLER D B, LI H L, et al. Modular Chemistry: Secondary Building Unitsas a Basis for the Design of Highly Porous and Robust Metal-Organic CarboxylateFrameworks [J]. Acc. Chem. Res.,2001,34:319-330.
    [36] QIU S L, ZHU G S. Molecular engineering for synthesizing novel structures of metal-organicframeworks with multifunctional properties [J]. Coord. Chem. Rev.,2009,253:2891-2911.
    [37] KITAGAWA S, NORO S.[J]. Compresh Coord. Chem.,2004,7:231.
    [38] BATTEN S R, ROBSON R Interpenetrating Nets: Ordered, Periodic Entanglement [J].Angew. Chem. Int. Ed.,1998,37:1460-1494.
    [39] LEONG W L, VITTAL J J. One-Dimensional Coordination Polymers: Complexity andDiversity in Structures, Properties, and Applications [J]. Chem. Rev.,2011,111:688-764.
    [40] SUN D F, KE Y X, MATTOX T M, et al. Temperature-dependent supramolecularstereoisomerism in porous copper coordination networks based on a designed carboxylateligand [J]. Chem. Commun.,2005:5447-5449.
    [41] HU M L, MORSALIB A, ABOUTORABIB L. Lead(II) carboxylate supramolecularcompounds: Coordination modes, structures and nano-structures aspects [J]. Coord. Chem.Rev.,2011,255:2821-2859.
    [42] ROBIN A Y, K M FROMM. Coordination polymer networks with O-and N-donors: Whatthey are, why and how they are made [J]. Coord. Chem. Rev.,2006.250:2127-2157.
    [43] KITAGAWA S, KITAURA R, NORO S I. Functional Porous Coordination Polymers [J].Angew. Chem. Int. Ed.,2004,43:2334-2375.
    [44] WANG X L, QIN C, WANG E B. Polythreading of Infinite1D Chains into DifferentStructural Motifs: Two Poly(pseudo-rotaxane) Architectures Constructed by ConcomitantCoordinative and Hydrogen Bonds [J]. Cryst. Growth Des.,2006,6,439-443.
    [45] HAO X R, SU Z M, ZHAO Y H, et al. A novel cadmium(II) coordination polymer withbiphenyl-3,3′,4,4′-tetracarboxylic and4,4′-bipyridine. Acta Crystallogr [J]. Sect. C,2005, C61:m469-m471.
    [46] HAO X R, SU Z M, ZHAO Y H, et al. Poly[bis(4,4′-bipyridine)(μ3-4,4′-dicarboxybiphenyl-3,3′′-dicarboxylato)cobalt(II)][J]. Acta Crystallogr., Sect. E,2005, E61:m2477-m2479.
    [47] REINEKE T M, EDDAOUDI M, FEHR M, et al. From Condensed Lanthanide CoordinationSolids to Microporous Frameworks Having Accessible Metal Sites [J]. J. Am.Chem. Soc.,1999,121:1651-1657.
    [48] REINEKE T M, EDDAOUDI M, FEHR M, et al. From Condensed Lanthanide CoordinationSolids to Microporous Frameworks Having Accessible Metal Sites [J]. J. Am. Chem. Soc.,1999,121:1651-1657.
    [49] REINEKE T M, EDDAOUDI M, O`KEEFFE M, et al. A microporous lanthanide-organicframework. Angew. Chem. Int. Ed.,1999,38:2590-2594.
    [50] LI H L, DAVIS C E, GROY T L, et al. Coordinatively Unsaturated Metal Centers in theExtended Porous Framework of Zn3(BDC)3·6CH3OH (BDC=1,4-Benzenedicarboxylate)[J].J. Am. Chem. Soc.,1998,120:2186.
    [51] NATHANIEL L. ROSI, KIM J, EDDAOUDI M. Rod Packings and Metal-OrganicFrameworks Constructed from Rod-Shaped Secondary Building Units.[J] J. AM. CHEM.SOC.,2005,127:1504-1518.
    [52]胡西学。N(氮)-配和O(氧)-配有机-过渡金属聚合物的合成、结构与性能研究[D].长春:吉林大学硕士论文,2004。
    [53]杨庆凤。含羧酸与氮杂环配体的配位聚合物的合成、结构及性能[D].长春:吉林大学博士论文,2009。
    [54]于晓洋。经由原位酰化反应的配位聚合物的合成、结构与荧光性能研究[D].长春:吉林大学硕士论文,2007。
    [55] HUANG D G, WANG W G, ZHANG X F. Synthesis, Structural Characterizations andMagnetic Properties of a Series of Mono-, Di-and Polynuclear ManganesePyridinecarboxylate Compounds [J]. Eur. J. Inorg. Chem.,2004,1454-1464.
    [56] ZHENG Y Z, XUE W, ZHENG S L, et al. Néel Temperature Enhancement by Increasing theIn-plane Magnetic Correlation in Layered Inorganic-Organic Hybrid Materials [J]. Adv. Mater.,2008,20:1534-1538.
    [57] ZHANG J P, ZHANG Y B, LIN J B, et al. Metal Azolate Frameworks: From CrystalEngineering to Functional Materials [J]. Chem. Rev.,2012,112:1001-1033.
    [58] GAO E, YUE Y, BAI S, et al. From Achiral Ligands to Chiral Coordination Polymers:Spontaneous Resolution, Weak Ferromagnetism, and Topological Ferrimagnetism [J]. J. Am.Chem. Soc.,2004,126:1419-1429.
    [59] YAGHI O M, LI H. Hydrothermal Synthesis of a Metal-Organic Framework ContainingLarge Rectangular Channels [J]. J. Am. Chem. Soc.,1995,117:10401-10402.
    [60] LOSIER P, ZAWOROTKO M J. A Noninterpenetrated Molecular Ladder with HydrophobicCavities [J]. Angew. Chem. Int. Ed.,1996,35:2779-2782.
    [61] LLORET F, DEMUNNO G, JULVE M, et al. Spin polarization and ferromagnetism intwo-simensional sheetlike cobalt(II) polymers:[Co(L)2(NCS)2](L=Pyrimidine or Pyrazine)[J]. Angew. Chem. Int. Ed.,1998,37:135-138.
    [62] FUJITA M, KWON Y J, WASHIZU S, et al. Preparation, Clathration Ability, and Catalysis ofa Two-Dimensional Square Network Material Composed of Cadmium(II) and4,4′-Bipyridine[J]. J. Am. Chem. Soc.,1994,116:1151
    [63] YAGHI O M, LI G M. Mutually Interpenetrating Sheets and Channels in the ExtendedStructure of [Cu(4,4′-bpy)Cl][J]. Angew. Chem. Int. Ed.,1995,34:207-209.
    [64] MACGILLIVRAY L R, SUBRAMANIAN S, ZAWOROTKO M J. Interwoven two-andthree-dimensional coordination polymers through self-assembly of CuIcations with linearbidentate ligands [J]. Chem. Commun.,1994:1325-1326.
    [65] HAGRMAN P J, HAGRMAN D, ZUBIETA J Organic-Inorganic Hybrid Materials: From“Simple”Coordination Polymers to Organodiamine-Templated Molybdenum Oxides [J].Angew. Chem. Int. Ed.,1999,38:2638-2684.
    [66] TIAN Y Q, CAI C X, JI Y, et al.[Co5(im)10·2MB]∞: A Metal-Organic Open-Framework withZeolite-Like Topology [J]. Angew. Chem. Int. Ed.,2002,41:1384-1386.
    [67] HUANG X C, ZHANG J P, CHEN X M.[Zn(bim)2]·(H2O)1.67: A metal-organicopen-framework with sodalite topology [J]. Chin. Sci. Bull.2003,48(15):1531-1534.
    [68] HUANG X C, LIN Y Y, ZHANG J P, et al. Ligand-Directed Strategy for Zeolite-TypeMetal-Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies [J].Angew. Chem. Int. Ed.,2006,45:1557-1559.
    [69] PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeoliticimidazolate frameworks [J]. Proc. Natl. Acad. Sci. U.S.A.,2006,103:10186-10191.
    [70] BANERJEE R, PHAN A, WANG B, et al. High-Throughput Synthesis of ZeoliticImidazolate Frameworks and Application to CO2Capture [J]. Science,2008,319:939-943.
    [71] PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, Structure, and Carbon DioxideCapture Properties of Zeolitic Imidazolate Frameworks [J]. Acc. Chem. Res.,2010,43:58-67.
    [72] LU J, ZHAO K, FANG Q R, et al. Synthesis and Characterization of Four NovelSupramolecular Compounds Based on Metal Zinc and Cadmium [J]. Cryst. Growth Des.,2005,5:1091-1098.
    [73] OUELLETTE W, YU M H, O’CONNOR C J, et al. Hydrothermal Chemistry of theCopper-Triazolate System: A Microporous Metal-Organic Framework Constructed fromMagnetic {Cu3(μ3-OH)(triazolate)23}+Building Blocks, and Related Materials [J]. Angew.Chem. Int. Ed.,2006,45:3497-3500.
    [74] AROMíA G, BARRIOSA L A, ROUBEAUB O, et al. Triazoles and tetrazoles: Prime ligandsto generate remarkable coordination materials [J]. Coord. Chem. Rev.,2011,255:485-546.
    [75] PEEDIKAKKAL A M P, VITTAL J, J. Molecular Fabric Structure Formed by the1DCoordination Polymer,[Pb(bpe)(O2CCH3)(O2CCF3)][J]. Cryst. Growth Des.,2008,8(2):375-377
    [76] LARSSON K, HRSTR M L. A (10,3)-b net by sulfate hydrogen-bonded biimidazolatecomplexes [J]. CrystEngComm,2003,5(38):222-225.
    [77] CARLUCCI L, CIANI G, PROSERPIO D M, et al. A three-dimensional ‘racemate’.Interpenetration of two enantiomeric networks of the SrSi2topological type in the polymericcomplex [Ag2(2,3-Me2pyz)3][SbF6]2(2,3-Me2pyz=2,3-dimethylpyrazine)[J]. ChemCommun.,1996:1393-1394.
    [78] DEBORD J R D. Hydrothermal synthesis and structural characterization of [Cu(en)2]2Cu7Cl11:a three-dimensional open-framework copper halide with occluded [Cu(en)2]2+cations [J].Chem. Commun.,1997:1365-1366.
    [79] BLACK A J, BROOKS N R, CHAMPNESS N R, et al. Copper(I) iodide coordinationnetworks-controlling the placement of (CuI)∞ladders and chains within two-dimensionalsheets. Crystal Engineering [J]1999,2,181-195.
    [80] HEALY P C, PAKAWATCHAI C, RASTON C L, et al. Lewis-base Adducts of Group1BMetal(I) Compounds. Part1. Synthesis and Structure of CuILnComplexes (L=nitrogen base,n≤1.5)[J]. J. Chem. Soc., Dalton Trans.,1983:1905-1916.
    [81] WEI M Y, WILLETT R D, GOMEZ-GARCIA C J. Structure and Magnetic Properties of theFerromagnetic Cu3Cl126-Trimer in [(NH3C2H4)3NH]2Cu3Cl14[J]. Inorg. Chem.,2004,43:4534-4536.
    [82] MILLS N K, WHITE A H. Lewis-base adducts of Group1B metal(I) compounds. Part4.Synthesis and crystal structure of the1:1adduct of silver(I) chloride with quinoline [J]. J.Chem. Soc., Dalton Trans.,1984:225-228.
    [83] LU J Y, CABRERA B R, WANG R J, et al. Cu-X-bpy (X=Cl, Br-; bpy=4,4'-bipyridine)Coordination Polymers: The Stoichiometric Control and Structural Relations of [Cu2X2(bpy)]and [CuBr(bpy)][J]. Inorg. Chem.,1999,38,4608-4611.
    [84] SKELTON B W, WATERS A F, WHITE A H. Lewis-Base Adducts of Group11Metal(I)Compounds. LXIII. Stereochemistries and Structures of the1:1Adducts of CuIX (X=Cl, Br,I) With2,2′-Bipyridine [J]. Aust. J. Chem.,1991,44:1207-1215.
    [85] BHATTACHARYA R, GHOSH A, RAY M S. Synthesis, Crystal Structure, Thermal Analysisand Magnetic Behavior of a Novel One-Dimensional Polymeric Pyridinium Chlorocuprate(II):(Hpy)2[Cu3Cl8(H2O)2][J]. Eur. J. Inorg. Chem.,2003,23:4253-4259.
    [86] HEALY P C, MILLS N K, WHITE A H. Lewis-base adducts of Group1metal(I) compounds.III. Synthesis and crystal structures of the1:1adducts of silver(I) iodide with triethylamine,2-and3-methylpyridine and quinoline [J]. Aust. J. Chem.,1983,36:1851-1864.
    [87] GRAHAM P M, PIKE.R D. Coordination Polymers of Copper(I) Halides [J]. Inorg. Chem.,2000,39,5121-5132.
    [88] HEALY P C, PAKAWATCHAI C, WHITE A H. Lewis-base adducts of Group1B metal(I)compounds. Part18. Stereo-chemistries and structures of the1:1neutral complexes of CuIXwith1,10-phenanthroline (X=I) or2,9-dimethyl-1,10-phenanthroline (X=I, Br, or Cl)[J]. J.Chem. Soc., Dalton Trans.,1985:2531-2539.
    [89] WILLETT R D, GALERIU C, LANDEE C P, et al. Structure and Magnetism of a SpinLadder System:(C5H9NH3)2CuBr4[J]. Inorg. Chem.,2004,43:3804-3811.
    [90] ENGELHARDT L M, GOTSIS S, HEALY P C, et al. Lewis-Base Adducts of Group11Metal(I) Compounds.XLV. Conformational Systematics of [(N-base)1(AgX)1]NComplexes[J]. Aust. J. Chem.,1989,42:149-176.
    [91] BLACK A J, BROOKS N R, CHAMPNESS N R, et al. Controlling copper(I) halideframework formation using N-donor bridging ligand symmetry: use of1,3,5-triazine toconstruct architectures with threefold symmetry [J]. J. Chem. Soc., Dalton Trans.,1999,2103-2110.
    [92] PLACE H, SCOTT B, LONG G S, et al.(C5H7N2O)Cu3Br4: template synthesis of atwo-dimensional copper(I) bromide lattice [J]. Inorg. Chim. Acta.,1998,279:1-6.
    [93] WOODARD B, WILLETT R D, HADDAD S, et al. Structure of Two Azide Salts of aCopper(II) Macrocycle and Magnetic Properties of Cu(14ane)Cu(N3)4[J]. Inorg. Chem.,2004,43:1822-1824.
    [94] WILLETT R D, GOMEZ-GARCIA C J, GHOSH A. Magnetic behavior of some1D Cuchain [J]. Journal of Magnesism and Magnetic Materials,2004,272-76:1095-1096.
    [95]于杰辉。金属-卤素簇合物的设计合成、结构及三阶非线性光学性能的研究[D].长春:吉林大学博士论文,2003。
    [96]侯芹。有机成分修饰的金属-卤素簇合物的设计合成、结构与性能研究[D].长春:吉林大学博士论文,2010。
    [97] BATTEN S R, MURRAY K S. Structure and magnetism of coordination polymers containingdicyanamide and tricyanomethanide [J]. Coord. Chem. Rev.,246(2003)103-130.
    [98] LI L, LIU Z, TURNER S S, et al. The first one-dimensional copper(II)-radical system withalternating double end-on and end-to-end azido bridges [J]. New J. Chem.,2003,27:752-755.
    [99] KOU Z, LIAO D Z, CHENG P, Reactions of [S2M(μ-S)2FeCl2]2(M=Mo or W) witharenethiolate ions: influence of neighbouring metal sites on the rates and mechanisms ofsubstitution at iron [J]. J. Chem. Soc., Dalton Trans.,1997:1507-1514.
    [100] ALI M, RAY A, SHELDRICK W S, et al. Synthesis, crystal structure, EPR and magneticproperyies of a cyano-bridged CuII-NiIIheterobimetallic comples: an unusual structure withlong-range ferromagnetic exchange through hydrogen bonding [J]. New J. Chem.,2004,28:412-417.
    [101] BIE H Y, YU J H, XU J Q, et al. Synthesis, structure and non-linear optical property of acopper (II) thiocyanate three-dimensional supramolecular compound [J]. J. Mol. Stru.,2003,660:107-112.
    [102] SHEK P Y, WONG W T, GAO S, et al. A novel one-dimensional Ni(II)-Fe(II) polymercontaining μ3-cyanides:[Ni(cyclen)]2[Fe(CN)6]8H2O [J]. New J. Chem.,2002,26:1099-1101.
    [103] ADHIKARY C, MAL D, OKAMOTO K-I, et al. Synthesis, characterization, X-ray structureand magnetic study of the azido adducts of tridentate (NNO) Schif base copper (II) complexes[J]. Polyhedron,2006,25:2191-2197.
    [104] ADHIKARY C, KONERA S. Structural and magnetic studies on copper(II) azido complexes[J]. Coord. Chem. Rev.,2010,254:2933-2958.
    [105] GOHER M A S, YANG Q C, MAK T C W. Synthesis, structural and spectroscopic study ofpolymeric copper(I) thiocyanato complexes [Cu(NCS)L]n(L=methyl nicotinate and ethylnicotinate) and [HL][Cu(NCS)2](HL=H-ethyl isonicotinate)[J]. Polyhendron,2000,19:615-621.
    [106] HU D X, LUO F, CHE Y X, et al. Construction of lanthanide metal-organic frameworks byflexible aliphatic dicarboxylate ligands plus a rigid m-phthalic acid ligand [J]. Cryst. GrowthDes.,2007,7:1733-1737.
    [107] SHEK P Y, WONG W T, GAO S, et al. A novel one-dimensional Ni(II)-Fe(II) polymercontaining μ3-cyanides:[Ni(cyclen)]2[Fe(CN)6]8H2O [J]. New J. Chem.,2002,26:1099-1101.
    [108]张丽娟,多羧酸-过渡金属配位聚合物的合成、结构与性能的研究[D].长春:吉林大学博士论文2003.
    [109]谢凤桐,过渡金属-羟基多羧酸配位聚合物的合成、结构与性能研究[D].长春:吉林大学博士学位论文,2005。
    [110]储德清,过渡金属配位聚合物的合成、结构与性能研究[D].长春:吉林大学博士学位论文,2001。
    [111] YU J H, WANG X M, YE L, et al. Organically templated chained chlorocadmates andcadmium-chlorothiocyanates [J]. CrystEngComm,2009,11:1037-1045.
    [112] JIN J, JIA M J, PENG Y, et al. New organically decorated cadmium halides incorporatingthe second or the third inorganic anionic groups [J]. CrystEngComm,2011,13:2942-2947.
    [113] JIN J, JIA M J, WANG Y C, et al. Structural characterization of three organically modifiedCd(II) compounds [J]. Inorg. Chem. Commun.,2011,14:1681-1684.
    [114] JIA H L, JIA M J, ZENG G, et al. Structural characterization of a series of new organicallytemplated chained thiocyanato(halo)cadmates [J]. CrystEngComm,2012,14:6599-6608.
    [115] JIA H L, JIA M J, DING H, et al. New thiocyanatocadmates with bidentate N-heterocyclicmolecules as the templating agents: synthesis and structural characterization [J].CrystEngComm,2012,14:8000-8009.
    [116] RARIG R S, LAM R, ZAVALIJ P Y, et al. Ligand Influences on Copper MolybdateNetworks: The Structures and Magnetism of [Cu(3,4'-bpy)MoO4],[Cu(3,3'-bpy)0.5MoO4], and
    [Cu(4,4'-bpy)0.5MoO4]·1.5H2O [J]. Inorg. Chem.,2002,41(8):2124-2133.
    [117] ZHANG S, BROWN T L, DU Y. Metalation of C60with pentacarbonylrhenium radicals.Reversible formation of C60{Re(CO)5}2[J]. J. Am. Chem. Soc.,1993,115(15):6705-6709.
    [118] KURADO Y, KATO Y, HIGASHIOJI T, et al. Chiral amino acid recognition by aporphyrin-based artificial receptor [J]. J. Am. Chem. Soc.,1995,117(44):10950-10958.
    [119] MAUXANL L P, BAHRI H, SIMONNEAUX G. Molecular recognition of racemicphosphines by a chiral ruthenium porphyrin [J]. Chem. Commun.,1991,1350-1352.
    [120] BURGESS J, HUBBARD C D. Ligand Substitution Reactions [J]. Adv. Inorg. Chem.,2003,54:71-155.
    [121] CONSTABLE E C. Metals and Ligand Reactivity [M]. VCH, Weinheim,1996:245
    [122] CHEN X M, TONG M L. Solvothermal in situ metal/ligand reactions: a new bridge betweencoordination chemistry and organic synthetic chemistry [J]. Acc. Chem. Res.,2007,40:162-170.
    [123] ZHANG X M. Hydro(solvo)thermal in situ ligand syntheses [J]. Coord. Chem. Rev.,2005,249:1201-1219.
    [124] EVANS O R, LIN W. Synthesis of zinc oxalate coordination polymers via uprecedentedoxidative coupling of methanol to oxalic acid [J]. Cryst. Growth Des.,2001,1:9-11.
    [125] LIU C M, GAO S, KOU H Z, Dehydrogenative coupling of phenanthroline underhydrothermal conditions: crystal structure of a novel layered vanadate complex constructed of4,8,10-net sheets:[(2,2′-biphen)Co]V3O8.5[J]. Chem. Commun.,2001:1670-1671.
    [126] WEI Q H, ZHANG L Y, YIN G Q, et al. Luminescent Heteronuclear AuI5AgI8Complexes of{1,2,3-C6(C6H4R-4)-3}3(R=H, CH3, But) by Cyclotrimerization of Arylacetylides [J]. J. Am.Chem. Soc.,2004,126:9940-9941.
    [127] XIAO D R, HOU Y, WANG E B, et al. Dehydrogenative coupling of2,2′-bipyridine:hydrothermal synthesis and crystal structure of a novel polyoxovanadate decorated with the2,2′;6′,2′′:6′′,2′′′-quaterpyridine ligand [J]. Inorg. Chem. Commun.,2004,7:437-439.
    [128] BUTLER R N, in: KATRITZKY A R, REES C W, SCRIVEN E F V (Eds.). ComprehensiveHeterocyclic Chemistry [M]. vol.4, Pergamon, Oxford, UK,1996
    [129] OSTROVSKII V A, PEVZNER M S, KOFMNA T P, et al.[J]. Targets Heterocycl. Syst.,1999,3:467-562.
    [130] SINGH H, CHAWLA A S, KAPOOR V K, et al. Medicinal chemistry of tetrazoles [J]. Prog.Med. Chem.,198017:151-83.
    [131] HISKEY M, CHAVEZ D E, NAUD D L, et al. Progress in high nitrogen chemistry inexplosives propellants and pyrotechnics [J]. Proc. Int. Pyrotech. Semin.,2000,27:3-14.
    [132] WITTENBERGER S J. Organic Preparations and Procedures International: The NewJournal for Organic Synthesis [J]. Org. Prep. Proced. Int.,1994,26:499-531.
    [133] CURRAN D P, HADIDA S, KIM S Y. tris(2-Perfluorohexylethyl)tin azide: A New Reagentfor Preparation of5-Substituted Tetrazoles from Nitriles with Purification by Fluorous/OrganicLiquid-Liquid Extraction [J]. Tetrahedron,1999,55:8997-9006.
    [134] WIBERG V E, MICHAUD H Z. Naturforsch., B: Chem. Sci.1954,9:497.
    [135] BHANDARI S, MAHON M F, MOLLOY K C, et al. Thallium(I)-andorganothallium(III)-substituted mono-, bis-and tris-tetrazoles: synthesis and supramolecularstructures [J]. Chem. Soc., Dalton Trans.,2000,1053-1060.
    [136] XIONG R G, XUE X, ZHAO H, et al. Novel, Acentric Metal-Organic CoordinationPolymers from Hydrothermal Reactions Involving In Situ Ligand Synthesis [J]. Angew. Chem.,Int. Ed.,2002,41:3800-3803.
    [137] WANG L Z, QU Z R, ZHAO H, et al. Isolation and Crystallographic Characterization of aSolid Precipitate/Intermediate in the Preparation of5-Substituted1H-Tetrazoles from Nitrile inWater [J]. Inorg. Chem.,2003,42:3969-3971.
    [138] ZHANG J P, ZHENG S L, HUANG X C, et al. Two unprecedented3-connectedthree-dimensional networks of copper (I) triazolates: in situ formation of ligands bycycloaddition of nitriles and ammonia [J]. Angew. Chem. Int. Ed.,2004,43:206-209.
    [139] KAES C, KATZ A, HOSSEINI M W. Bipyridine: The Most Widely Used Ligand. A Reviewof Molecules Comprising at Least Two2,2'-Bipyridine Units [J]. Chem. Rev.,2000,100:3553-3590.
    [140] W RNMARK K, THOMAS J A, HEYKE O, et al. Stereoisomerically controlled inorganicarchitectures: synthesis of enantio-and diastereo-merically pure ruthenium-palladiummolecular rods from enantiopure building blocks [J]. Chem. Commun.,1996,701-702.
    [141] XIAO D R, HOU Y, WANG E B, et al. Hydrothermal synthesis and crystal structure of anovel polyoxomolybdate with the hydroxylated N-heterocycle ligand: Mo2O5(ophen)2(Hophen=2-hydroxy-1,10-phenanthrol ine)[J]. J. Mol. Struct.,2003,659:13-21.
    [142] ZHANG X M, TONG M L, GONG M L, et al. Syntheses, crystal structures, and physicalproperties of dinuclear copper(I) and tetranuclear mixed-valence copper(I,II) complexes withhydroxylated bipyridyl-like ligands [J]. Chem. Eur. J.,2002,8:3187-3194.
    [143] ZHANG X M, TONG M L, CHEN X M. Hydroxylation of N-heterocycle ligands observedin two unusual mixed-valence Cu-I/Cu-II complexes [J]. Angew. Chem. Int. Ed.,2002,41:1029-1031.
    [144] R DEL E, JENTOFT R E, RESSLER T. In situ investigations of structureactivitycorrelations of mixed molybdenum oxide catalysts [J]. Z. Anorg. Allg. Chem.,2004,630,1756.
    [145] TAO J, ZHANG Y, TONG M L, et al. A mixed-valence copper coordination polymergenerated by hydrothermal metal/ligand redox reactions [J]. CHEM. COMMUN.,2002,1342-1343.
    [146] RAO C N R, NATARAJAN S, VAIDHYANATHAN R. Metal Carboxylates with OpenArchitectures [J]. Angew. Chem. Int. Ed.,2004,43:1466-1496.
    [147] CHENG J W, ZHENG S T, YANG G Y. Diversity of crystal structure with differentlanthanide ions involving in situ oxidation-hydrolysis reaction [J]. Dalton Trans.,2007,4059-4066.
    [148] YAN Y, WU C D, LU C Z. Hydrothermal synthesis of two new transition metal coordinationpolymers with mixed ligands [J]. Z. Anorg. Allg. Chem.2003,629:1991-1995.
    [149] EVANS O R, LIN W. Synthesis of Zinc Oxalate Coordination Polymers via UnprecedentedOxidative Coupling of Methanol to Oxalic Acid [J]. Cryst.Growth Des.,2000,1:9-11.
    [150]顾艳红,含吡啶取代基的吡唑卤化亚铜配合物的溶剂热合成与结构研究[D].汕头:汕头大学硕士论文,2008.
    [151] CHENG J K, YAO Y G, ZHANG J, et al. A simultaneous redox, alkylation, self-assemblyreaction under solvothermal conditions afforded a luminescent copper(I) chain polymerconstructed of [Cu3I4]-and [EtS-4-C5H4N+Et] components (Et=CH3CH2)[J]. J. Am. Chem.Soc.,2004,126:7796-7797.
    [152]卢静,含氮、氧及卤素配体的过渡金属配合物的合成、结构及性能[D].长春:吉林大学博士论文,2006。
    [153] HU X X, PAN C L, XU J Q, et al. One-and three-dimensional coordination polymerscontaining organic ligands produced through in situ hydrothermal reactions [J]. Eur. J. Inorg.Chem.,2004:1566-1569.
    [154] HU X X, XU J Q, CHENG P, et al. A new route for preparing coordination polymers fromhydrothermal reactions involving in situ ligand synthesis [J]. Inorg. Chem.,2004,43:2261-2266.
    [155]朱艳春,一系列含酰肼类配体化合物的结构性能研究[D].长春:吉林大学硕士论文,2009。
    [156] LIU F C, DUAN L Y, LI Y G, et al. Hydrothermal synthesis and characterizations of a novel2-D double-layers metal-organic coordination polymer involving in situ ligand synthesis [J].Inorg. Chim. Acta.,2004,357:1355-1359.
    [157]徐如人,庞文琴.无机合成与制备化学[M].高等教育出版社,2001:128-163.
    [158] SHELDRICK G M. SHELXS97, Program for Crystal Structure Refinement [M]. Universityof G ttingen: G ttingen, Germany,1998.
    [159]陈小明,蔡继文编著.单晶结构分析[M].科学出版社,2003, P100.
    [160] DIAZ P, BENET-BUCHHOLZ J, VILAR R, et al. Anion Influence on the Structures of aSeries of Copper(II) Metal-OrganicFrameworks [J]. Inorg. Chem.,2006,45:1617-1626.
    [161] YU J H, ZHU Y C, WU D, et al. Preparation and structural characterization of a series ofmonoacylhydrazidate-bridged coordination polymers [J]. Dalton Trans.,2009,8248-8256.
    [162] HOWELL R H, EDWARDS S H, GAJADHAR-PLUMMER A S, et al. Phthalimides:Supramolecular Interactions in Crystals, Hypersensitive Solution1H-NMR Dynamics andEnergy Transfer to Europium(III) and Terbium(III) States. Molecules [J].2003,8:565-592.
    [163] DALE S H, ELSEGOOD M R J, HEMMINGS M, et al. The co-crystallisation of pyridinewith benzenepolycarboxylic acids: The interplay of strong and weak hydrogen bonding motifs[J]. CrystEngComm,2004,6:207-214.
    [164] MIZRAHI A, WIGNACOURT J P, STEINFINK H, Pb2BiO2PO4, a New Oxyphosphate [J].J. Solid State Chem.,1997,133:516-521.
    [165] LóPEZ M V, ZARAGOZA G, OTERO M, et al. Supramolecular Aggregation of Pd(II)Monohelicates Directed by Discrete (H2O)8Clusters in a1,4-Diaxially Substituted HexamericChairlike Conformation [J]. Cryst. Growth Des.,2008,8:2083-2086.
    [166] JEFFREY G A. An Introduction to Hydrogen Bonding [M]. Oxford University Press,Oxford,1997.
    [167] EISENBERG D, KAUZMANN W. The Structure and Properties of Water [M]. ClarendonPress, Oxford,1969, p71.
    [168] FLETCHER N H. The Chemical Physics of Ice [M]. Cambridge University Press,Cambridge,1970.
    [169] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian09, Revision A.02,Gaussian, Inc., Wallingford CT,2009.
    [170] DENNINGTON R. II, TODD K, MILLAM J, et al. GaussView, version5.08, Semichem,Inc Shawnee Mission, KS,2003.
    [171] DIAZ P, BENET-BUCHHOLZ J, VILAR R, et al. Anion Influence on the Structures of aSeries of Copper(II) Metal-OrganicFrameworks [J]. Inorg. Chem.,2006,45:1617-1626.
    [172] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematic molecularorbital theory for excited states[J]. J. Phys. Chem.,1992,96:135-149.
    [173] KRISHNAN R, BINKLEY J S, SEEGER R, et al. J. Self-consistent molecular orbitalmethods. XX. A basis set for correlated wave functions [J]. J. Chem. Phys.,1980,72:650-654.
    [174] HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations.Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys.,1985,82:299-310.
    [175] BAUERNSCHMITT R, AHLRICHS R. Treatment of electronic excitations within theadiabatic approximation of time dependent density functional theory Chem [J]. Phys. Lett.,1996,256:454-464.
    [176] CASIDA M E, JAMORSKI C, CASIDA K C, et al. Molecular excitation energies tohigh-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionizationthreshold [J]. J. Chem. Phys.,1998,108:4439-4449.
    [177] YANAI T, TEW D P, HANDY N C, A new hybrid exchange-correlation functional using theCoulomb-attenuating method (CAM-B3LYP)[J]. Chem. Phys. Lett.,2004,393:51-57.
    [178] YU X Y, YE L, ZHANG X, et al. Fluorescent metal-organic polymers of zinc and cadmiumfrom hydrothermal in situ acylation reaction [J]. Dalton Trans.,2010,39:10617-10625.
    [179] YU X Y, CUI X B, YANG J J, et al. A series of coordination polymers constructed from insitu amidation ligands: syntheses, structures and luminescent properties [J]. CrystEngComm,2012,14:4719-4727.
    [180] YU J H, XU J Q, YE L, et al. Hydrothermal synthesis and characterization of a copper(I)halide coordination polymer with isonicotinic acid(IN) ligand as a template possessingthree-dimensional supramolecular network structure [J]. Inorg. Chem. Commun.,2002,5:572-576.
    [181] HOU Q, Qu X J, JIN J., et al. Crystal Structures of Two Copper(I) Iodides: Chained
    [CuI(bta)] and Tetranuclear [(mdabco)2Cu4I6](bta=Benzotriazole; mdabco=N-methyl-1,4-diazabicyclo[2,2,2]octane)[J]. J. Cluster Sci.,2011,22:715-722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700