多功能复合纳米粒子的制备及其在生物医学领域中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文成功合成了不同代数的树枝状分子PAMAM,并对其结构进行了表征。由于其结构特殊及表面含有大量的官能团,可以进行多种功能化修饰及作为无机纳米粒子表面配体。首先将阿霉素通过pH敏感化学键-连接在G3.5PAMAM上,并在其表面修饰上FA分子,同时这种靶向释放配体可以与磁性纳米粒子进行配体交换,得到可用于靶向治疗,MRI成像检测的多功能体系。对靶向纳米释药体系及小鼠MRI成像方面进行了研究。另外通过化学键将FA以及抗癌药紫杉醇,顺磁性纳米氧化铁联系起来,并对树状分子表面修饰荧光分子Cy5.5,得到了可用于肿瘤检测和靶向治疗的多功能纳米复合物。它可以作为一种双探针分子,进行荧光和MRI双重检测试剂,并表现出了优良的性质。制备以mPEG-G3.5PAMAM为载体,通过两次配体交换的修饰方法,成功将QDs与IONPs复合在一起,然后对其表面修饰上anti-VEGF,构筑靶向双模态的分子影像探针,并通过多种检测手段,对其结进行了详尽的表征,从体外共聚焦显微镜照片及小鼠MRI肿瘤成像,对双探针分子进行了研究。同时应用相同的靶向机制,我们成功制备荧光靶向载药释放体系。它是由载体分子G3.5PAMAM及抗肿瘤药物DOX,通过配体交换的方法对QDs进行修饰,得到靶向复合载药纳米粒子,并对各项性质进行了详尽的表征。在靶向树枝状载体FA-PEG-G3.5的表面,修饰上DTPA合成了FA-PEG-G3.5-DTPA配体。这种配体不但可以通过表面的羧基与量子点进行配体交换,得到一种大分子荧光制剂,而且它的表面可以螯合顺磁性Gd离子,制备MRI成像与荧光成像一体的双探针分子,并在细胞实验与小鼠MRI成像实验中,对双探针分子进行了评估。
     本论文设计合成的多功能纳米复合物,具有良好的生物相容性,应用于肿瘤的靶向治疗及生物探针分子,特点鲜明,优势突出,对于肿瘤的早期诊断及靶向治疗方面有重要的意义。
Nanobiotechnology is the hot spot of today's scientific research, which is anintersection of nanotechnology and biotechnology.The functional nanoparticleshas agreat prospect in the biomedical field, such as biological probes, magnetictransfection and protein separation, targeted drug delivery, drug delivery, etc. To studythe interaction between the nanoparticles and the biologically active substance bymodifyingthe surface of the nanoparticles, in which lay the theoretical foundation forits subsequent applications in the field of biomedical. The ligand-exchange reactionmethodis based on the binding affinity of multidentateamine groups to the QDs orIONPs surface. After the ligand exchange, the NPs were converted from oil-soluble towater-soluble. At last, the stable multifunctional water-soluble nanoparticles wereobtained.
     The dendrimer PAMAM is a carrier, which is widely used in this paper. PAMAMdendrimers were prepared by a divergent synthesis scheme using the reagent excessmethod starting from EDA by consecutive Michael addition and ester amidationreaction. For the surface of PAMAM with numerous functional groups (amine,carboxyl, and hydroxyl), and it can be modified with different functionalities(conjugation of anti cancer drug and targeting moiety). After the modification of PEG,the pharmacokinetic properties of drugs and the drug distribution in vivo can beimprove, the stability in the body is increased, the toxicity and immunogenicity arereduced. And then the liand wascombined with nanoparticles, which is used asbiological probes and targeted drug delivery.
     A tumor targeted and pH-responsive drug release system that is based on folicacid (FA) conjugated to poly(ethylene glycol)(PEG)-modified dendrimers (PAMAM)with doxorubicin (DOX) andsuperparamagnetic iron oxide (Fe3O4) has beenconstructed andcharacterized.IONPs were stabilized by FA-PEG-G3.5PAMAMdendrimers. The anticancer drugDOX was conjugated to the dendrimer segments ofamino-stabilized IONPs using hydrazine as thelinker via hydrazone bonds, which areacid cleavable and can be used as an ideal pH-responsive drugrelease system. Notably,these novel nanoparticlescontaining DOX conjugates showed great potential forapplicationin both MRI detection and cancer therapy by virtue oftheir targetingfunction, in addition to EPR accumulation, whichallowed the anticancer drug to beorientated directly to thetarget sites, although the nanoparticles without tagetingmoiety.
     A tumor targeted and drug-loaded system that is based on folic acid (FA)conjugated to poly(ethylene glycol)(PEG)-modified dendrimers (PAMAM) withpaclitaxel (PTX), Cy5.5fluorophore and superparamagnetic ironoxide (IONPs) hasbeen constructed and characterized. And through a variety of detection methods tocharacterize the size of its structure, morphology, both the physical and chemicalproperties were studied. The attached FA could facilitate the use of the conjugates as afolate receptor-targeted drug deliverysystem. TheCLSMpictures of cell in vitro canprove that the role the targeting molecule FA plays in the uptake of NPconjugates bythe cell.These novel PTX-loaded conjugates have the potential to enhance the effectof fluorescenceimaging, MRI contrast and cancer therapy in the course of deliveringdrugs to target sites.This provides the research foundation for tumor detection andtargeted therapy.
     We have developed an imaging system by co-conjugating QDs and IONPs withmPEG-G3.5PAMAM for both of MRI and fluorescent imaging concurrently, whichcombination of QDs and IO as a single probe strives to improve imaging withpractical clinical feasibility andthe anti-VEGF was selected as the targetingmoiety.These preliminarydata demonstrated that the conjugation of anti-VEGF moleculesto the surface of the NPs, which favors the anti-VEGF receptorrecognition,was responsible for the targeting ability of anti-VEGF-PEG-G3.5-QDs@IONPs, andin turn beneficial to theirentry into the cells through endocytosis or macropinocytosis.It isparently seen that anti-VEGF conjugated NPs exhibitedefficientreceptor-mediated endocytosis in VEGF receptoroverexpressingcancer cells, ascompared to non-targeted NPs.Conjugation of hybridnanoparticles show better cancerimaging ability as an MRcontrast agent in vivo and fluorescent imaging effects exvivo asthe result of the combined anti-VEGF, thereby greatly improvingthe efficacyof imaging.
     The same applications of targeting mechanism of targeting molecules anti-VEGFspecific binding of VEGF overexpressing of the tumor surface, after preparing thefluorescent the targeted drug loading release system. The ligand-exchange reaction isbased on the binding affinity of the anticancer drugs DOX modified-G3.5PAMAM tothe QDs surface. Doxorubicin and quantum dots are connected through this effectivemethod, by this way the QDs were converted to high quantum yield ofwater-soluble complexes so that the composite nanoparticles can play an importantrole in cancer targeted treatment. Meanwhile, the PEGylation of PAMAM dendrimermodified onto the surface of the nanoparticle, which greatly improve the stability ofquantum dots. And the good biocompatibility and low toxicity of PEG and PAMAMmake its application in biology.
     Optical and magnetic resonance (MR) imaging probes were integrated byconjugating DTPAgadolinium(Gd) derivative to quantum dot based FA-PEG-G3.5PAMAM. It is known that carboxyl canbe used to stabilize QDs with oleic acidcoating, and obtained water-soluble macromolecular fluorescent QDs. The remainingcarboxyl groups can chelate Gd to preparea dual probe, which contains MR imagingand fluorescence imaging molecules, then through a series of characterizationmethods to characterize its structure.The dual probe shows better cancer imaging ability as an MRcontrast agent in vivo and fluorescent imaging effects ex vivo astheresult of the combined FA, thereby greatly improvingthe efficacy of imaging.
引文
[1] Gleiter H. Nanostructured materials: basic concepts and microstructure[J]. ActaMaterialia,2000,48:1-29.
    [2] Xie H Y, Pang D W. Preparation of II-VI quantum dots and their application inbiodetection [J].Chinese Journal of Analytical Chemistry,2004,32:1099-1103.
    [3] Song C H, Ye Z Q, Wang G L, Jin D Y, Yuan J L, Guan Y F, Piper J. Preparationand time-gated luminescence bioimaging application of ruthenium complexcovalently bound silica nanoparticles [J]. Talanta,2009,79:103–108.
    [4] Jenkins S I, Pickard, M R, Granger, N, Chari, D M. MagneticNanoparticle-Mediated Gene Transfer to Oligodendrocyte Precursor CellTransplant Populations Is Enhanced by Magnetofection Strategies [J]. ACS Nano,2011,5:6527-6538.
    [5] Liu W M, Xue Y N, Peng N, He W T, Zhuo R X, Huang S W. Dendrimer modifiedmagnetic iron oxide nanoparticle/DNA/PEI ternary magnetoplexes: a novelstrategy for magnetofection [J].Journal of Materials Chemistry,2011,21:13306-13315.
    [6] Bucak S, Jones D A, Laibinis P E, et al. Protein separations usingcolloidalmagnetic nanoparticles [J]. Biotechnology Progress,2003,19(2):477–484.
    [7] Shamim N, Hong L, Hidajat K, et al. Thermosensitive–polymer–coatedmagneticnanoparticles: adsorption and desorption of bovine serum albumin [J].Journal ofColloid and Interface Science,2006,304(1):1–8.
    [8] Wang X, Li J, Wang Y X. A Folate Receptor-Targeting Nanoparticle MinimizesDrug Resistance in a Human Cancer Model [J]. ACS NANO,2011,5:6184-6194.
    [9] Lu H X, Li B, Kang Y. Paclitaxel nanoparticle inhibits growth of ovarian cancerxenografts and enhances lymphatic targeting [J]. Cancer Chemotherapy andPharmacology,2007,59(2):175-181.
    [10] Simovic S, Prestidge, C A. Nanoparticle layers controlling drug release fromemulsions [J].European Journal of Pharmaceutics and Biopharmaceutics,2007,67:39-47.
    [11] Cheng R, Meng F H, Deng C. Dual and multi-stimuli responsive polymericnanoparticles for programmed site-specific drug delivery [J]. Biomaterials,2013,34:3647-3657.
    [12]林章碧,苏星光,张家哗,等.纳米粒子在生物分析中的应用[J].分析化学,2002,30(2):237-241.
    [13] Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots [J].Science,1996,271(5251):933-937.
    [14] Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexedoptical coding of biomolecules [J]. Nat Biotech,2001,19(7):631-635.
    [15] Murray C B, Noms D J, Bawendi M G. Synthesis and characterization of nearlymonodisperse CdE (E=sulfur, selenium, tellurium) semiconductornanocrystallites [J]. J Am Chem Soc,1993,115(19):8706-8715.
    [16] Battaglia D, Peng X. Formation of High Quality InP and InAs Nanocrystals in aNoncoordinating Solvent [J]. Nano lett,2002,2(9):1027-1030.
    [17] Rajh T, Micic O I, Nozik A J. Synthesis and characterization of surface-modifiedcolloidal cadmium telluride quantum dots [J]. J Phys Chem,1993,97(46):11999-12003.
    [18] Dubertret B, Skourides P, Norris D J, et al. In Vivo Imaging of Quantum DotsEncapsulated in Phospholipid Micelles [J]. Science,2002,298(5599):1759-1762.
    [19] Mamedova N N, Kotov N A, Rogach A L, et al. Albumin CdTe NanoparticleBioconjugates: Preparation, Structure, and Interunit Energy Transfer withAntenna Effect [J]. Nano lett,2001,1(6):281-286.
    [20] Gerion D, Pinaud F, Williams S C, et al. Synthesis and Properties ofBiocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor QuantumDots [J]. J Phys Chem B,2001,105(37):8861-8871.
    [21] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging withsemiconductor quantum dots [J]. NatBiotechnol,2004,22(8):969-967.
    [22] Bruchez J R M, Moronne M, Gin P, et al. Semiconductor Nanocrystals asFluorescent Biological Labels [J]. Science,1998,281:2013-2016.
    [23]李步洪,张镇西,谢树森.量子点在生物学中的研究进展[J].激光生物学报.2006,15(2):214-220.
    [24] Yu W W, Chang E, Falkner J C. Forming Biocompatible and NonaggregatedNanocrystals inWater Using Amphiphilic Polymers [J]. J. Am. Chem. Soc.2007,129,2871-2879.
    [25] Gao J H, Gu H W, Xu B. Multifunctional Magnetic Nanoparticles: Design,Synthesis, and Biomedical Applications [J]. Accounts of Chemical Research,2009,42:1097-1107.
    [26] Dave S R, Gao X H. Monodisperse magneticnanoparticles forbiodetection,imaging, and drug delivery: aversatile and evolving technology[J].Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology,2009,1:583-609.
    [27] Lee J, Isobe T, Senna M. Magnetic properties of ultrafine magnetite particlesandtheir slurries prepared via in-situ precipitation [J]. Colloids Surf A,1996,109:121.
    [28] Peng X, Wickham J, Alivisatos A P. Kinetics of II-VI and III-VColloidalSemiconductor Nanocrystal Growth:"Focusing" of Size Distributions[J]. J AmChem Soc,1998,120:5343.
    [29] Paul B K, Moulik S P. Uses and applications of microemulsions [J]. CurrSci,2001,80(8):990.
    [30] Wang X, Zhuang J, Peng Q, Li Y. A general strategy for nanocrystalsynthesis [J].Nature2005,437(7055):121.
    [31] Xu Z, Shen C, Hou y, Gao H, Sun S. Oleylamine as Both Reducing Agent andStabilizerin a Facile Synthesis of Magnetite Nanoparticles [J]. Chem. Mater.,2009,21:1778–1780.
    [32] Yang J, Gunn J, Dave S, Zhang M, Wang Y A, Gao X. Ultrasensitive Detectionand Molecular Imaging with Magnetic Nanoparticles [J]. The Analysis,2008,133:154–160.
    [33] Duan H, Kuang M, Wang X, Wang Y A, Nie S, Mao H. Reexamining the effectsof particle size and surface chemistry on magnetic properties of iron oxidenanocrystals: new insights into spin disorder and proton relaxivity [J]. TheJournal of Physical Chemistry C,2008,112:8127–8131.
    [34] Peng X, Qian X, Mao H, Wang Y A, Chen Z, Nie S, Shin D M. Targetedmagnetic iron oxide nanoparticles for tumor imaging and therapy [J].International Journal of Nanomedicine,2008,3:311-321.
    [35] Yang L, Cao Z, Sajja H. K, Mao H, Wang L, Geng H, Xu H, Jiang T, Wood W C,Nie S, Wang Y A. Development of Receptor Targeted Magnetic Iron OxideNanoparticles for Efficient Drug Delivery and Tumor Imaging [J]. Journal ofBiomedical Nanotechnology,2008,4:439-449.
    [36] Jun Y, Choi J, Cheon J. Heterostructured magnetic nanoparticles: their versatilityand high performance capabilities [J]. Chem. Commun.,2007,1203–1214
    [37] Lindley C, Mccune J S, Thomason T E. Perception of chemotherapy side effectscancer versus noncancer patients [J]. Cancer practice1999,7(2):59-65.
    [38] Carelle N, Piottoe, Bellanger A. Changing patient perceptions of the side effectsof cancer chemotherapy [J].Cancer2002,95(1):155-163.
    [39] Cregg P J, Murphy K, Mardinoglu A. Inclusion of interactions in mathematicalmodelling of implant assisted magnetic drug targeting [J]. Applied MathematicalModelling,2012,36(1):1-34.
    [40] Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S. In vivo cancer targetingand imaging with semiconductor quantum dots [J]. Nature Biotechnology,2004,22(8):969-976.
    [41] Minko T, Dharap S S, Pakunlu R I. Molecular targeting of drug delivery systemsto cancer [J]. CURRENT DRUG TARGETS,2004,5(4):389-406.
    [42] Johnson K A, Brown P H. Drug Development for Cancer Chemoprevention:Focus on Molecular Targets [J].Seminars in Oncology,2010,37(4):345-358.
    [43] Mahon E, Salvati A, Bombelli F B. Designing the nanoparticle-biomoleculeinterface for "targeting and therapeutic delivery‖[J]. JOURNAL OFCONTROLLED RELEASE,2012,161(2):164-174.
    [44] Zhang Z, Tan S, Feng S.Vitamin E TPGS as a molecular biomaterial for drugdelivery [J]. Biomaterials,2012,33(19):4889-4906.
    [45] Traboulsee A L, Li D K B.The role of MRI in the diagnosis of multiple sclerosis[J].Advances in neurology,2006,98:125-146.
    [46] Laurent S, Henoumont C, Vander Elst L. Synthesis and PhysicochemicalCharacterisation of Gd-DTPA Derivatives as Contrast Agents for MRI [J].European Journal of Inorganic Chemistry,2012,12(SI):1889-1915.
    [47] Buhleier E, Wehner W, V gtle F.―Cascade‖-and―Nonskid-Chain-like‖Syntheses of Molecular Cavity Topologies [J]. Synthesis,1978,2:155-158.
    [48] Newkome G R, Yao Z, Baker G R, et al. Chemistry of micelles series. Part2.Cascade molecules. Synthesis and characterization of a benzene[9]3-arborol [J].J Am Chem Soc,1986,108(4):849-850.
    [49] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum Dots for Live Cells, inVivo Imaging, and Diagnostics [J]. Science,2005,307(5709):538-544.
    [50] Alivisatos A P, Gu W, Larabell C. Quantum Dots as Cellular Probes [J]. AnnuRev Biomed Eng,2005,7(1):55-76.
    [51] Svenson S, Tomalia D A. Dendrimers in biomedical applications—reflections onthe field [J].Advanced Drug Delivery Reviews,2005,57:2106–2129.
    [52] Esfand R, Tomalia D A. Poly(amidoamine)(PAMAM)dendrimers: frombiomimicry to drugdelivery and biomedical applications [J].Drug DscoveryDoday,2001,6(8):427-436.
    [53] Chen W, Tomalia D A, Thomas J L. Unusual pH-Dependent Polarity Changes inPAMAM Dendrimers: Evidence for pH-Responsive Conformational Changes [J].Macromoleeules,2000,33(25):9169-9172.
    [54] Milhem O M, Myles C, Mckeown N B, et al. Polyamidoamine Starburstdendrimers as solubility enhancers [J]. IntJPharm,2000,197(1-2):239-241.
    [55] Devarakonda B, Hill R A, de Villiers, M M. The effect of PAMAM dendrimergeneration size and surface functional group on the aqueous solubility ofnifedipine [J]. Int J Pharm,2004,284(1-2):133-140.
    [56] Cheng Y, Xu T. Dendrimers as Potential Drug Carriers. Part I. Solubilization ofNon-Steroidal Anti-Inflammatory Drugs in the Presence of PolyamidoamineDendrimers [J]. Eur J Med Chem,2005,40(11):1188-1192.
    [57] Beezer A E, King A S H, Martin I K, et al. Dendrimers as potential drug carriers,encapsulation of acidic hydrophobes within water soluble PAMAM derivatives[J]. Tetrahedron,2003,59(22):3873-3880.
    [58] Lei X, Jockusch S, Turro N J, et al. EPR characterization ofgadolinium(III)-containing-PAMAM-dendrimers in the absence and in thepresence of paramagnetic probes [J]. J Colloid Interface Sci,2008,322(2):457-464.
    [59] Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)-ConjugatedPAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery [J].Macromoleeules,2002,35(9):3456-3462.
    [60] Yang H, Lopina S T. Extended release of a novel antidepressant, venlafaxine,based on anionic polyamidoamine dendrimers and poly(ethyleneglycol)-containing semi-interpenetrating networks [J]. J Biomed Mater Res,2005,72A(1):107-114.
    [61] Kono K, Kojima C, Hayashi N, et al. Preparation and cytotoxic activity ofpoly(ethylene glycol)-modified poly(amidoamine) dendrimers bearingadriamycin [J]. Biomaterials,2008,29(11):1664-1675.
    [62] Pan G, Lemmouchi Y, Akala E O, et al. Studies on PEGylated and Drug-LoadedPAMAM Dendrimers [J]. JBioactCompatPolym,2005,20(1):113-128.
    [63] Bhadra D, Bhadra S, Jain S, et al. A PEGylated dendritic nanoparticulate carrierof fluorouracil [J]. IntJPharm,2003,257(1-2):111-124.
    [64] Yang H, Morris J J, Lopina S T. Polyethylene glycol–polyamidoamine dendriticmicelle as solubility enhancer and the effect of the length of polyethylene glycolarms on the solubility of pyrene in water [J]. J Colloid Interface Sci,2004,273:148-154.
    [65] Kim T, Baek J, Yoon J K, et al. Synthesis and Characterization of a NovelArginine-Grafted Dendritic Block Copolymer for Gene Delivery and Study of ItsCellular Uptake Pathway Leading to Transfection [J]. Bioconjugate Chem,2007,18(2):309-317.
    [66] Menjoge A R, Kannan RM, Tomalia D A. Dendrimer-based drug and imagingconjugates: design considerations for nanomedical applications [J].DrugDiscovery Today,2010,15:171-185.
    [1] Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N.Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization,Physicochemical Characterizations, and Biological Applications [J].Chem. Rev.,2008,108:2064–2110.
    [2] Wu X, He X, Zhong L, Lin S, Wang D, Zhu X, Yan D. Water-solubledendritic-linear triblock copolymer-modified magnetic nanoparticles: preparation,characterization and drug release properties [J]. J. Mater. Chem.,2011,21:13611–13620.
    [3] Gijs M A M, Lacharme F D R and Lehmann U. Microfluidic Applications ofMagnetic Particles for Biological Analysis and Catalysis [J]. Chem. Rev.,2010,110:1518–1563.
    [4] Frey N A, Peng S, Cheng K and Sun S. Magnetic nanoparticles: synthesis,functionalization, and applications in bioimaging and magnetic energy storage [J].Chem. Soc. Rev.,2009,38:2532–2542.
    [5] Huang H, Remsen E E, Kowalewski T and Wooley K L. Nanocages Derived fromShell Cross-Linked Micelle Templates [J].J. Am.Chem. Soc.,1999,121(15):3805-3806.
    [6] Gref R, Minamitake Y, Peracchia M T, Trubetskoy V, Torchilin V and Langer R.Biodegradable long-circulating polymeric nanospheres [J].Science,1994,263:1600-1603.
    [7] Farokhzad O C, Cheng J, Teply B A, Sherifi I, Jon S, Kantoff P W, Richie J P andLanger R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapyin vivo [J].Proc. Natl. Acad. Sci. U. S. A.,2006,103:6315-6320.
    [8] Lee H, Lee E, Kim D K, Jang N K, Jeong Y Y and Jon S. AntibiofoulingPolymer-Coated Superparamagnetic Iron Oxide Nanoparticles as PotentialMagnetic Resonance Contrast Agents for in Vivo Cancer Imaging [J]. J. Am.Chem. Soc.,2006,128:7383–7389.
    [9] Yang J, Lee T, Lee J, Lim E K, Hyung W, Lee C H, Song Y J, Suh J S, Yoon H G,Huh Y M and Haam S. Synthesis of Ultrasensitive Magnetic Resonance ContrastAgents for Cancer Imaging Using PEG-Fatty Acid [J]. Chem. Mater.,2007,19:3870–3876.
    [10] Laginha K M, Verwoert S, Charrois G J R and Allen T M. Determination ofdoxorubicin levels in whole tumor and tumor nuclei in murine breast cancertumors [J]. Clin.Cancer Res.,2005,11:6944–6949.
    [11] Aryal S, Grailer J J, Pilla, S, Steeber, D A, Gong S Q. Doxorubicin conjugatedgold nanoparticles as water-soluble and pH-responsive anticancer drugnanocarriers [J]. J. Mater. Chem.,2009,19:7879–7884.
    [12] Frederick C A, Williams L D, Ughetto G, van der Marel G A, van Boom J H,Rich A and Wang A H. Structural comparison of anticancer drug-DNA complexes:adriamycin and daunomycin [J]. Biochemistry,1990,29:2538–2549.
    [13] Etrych T, Jelinkova M, Rihova B and Ulbrich K. New HPMA copolymerscontaining doxorubicin bound via pH-sensitive linkage: synthesis and preliminaryin vitro and in vivo biological properties [J]. J. Controlled Release,2001,73:89–102.
    [14] Lee Y, Park S Y, Mok H and Park T G. Synthesis, Characterization, AntitumorActivity of Pluronic Mimicking Copolymer Micelles Conjugated withDoxorubicin via Acid-Cleavable Linkage [J]. Bioconjugate Chem.,2008,19:525–531.
    [15] Marchi N, Hallene K L, Kight K. M, Cucullo L, Moddel G, Bingaman W, Dini G,Vezzani A and Janigro D. Significance of MDR1and multiple drug resistance inrefractory human epileptic brain [J]. BMC Med.,2004,2:37–10.
    [16] Batrakova e V, Kelly d L, Li S, Li Y, Yang Z, Xiao L, Alakhova D Y, Sherman S,Alakhov V Y and Kabanov A V. Alteration of Genomic Responses to Doxorubicinand Prevention of MDR in Breast Cancer Cells by a Polymer Excipient: PluronicP85[J]. Mol. Pharmaceutics,2006,3:113–123.
    [17] Marin A, Sun H, Husseini G A, Pitt W G, Christensen D A, Rapoport N Y. Drugdelivery in pluronic micelles: effect of high-frequency ultrasound on drug releasefrom micelles and intracellular uptake[J]. J. Controlled Release,2002,84:39–47.
    [18] Eichman J, Bielinska A, Kukowska-Latallo J, Donovan B, Baker J. Dendrimersand other dendritic polymers [M]. Wiley, Chichester,2001,441–462.
    [19] Al-Jamal K, Sakthivel T and Florence A T. Dendrisomes: cationic lipidic dendronvesicular assemblies [C]. Int. J. Pharm.,2003,254:33–36.
    [20] Papagiannaros A, Dimas K, Papaioannou G T and Demetzos C.Doxorubicin-PAMAM dendrimer complex attached to liposomes: cytotoxicstudies against human cancer cell lines [J]. Int. J. Pharm.,2005,302:29–38.
    [21] Mrkvan T, Sirova M, Etrycht. Chemotherapy based on HPMA copolymerconjugates with pH-controlled release of doxorubicin triggers anti-tumorimmunity [J]. J. Controlled Release,2005,110,119–129.
    [22] Pechar M, BraunováA, Ulbrich K, JelínkováM and RíhováB. Poly(EthyleneGlycol)-Doxorubicin Conjugates with pH-Controlled Activation [J] J. Bioact.Compat.Polym.,2005,20:319–341.
    [23] Rodrigues P C A, Roth T, Fiebi H H, Unger C, Mulhaupt R and Kratz F.Correlation of the acid-sensitivity of polyethylene glycol daunorubicin conjugateswith their in vitro antiproliferative activity [J].Bioorg. Med. Chem.,2006,14:4110–4117.
    [24] Ulbrich K and Subr V. Polymeric anticancer drugs with pH-controlled activation[J]. Adv. Drug Delivery Rev,2004,56:1023–1050.
    [25] Choi W M, Kopeckova P, Minko T. Synthesis of HPMA copolymer containingadriamycin bound via an acid-labile spacer and its activity toward human ovariancarcinoma cells [J]. J. Bioact.Compat.Polym.,14:447–456.
    [26] Weitman D, Lark R H, Coney L R, Fort D W, Frasca V, Surawski V R andKamen B A. Distribution of the folate receptor GP38in normal and malignantcell lines and tissues [J].Cancer Res.,1992,52:3396–3401.
    [27] Campbell I G, Jones T A, Foulkes W D and Trowsdale J. Folate-binding proteinis a marker for ovarian cancer [J]. Cancer Res.,1991,51:5329–5338.
    [28] Yang X, Deng W, Fu L, Blanco E, Gao J, Quan D, Shuai X.Folate-functionalized polymeric micelles for tumor targeted delivery of a potentmultidrug-resistance modulator FG020326[J]. J. Biomed. Mater. Res, Part A,2008,86A:48–60.
    [29] Shi X, Wang S H, Swanson S D, Ge S, Cao Z, Van Antwerp M E, Landmark K JAND Baker J J R. Dendrimer-Functionalized Shell-crosslinked Iron OxideNanoparticles for In-Vivo Magnetic Resonance Imaging of Tumors [J]. Adv.Mater.,2008,20:1671–1678.
    [30] Weissleder R, Lee A S, Fischman A J, Reimer P, Shen T, Wilkinson R, CallahanR J and Brady T J. Polyclonal human immunoglobulin G labeled with polymericiron oxide: antibody MR imaging [J]. Radiology,1991,181:245–249.
    [31] Bulte J W M and Kraitchman D L. Iron oxide MR contrast agents for molecularand cellular imaging [J]. NMR Biomed.,2004,17:484–499.
    [32] Jun Y, Lee J and Cheon J. Chemical design of nanoparticle probes forhigh-performance magnetic resonance imaging [J]. Angew. Chem. Int. Ed.,2008,47:5122–5135.
    [33] Wang Y X J, Hussainv and Krestin G P. Superparamagnetic iron oxide contrastagents: physicochemical characteristics and applications in MR imaging [J].Eur.Radiol.,2001,11:2319–2331.
    [34] Liu W, Xue Y, Peng N, He W, Zhuo R and Huang S. Dendrimer modifiedmagnetic iron oxide nanoparticle/DNA/PEI ternary magnetoplexes: a novelstrategy for magnetofection [J]. J. Mater. Chem.,2011,21:13306–13315.
    [35] Zhao M, Beauregard D A, Loizou L, Davletov B and Brindle K M. Non-invasivedetection of apoptosis using magnetic resonance imaging and a targeted contrastagent [J].Nat. Med.,2001:7,1241–1244.
    [36]Peterson J, Ebber A, Allikmaa V and Lopp M. Synthesis and cze analysis ofpamam dendrimers with an ethylenediamine core[J].Proc. Estonian Acad. Sci.Chem.,2001,50,3,156–166
    [37]赵义丽.靶向给药和特异性识别肿瘤细胞的双功能纳米粒子的制备[D].吉林:吉林大学化学学院,2010.
    [38] Zhao Y, Li Y, Song Y, Jiang W, Wu Z, Wang Y A, Sun J and Wang J. Architectureof stable and water-soluble CdSe/ZnS core-shell dendron nanocrystals via ligandexchange [J].J. Colloid Interface Sci.,2009,339:336–343.
    [39] Xu Z, Shen C, Hou Y, Gao H, Sun S. Oleylamine as Both Reducing Agent andStabilizer in a Facile Synthesis of Magnetite Nanoparticles [J]. Chem. Mater.,2009,21:1778–1780.
    [40] Palma R. D, Peeters S, Van Bael M. J, Rul H. V, Bonroy K, Laureyn W, MullensJ, Borghs G and Maes G. Silane Ligand Exchange to Make HydrophobicSuperparamagnetic Nanoparticles Water-Dispersible [J]. Chem. Mater,2007,19:1821–1831.
    [41] Chandra S, Mehta S, Nigam S and Bahadur D. Dendritic magnetite nanocarriersfor drug delivery applications [J]. New J. Chem.,2010,34:648–655.
    [42] Chang Y, Meng X, Zhao Y, Li K, and Li Y. Novel water-soluble andpH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimerconjugates attached to superparamagnetic iron oxide nanoparticles (IONPs)[J]. J.Colloid Interface Sci.,2011,363:403–409.
    [43] Higuchi Y, Kawakami S and Hashida M. Strategies for in vivo delivery ofsiRNAs: recent progress [J]. BioDrugs,2010,24:195–205.
    [44] Kawakami S, Higuchi Y and Hashida M. Nonviral approaches for targeteddelivery of plasmid DNA and oligonucleotide [J]. J. Pharm. Sci.,2008,97:726–745.
    [45] Park J, Yu M K, Jeong Y Y, Kim J W, Lee K L, Phan V N and Jon S.Antibiofouling amphiphilic polymer-coated superparamagnetic iron oxidenanoparticles: synthesis, characterization, and use in cancer imaging in vivo [J]. J.Mater. Chem.,2009,19:6412–6417.
    [46] Moghimi S M, Hunter A C and Murray J C. Long-circulating and target-specificnanoparticles: theory to practice [J].Pharmacol. Rev.,2001,53:283–318.
    [1] Wang Y, Wang YQ, Xiang J N, Yao K T. Target-Specific Cellular Uptake ofTaxol-Loaded Heparin-PEG-Folate Nanoparticles [J]. Biomacromolecules2010,11(12):3531–3538.
    [2] Ng S S W, Sparreboom A, Shaked Y, Lee C, Man S, Desai N, et al. Influence offormulation vehicle on metronomic taxane chemotherapy: albumin-bound versusCremophor EL based paclitaxel [J]. Clin Cancer Res2006,12(14):4331–4338.
    [3] Ng S S W, Figg W D, Sparreboom A. Taxane-mediated antiangiogenesis in vitro:influence of formulation vehicles and binding proteins [J]. Cancer Res2004,64(3):821–824.
    [4] Belotti D, Rieppi M, Nicoletti M I, Casazza A M, Fojo T, Taraboletti G, et al.Paclitaxel (Taxol(R)) inhibits motility of paclitaxel-resistant human ovariancarcinoma cells [J]. Clin Cancer Res1996,2(10):1725–1730.
    [5] Kerbel R S, Kamen B A.The anti-angiogenic basis of metronomic chemotherapy[J]. Nat Rev Cancer2004,4(6):423–346.
    [6] Lee SC, Huh K M, Lee J, Cho Y W, Galinsky R E, Park K. Hydrotropic polymericmicelles for enhanced paclitaxel solubility: in vitro and in vivo characterization[J]. Biomacromolecules2007,8(1):202–208.
    [7] Alani A W G, Bae Y, Rao D A, Kwon G S. Polymeric micelles for thepH-dependent controlled, continuous low dose release of paclitaxel [J].Biomaterials,2010,31(7):1765–1772.
    [8] Waugh W N, Trissel L A, Stella V J. Stability, compatibility, and plasticizerextraction of taxol (NSC-125973) injection diluted in infusion solutions andstored in various containers [J]. Am J Hosp Pharm1991,48(7):1520–1524.
    [9] Weitman D, Lark R H, Coney L R, Fort D W, Frasca V, Surawski V R, et al.Distribution of the folate receptor GP38in normal and malignant cell lines andtissues [J]. Cancer Res1992,52(12):3396–3340.
    [10] Campbell, I G, Jones, T A, Foulkes, W D, Trowsdale, J. Folate-binding protein isa marker for ovarian cancer [J]. Cancer Res1991,51(19):5329–5338.
    [11] Garin-Chesa P, Campbell I, Saigo P, Lewis J, Old L, Rettig W. Trophoblast andovarian cancer antigen LK26, Sensitivity and specificity in immunopathologyand molecular identification as a folate-binding protein [J]. Am J Path1993,142(2):557–567.
    [12] Lu Y, Low P S. Folate-mediated delivery of macromolecular anticancertherapeutic agents [J]. Adv Drug Deliv Rev2002,54(5):675–693.
    [13] Esfand R, Tomalia D A. Polyamidoamine (PAMAM) dendrimers:Frombiomimicry to drug delivery and biomedical application [J]. Drug DiscoveryToday2001,6(8):427–436.
    [14] Chandrasekar D, Sistla R, Ahmad F J, et al. The development of folate-PAMAMdendrimer conjugates for targeted delivery of anti-arthritic drugs and theirpharmacokinetics and biodistribution in arthritic rats [J]. Biomaterials2007,28(3):504–512.
    [15] Botella P, Abasolo I, Fernandez Y, Muniesa C, Miranda S, Quesada M, et al.Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecinand its biological evaluation [J]. J control release2011,156(2):246–257.
    [16] Cheng Z, Levi J, Xiong Z M, et al. Near-infrared fluorescent deoxyglucoseanalogue for tumor optical imaging in cell culture and living mice [J].Bioconjugate Chem2006,17(3):662-669.
    [17] Liu T C, Wu L Y, Hopkins M R, Choi J K, Berkman C E. A targeted lowmolecular weight near-infrared fluorescent probe for prostate cancer [J]. BioorgMed Chem Lett2010,20(23):7124-7226.
    [18] Weissleder R, Mahmood U. Molecular imaging [J]. Radiology2001,219(2):316-333.
    [19] Moore A, Basilion J P, Chiocca E A, Weissleder R. Measuring transferrinreceptor gene expression by NMR imaging [J]. Bba-Mol Cell Res1998,1402(3):239-249.
    [20] Weissleder R, Moore A, Mahmood U, Bhorade R, Benvenisteh, Chiocca EA, etal. In vivo magnetic resonance imaging of transgene expression [J]. Nat Med2000,6(3):351-355.
    [21] Liu Y T, Li K, Pan J, Liu B, Feng S S. Folic acid conjugated nanoparticles ofmixed lipid monolayer shell and biodegradable polymer core for targeted deliveryof Docetaxe [J]. Biomaterials2010,31(2):330-338.
    [22] He X X, Wang KM, Cheng Z. In vivo near-infrared fluorescence imaging ofcancer with nanoparticle-based probes [J]. WIRES Nanomed Nanobi2010,2(4):349-366.characterization of DOX-conjugated dendrimer-modified magnetic iron oxideconjugates for magnetic resonance imaging, targeting, and drug delivery [J]. JMater Chem2012,22(19):9594-9601.
    [24] Xu Z, Shen C, Hou Y, Gao H, Sun S. Oleylamine as Both Reducing Agent andStabilizer in a Facile Synthesis of Magnetite Nanoparticles [J]. Chem Mater2009,21(9):1778–1780.
    [25] Chang YL, Meng XL, Zhao Y L, Li K, et al. Novel water-soluble andpH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimerconjugates attached to superparamagnetic iron oxide nanoparticles (IONPs)[J]. JColloid Interface Sci2011,363(1):403–409.
    [26] Lee Y, Park S Y, Mok H, Park T G. Synthesis, Characterization, AntitumorActivity of Pluronic Mimicking Copolymer Micelles Conjugated withDoxorubicin via Acid-Cleavable Linkage [J]. Bioconjugate Chem2008,19(2):525–531.
    [27] Higuchi Y, Kawakami S, Hashida M. Strategies for In Vivo Delivery of siRNAs:Recent Progress [J]. BioDrugs2010,24(3):195–205.
    [28] Kawakami S, Higuchi Y, Hashida M. Nonviral approaches for targeted deliveryof plasmid DNA and oligonucleotide [J]. J Pharm Sci2008,97(2):726–745.
    [29] Huang H Y, Remsen E E, Kowalewski T, Wooley K L. Nanocages Derived fromShell Cross-Linked Micelle Templates. J Am Chem Soc1999,121(16):3805-3806.
    [30] Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R.Biodegradable long-circulating polymeric nanospheres [J].Science1994,263(5153):1600-1603.
    [31] Farokhzad O C, Cheng J, Teply B A, Sherifi I, Jon S, Kantoff P W, et al. Targetednanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo [J]. ProcNatl Acad Sci USA2006,103(16):6315-6320.
    [32]Lee H, Lee E, Kim D K, Jang N K, Jeong Y Y, Jon S. AntibiofoulingPolymer-Coated Superparamagnetic Iron Oxide Nanoparticles as PotentialMagnetic Resonance Contrast Agents for in Vivo Cancer Imaging [J]. J Am ChemSoc2006,128(22):7383–7389.
    [33] Yang J, Lee T I, Lee J, Lim E K, Hyung W, et al. Synthesis of ultrasensitive
    magnetic resonance contrast agents for cancer imaging using PEG-fatty acid [J].
    Chem Mater2007,19(16):3870–3876.
    [1]Chen B, Zhang H, Zhai C X, Du N, Sun C, Xue J E, et al. Carbon nanotube-basedmagnetic-fluorescent nanohybrids as highly efficient contrast agents formultimodal cellular imaging[J]. J. Mater. Chem.,2010,20:9895–9902.
    [2] Yu X G, Wan J Q, Shan Y, Chen K Z, Han X D. A Facile Approach to Fabricationof Bifunctional Magnetic-Optical Fe3O4@ZnS Microspheres [J].Chem. Mater.,2009,21:4892–4898.
    [3] Corr SA, Rakovich Y P, Gun’ko Y K. Multifunctional magnetic-fluorescentnanocomposites for biomedical applications [J]. Nanoscale Res. Lett.,2008,3:87–104.
    [4] Acharya G, Chang C L, Doorneweerd D D, Vlashi E, Henne W A, Hartmann L C.Immunomagnetic Diffractometry for Detection of Diagnostic Serum Markers [J].J. Am. Chem. Soc.2007,129:15824–15829.
    [5] Kim J, Lee J E, Lee S H, Yu J H, Lee J H, Park T G. Designed Fabrication of aMultifunctional Polymer Nanomedical Platform for Simultaneous Cancer‐Targeted Imaging and Magnetically Guided Drug Delivery [J]. Adv. Mater.2008,20:478–483.
    [6] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T. Multifunctional UniformNanoparticles Composed of a Magnetite Nanocrystal Core and a MesoporousSilica Shell for Magnetic Resonance and Fluorescence Imaging and for DrugDelivery [J]. Angew. Chem. Int. Ed.,2008,47:8438–8441.
    [7] Chang Y, Liu N, Chen L, Meng X, et al.Synthesis and characterization ofDOX-conjugated dendrimer-modified magnetic iron oxide conjugates formagnetic resonance imaging, targeting, and drug delivery [J].J. Mater. Chem.,2012,22:9594-9601.
    [8] Chang Y, Meng X, Zhao Y. Novel water-soluble and pH-responsive anticancerdrug nanocarriers: Doxorubicin–PAMAM dendrimer conjugates attached tosuperparamagnetic iron oxide [J]. J. Colloid Interface.2011,363:403–409.
    [9] Tseng P, Carlo D D, Judy W J. Rapid and dynamicintracellular patterning ofcell-internalized magnetic fluorescent nanoparticles [J]. Nano Lett.2009,9:3053–3059.
    [10] Wang F, Chen X L, Zhao Z X, Tang S H, Huang X Q, Lin C H. Synthesis ofmagnetic, fluorescent and mesoporous core-shell-structured nanoparticles forimaging, targeting and photodynamic therapy [J]. J. Mater. Chem.,2011,21:11244–11252.
    [11] Wang T T, Chai F, Wang C G, Li L, Liu H Y, Zhang L Y. Fluorescenthollow/rattle-type mesoporous Au@SiO2nanocapsules for drug delivery andfluorescence imaging of cancer cells [J]. J. Colloid Interface Sci.2011,358:109–115.
    [12]Gallagher J J, Tekoriute R, Reilly J A, Kerskens C. Bimodal magnetic-fluorescentnanostructures for biomedical applications [J]. J. Mater. Chem.,2009,19:4081–4084.
    [13] Tan Y, Chandrasekharan P, Maity D. Multimodal tumor imaging by iron oxidesand quantum dots formulated in poly (lactic acid)-d-alpha-tocopherylpolyethylene glycol1000succinate nanoparticles [J]. Biomaterials,2011,32:2969-2978.
    [14] Liu Y, Chen Z, Liu C. Gadolinium-loaded polymeric nanoparticles modified withAnti-VEGF as multifunctional MRI contrast agents for the diagnosis of livercancer [J]. Biomaterials,2011,32:5167-5176.
    [15] Guo J, Yang W L, Wang C C, He J, Chen J Y. Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres:preparation, characterization, and biomedical applications [J]. Chem. Mater.,2006,18:5554-5562.
    [16] Xiao Q, Xiao C. Preparation and Characterization of Silica-CoatedMagnetic–Fluorescent Bifunctional Microspheres [J]. NanoscaleRes.Lett.,2009,4:1078-1084.
    [17] Higuchi Y, Kawakami S, Hashida M. Strategies for in vivo delivery of siRNAs:recent progress [J]. BioDrugs,2010,24:195–205.
    [18] Kawakami S, Higuchi Y, Hashida. Nonviral approaches for targeted delivery ofplasmid DNA and oligonucleotide [J]. J. Pharm. Sci.2008,97:726–745.
    [19] Huang H, Remsen E E, Kowalewski T, Wooley K L. Nanocages derived fromshell cross-linked micelle templates [J]. J. Am. Chem. Soc.,1999,121:3805-3806.
    [20] GreF R, Minamitake Y, Peracchia M T, Trubetskoy V, Torchilin V, LangerR.Biodegradable long-circulating polymeric nanospheres [J]. Science,1994,
    [21] Lee H, Lee E, Kim D K, Jang N K, Jeong Y Y, Jon S. Antibiofoulingpolymer-coatedsuperparamagnetic iron oxide nanoparticles as potential magneticresonance contrast agentsfor in vivo cancer imaging [J]. J. Am. Chem. Soc.2006,128:7383–7389.
    [22] Yang J, Lee T, Lee J, Lim E K, Hyung W, Lee C H. Synthesis of UltrasensitiveMagnetic Resonance Contrast Agents for Cancer Imaging Using PEG-Fatty Acid[J]. Chem. Mater.,2007,19:3870–3876.
    [24] Chen K J, Wolahan S M, Wang H. A small MRI contrast agent library ofgadolinium (III)-encapsulated supramolecular nanoparticles for improvedrelaxivity and sensitivity [J]. Biomaterials,2011,32:2160-21655.
    [25] Maeng J H, Lee D H, Jung K, Bae Y H. Photothermally Enhanced Drug Deliveryby Ultra-Small Multifunctional FeCo/Graphitic-Shell Nanocrystals [J].Biomaterials,2011,31:4995-5006.
    [26] Wang L, Neoh K G, Kang E T, Shuter B. Multifunctional polyglycerol-graftedFe3O4@SiO2nanoparticles for targeting ovarian cancer cells [J]. Biomaterials,2011,32:2166-2173.
    [1] Razem D, Katusin-Razem B. The effects of irradiation on controlled drugdelivery/controlled drug release systems [J]. Radiation Physics and Chemistry,2008,77(3):288-344.
    [2] Leucuta, Sorin E. Drug delivery systems with modified release for systemic andbiophase bioavailability [J]. Current clinical pharmacology,2012,7(4):282-317.
    [3] Chourasia M K, Jain S K. Pharmaceutical approaches to colon targeted drugdelivery systems [J].Journal of Pharmacy and Pharmaceutical Sciences,2003,6(1):33-66.
    [4] Yasukawa T, Tabata Y, Kimura H, Ogura Y. Recent advances in intraocular drugdelivery systems [J]. Recent patents on drug delivery&formulation,2011,5(1):1-10.
    [5] Liu Y, Chen Z, Liu C. Gadolinium-loaded polymeric nanoparticles modified withAnti-VEGF as multifunctional MRI contrast agents for the diagnosis of livercancer [J]. Biomaterials2011,32,5167-5176.
    [6] Chandra S, Mehta S, Nigam S and BahaduR D. Dendritic magnetite nanocarriersfor drug delivery applications [J]. New J. Chem.,2010,34:648–655.
    [7] Chang Y, Meng X, Zhao Y, Li K, and Li Y. Novel water-soluble andpH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimerconjugates attached to superparamagnetic iron oxide nanoparticles (IONPs)[J]. J.Colloid Interface Sci.,2011,363:403–409.
    [8] Bae Y, Fukushima S, Harada A, Kataoka K. Design of Environment-SensitiveSupramolecular Assemblies for Intracellular Drug Delivery: Polymeric Micellesthat are Responsive to Intracellular pH Change [J]. Angew. Chem. Int. Ed.,2003,42:4640–4643.
    [9] Xiong X B, Ma Z S, Lai R, Lavasanifar A. The therapeutic response tomultifunctional polymeric nano-conjugates in the targeted cellular and subcellulardelivery of doxorubicin [J]. Biomaterials,2010,31:757–768.
    [10] Chakravarthy K V, Davidson B A, Helinski J D, Ding H, Law W C, Yong K T.Doxorubicin-conjugated quantum dots to target alveolar macrophagesandinflammation [J]. Nanomedicine: Nanotechnology, Biology, and Medicine,2011,7:88–96
    [11] Li J M, Wang Y Y, Zhao M X, Tan C P, Li Y Q, Le X Y, Ji L N, Mao Z W.Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cellsfor reversal of multidrug resistance and real-time tracking [J]. Biomaterials,2012,33:2780-2790.
    [1] Mainenti P P, Mancini M, Mainolfi C, Camera L. Detection of colo-rectal livermetastases:prospective comparison of contrast enhancedUS, multidetector CT,PET/CT, and1.5Tesla MRwith extracellular and reticulo-endothelial cellspecificcontrast agents [J]. Abdom Imaging,2010,35:511–521.
    [2] Terreno E, Dastruw, Castelli D D. Advances in Metal-Based Probes for MRMolecular Imaging Applications [J]. CURRENT MEDICINAL CHEMISTRY,2010,17(31):3684-3700.
    [3] Bonnet C S, Toth E. MRI probes for sensing biologically relevant metal ions [J].Future MedicinaL Chemistry,2010,2(3):367-384.
    [4] Cockman M D, Blanton C A, Chmielewski P A, Dong L, Dufresne T E, Hookfin EB, Karb M J. Wehmeyer Ph.D.Quantitative imaging of proteoglycan in cartilageusinga gadolinium probe and microCT [J]. OsteoArthritis and Cartilage (2006)14,210e214
    [5] Lee G H, Changy M, Kim T J. Blood-Pool and Targeting MRI Contrast Agents:From Gd-Chelates to Gd-Nanoparticles [J]. European Journal of InorganicChemistry,2012,12(SI):1924-1933.
    [6] Cheng Z, Thorek D L J, Tsourkas A. Porous Polymersomes with EncapsulatedGd-LabeledDendrimers as Highly Efficient MRI Contrast Agents [J]. Adv. Funct.Mater.,2009,19:3753–3759.
    [7] Chang Y L, Liu N, Chen L, Meng X L, Liu Y J, LI Y P and Wang J Y. Synthesisand characterization of DOX-conjugated dendrimer-modifiedmagnetic iron oxideconjugates for magnetic resonance imaging, targeting and drug delivery [J]. J.Mater. Chem.,2012,22:9594–9601.
    [8] Chang Y L, Li Y P, Meng X L, Liu N, Sun D X, Liu H and Wang J Y. Dendrimerfunctionalized water soluble magnetic ironoxide conjugates as dual imagingprobe for tumortargeting and drug delivery [J].Polym. Chem.,2013,4,789-794.
    [9] Huang H, Remsen E E, Kowalewski T and Wooley K L. Nanocages Derived fromShell Cross-Linked Micelle Templates [J].J. Am.Chem. Soc.,1999,121(15):3805-3806.
    [10] Gref R, Minamitake Y, Peracchia M T, Trubetskoy V, Torchilin V and Langer R.Biodegradable long-circulating polymeric nanospheres [J].Science,1994,263:1600-1603.
    [11] Farokhzad O C, Cheng J, Teply B A, Sherifi I, Jon S, Kantoff P W, Richie J P andLanger R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapyin vivo [J].Proc. Natl. Acad. Sci. U. S. A.,2006,103:6315-6320.
    [12] Lee H, Lee E, Kim D K, Jang N K, Jeong Y Y and Jon S. AntibiofoulingPolymer-Coated Superparamagnetic Iron Oxide Nanoparticles as PotentialMagnetic Resonance Contrast Agents for in Vivo Cancer Imaging [J]. J. Am.Chem. Soc.,2006,128:7383–7389.
    [13] Yang J, Lee T, Lee J, Lim E K, Hyung W, Lee C H, Song Y J, Suh J S, Yoon H G,Huh Y M and Haam S. Synthesis of Ultrasensitive Magnetic Resonance ContrastAgents for Cancer Imaging Using PEG-Fatty Acid [J]. Chem. Mater.,2007,19:3870–3876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700