腰椎棘突间非融合撑开器的数字化分析及临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊柱融合术被认为是治疗腰椎退行性疾病的经典术式,但融合后会存在许多潜在的并发症,包括腰椎融合节段活动丧失、邻近节段的退变加速等,鉴于此,学者们不断探索,非融合(动态固定)的理念便产生了。腰椎非融合技术是在保留腰椎节段有益运动的同时适当的固定,避免不利的运动,但不进行节段间融合,通过改变负荷传递,从而减轻腰痛和预防相邻节段退变加速。腰椎棘突间撑开装置作为非融合技术中的一种,具有操作简单,手术创伤小,容易被医生和患者所接受,但作为一项新的脊柱外科技术,目前国内对腰椎棘突撑开系统相关基础和临床研究相对较少。但各种非融合棘突间撑开系统是否适合国人特点,植入人体后对脊柱生物力学的影响程度缺乏深入、系统的研究。本研究从国人腰椎棘突间区域的解剖学特点出发,并以Wallis系统作为棘突间撑开装置的代表器械,对Wallis系统进行生物力学及早期的临床应用研究。
     第一部分腰椎棘突及其间隙的解剖学测量
     目的:利用三维重建技术为棘突间撑开器的设计、优化、国产化及临床应用提供解剖学依据。方法:选取50例志愿者采用连续螺旋CT断层扫描胸12-骶1,将获得图像导入Materialise Mimics10.01软件,采取轮廓和区域增长分割出腰椎骨组织采用表面遮盖显示法进行三维表面重建,选择去除椎旁组织的最佳三维角度,由同一名研究者选择适合测量的图像进行测量,测量:棘突厚度、棘突长度、棘突间距。测量各解剖结构时,连续测量3次,取其均值。数据进行正态性检验、t检验。结果:(1)棘突厚度:一般每个腰椎的棘突厚度均前部>后部>中部,下缘>中央>上缘。但L5较特殊,棘突中部和后部的中央厚,上、下缘薄。相邻上位腰椎棘突下缘厚度大于下位腰椎棘突上缘厚度。(2)棘突长度以L3最大,男性:上缘(26.62±2.98)mm,中央(25.59±2.33)mm,下缘(22.73±2.40)mm;女性:上缘(23.76±2.47)mm,中央(24.49±2.48)mm,下缘(19.70±2.49)mm;男女均以L5最小。(3)棘突间距:男性以L2-3最大,而且向下依次减小,且前部>中部>后部。前部(10.39±2.7 0)mm,中部(11.15±2.20)mm,后部(9.35±2.17)mm。女性以L1-2最大,而且向下依次减小,且前部>中部>后部。前部(10.32±2.10)mm,中部(12.18±2.58)mm,后部(10.80±2.43)mm。男女均以L4-5最小。结论:棘突间距从上向下逐渐减小,且前部>中部>后部,在矢状面棘突间隙呈前高后矮的楔形。棘突长度以L3最大,L5最小。棘突长度均上缘>中央>下缘,相邻上位腰椎棘突下缘长度<下位腰椎棘突上缘长度。棘突厚度前部>后部>中部,且下缘>中央>上缘。相邻上位腰椎棘突下缘厚度>下位腰椎棘突上缘厚度。本研究利用三维CT重建技术初步获得了国人腰椎棘突及棘突间隙的解剖学参数,为适合国人特点的腰椎棘突间撑开器的设计和临床应用提供了解剖学数据。
     第二部分Wallis腰椎非融合系统有限元模型的建立及分析
     目的:构建Wallis腰椎非融合系统有限元模型,分析Wallis腰椎非融合在腰椎不同生理运动情况下的应力分布,为临床应用提供生物力学基础。方法:选取8例志愿者采用连续螺旋CT扫描,将获得的断层Dicom格式图像,导入Materialise Mimics10.01软件,定义骨组织阈值、提取各层面轮廓线、图像边缘分割、三维重建L4,5椎体及椎间盘三维模型,对模型加载,计算L4.5节段前屈、后伸、侧屈和旋转运动的活动范围,并将结果与文献结果进行对比,验证模型有效性。将重建的模型以.st1格式保存;在AutoCAD 2009软件中建立Wallis系统模型,以.st1格式保存,导入Materialise 3-Matic4.3软件,进行三角面片优化,将重建的Wallis模型按标准手术模式与腰椎模型拟合,导入Abaqus6.9软件进行赋值和网格划分,生成有限元模型,并进行分析腰椎前屈、后伸、侧屈及旋转运动时Wallis腰椎非融合系统的应力变化。结果:完成腰椎三维有限元模型的建立,模型共有233438个单元,48174个节点,通过验证模型有效,建立了Wallis系统的三维有限元模型,共有11857个单元,3398个节点,将二者拟合,模型共有245295个单元,51572个节点,重建的三维模型可以精确的模拟Wallis非融合系统固定情况。。通过应力云图显示前屈、后伸、侧屈及旋转运动下Wallis系统的应力分布情况,本模型说明Wallis系统参与了腰椎不同方向的活动,与腰椎很好地匹配,顺应了腰椎的运动,位于上下棘突之间的部分应力较大,且与下位椎体棘突相接触部分的应力最高。结论:应用CT扫描技术及Mimics软件能直接与Abaqus软件进行对接,并能根据CT值直接赋值使Wallis腰椎非融合系统有限元模型的建立更加快捷、精确,Wallis棘突间撑开器植入后可分担椎间盘应力和小关节压力,Wallis系统本身和棘突应力升高,有棘突骨折及植入物疲劳性断裂的可能性。
     第三部分Wallis棘突间撑开系统治疗腰椎退行性疾病的初步临床观察
     目的:通过对Wallis腰椎非融合系统治疗腰椎退行性疾病的临床观察,探讨Wallis系统治疗腰椎退行性疾病的初期疗效。方法:选取自2007年8月-2008年10月在东直门医院单独采用Wallis棘突间动态稳定系统或结合固定融合方法治疗腰椎退行性疾病的病例31例,均获临床随访,随访时间18-40月,每例均记录Wallis手术时间、术中出血量,术前、术后不同时期采用0DI功能障碍指数、JOA评分、VAS评分和中华医学会骨科分会脊柱外科组腰椎手术疗效标准评估手术疗效,随访有无Wallis系统相关并发症及疗效。结果:所有病例均按术前计划顺利完成手术,单独应用Wallis系统治疗的患者19例:手术时间(75±22)min,Wallis系统植入时间(23±8)min,术中平均失血量(150±60)ml;Wallis系统与固定融合结合的手术患者12例:手术时间(140±45)min,Wallis系统植入时间为(18±6)min,术中平均失血量(350±100)m1。所有患者切口愈合好,按期拆线。所有病例术中均未发生棘突骨折、神经损伤、内置物断裂、感染等并发症。术后随访18-40个月,平均26.8个月,所有患者术后症状和体征均有不同程度改善:术前、术后2周及末次随访疼痛VAS评分分别为:7.65±1.30、3.85±1.53、3.75±1.51,JOA评分分别为:13.50±3.25 24.51±2.22、23.95±2.69,ODI评分分别为:40.26±3.42、22.05±4.30、22.31±2.89。术后2周及末次随访VAS、JOA、ODI评分与术前比较差异有统计学意义(P<0.01);末次随访疼痛VAS、JOA、ODI评分与术后2周比较差异无统计学意义(P>0.05);随访中所有病例均未发现Wallis系统的移位、松动、断裂,无腰椎后凸畸形,棘突骨折,症状复发等情况;末次随访患者对手术的整体满意度为92.3%,结论:结合临床疗效及影像学随访观察,Wallis系统治疗腰椎退行性疾病的短期疗效满意,目前可作为治疗手段的另一种选择。其长期疗效还有待进一步临床随访观察。
Background
     Traditional spinal fusion surgery is considered as classic surgical procedures to treat lumbar degenerative disease. All sorts of potential complications after spinal fusion, including the loss of activities among the lumbar fusion segment and the acceleration degeneration of adjacent segment. In view of these, scholars have been exploring the new concept of non-fusion technique which is called dynamic fixation system, it can maintain the mobile motion of the spine segment. The purpose is to change the way of mobile segment bearing load, to control the intersegmental abnormal movement, which means that dynamic fixation could reduce pain and prevent degeneration of adjacent segments by means of controlling abnormal movement. However, Interspinous process distraction device (IPD) is a non-fusion technology as a new spinal surgical technique, Its long-term effect is uncertain. And whether they are suitable for Chinese and the influence on the spinal biomechanics post-implanting are still uncertain. In this study, according to the anatomical features of interspinous region of lumbar vertebrae in Chinese men, we would like to choose and assess Wallis's effect on implanted by the biomechanical and the early clinical outcome of Wallis system.
     Part I Anatomical measurement of the lumbar spinous process and the gap
     Objective:To supply anatomical basis for the design, optimize-localize and clinical application of interspinous internal fixation instrument of lumbar vertebrae by the technique of three-dimension (3-D)reconstruction. Methods:Fifty volunteers were subjected to CT scanner from T12 to S1 level. CT scan images were imported into Materialise Mimics 10.01 software. Bone organization threshold, outline and edge were defined and edited selectively,then measurement tools were used to measure the following parameters of lumbar vertebrae by the same researcher:the thickness of spinous processes, the height of spinous processes and the distance between two adjacent spinous processes, All the data were analyzed with the SPSS 13.0 statistical software for test of normality and t test.
     Results:(1) Lumbar spinous thickness:generally, front part>back part>middle part, inferior border> central> superior border. But L5 is more special, middle part and back part of spinous were thicker than superior border and inferior border. Adjacent upper lumbar spinous inferior borderis thicker than down lumbar spinous superior border.(2) L3 has the longgest spinous, Male:superior border(26.62±2.98) mm, central(25.59±2.33) mm, inferior border(22.73±2.40) mm; Female: superior border(23.76±2.47) mm, central (24.49±2.48) mm, inferior border (19.70±2.49) mm; L5 has the shortest spinous.(3) spinous spacing:in male, L2-3 has the biggest space, and minish in turn down, all of them is front part>middle part>back part.Front part (10.39±2.70) mm, middle part(11.15±2.20) mm, back part (9.35±2.17) mm. In female:L1-2 has the biggest space, and minish in turn down,all of them is front part>middle part>back part,too.Front part (10.32±2.10) mm, middle part (12.18±2.58) mm,back part (10.80±2.43)mm.L4-5 has the smallest space.Conclusion:spinous decreased gradually from top down,front part>middle part>back part, in Sagittal plane spinous space is wedge-shape. Spinous maximum length by L3, L5 is minimum. Spinous lengths:superior border>central>inferior border, adjacent upper lumbar spinous length (position inferior with length of lumbar spinous. Spinous thickness: front part> back part>middle part. This study used the thickness three-dimensional CT reconstruction technique has been obtained compatriots lumbar spinous and spinous clearance anatomy parameter for americans, for the lumbar spinous characteristics between the design stretched and clinical application provides anatomical data.
     PartⅡEstablishment and analysis of finite element model of Wallis non-fusion system for human lumbar
     Objectiver To establish finite element model and analyze the movement under different physiological stress distribution of Wallis non-fusion system, which provide a foundation of biomechanics for clinical application. Methods:Eight volunteers were subjected to CT scanner. CT scanning images were imported into Materialise Mimics 10.01 software. Bone organization threshold, outline, edge were defined and edited selectively. Three-models of L4.5 lumbar and its disc were reconstructed and saved in STL format. The merging models then transformed into Abaqus 6.9 software for pre-processor, then analyzed the rotation range of activities of lumbar flexion, extension, lateral bending and rotation of L4/5 lumbar segment, and then the results were compared and verified the model validity with the literature results. These models then imported into Materialise 3-Matic 4.3 software for re-meshing. Three-dimensional model of Wallis system were established using auto CAD 2009 software, then established with L4.5 models. The merged models then were transformed into Abaqus 6.9 software for pre-processor, then analyzed the stress changes of lumbar flexion, extension, lateral bending and rotation of lumbar Wallis non-fusion system. Results: Three-dimensional finite element model of lumbar was established and verified, then Wallis finite element model was established,It concluded 3398 nodes and 11857 elements, then merging with L4、5 models. It concluded 51572 nodes and 245295 elements, A realistic appearance and calculation accuracy 3D finite element model of Wallis and L4.5 lumbar were established. Then the stress changes of lumbar flexion, extension, lateral bending and rotation of lumbar Wallis non-fusion system were analyzed. Through the stress contour showed that:Wallis system was involved in the activities of lumbar spine in different directions, a good match with the lumbar spine Wallis system conformed to the four conditions the movement of lumbar spine, located between the upper and lower spinous part of the stress is more concentrated, and the vertebral spinous process with the lower part of the stress of contact with the highest. Conclusion: Applications of sophisticated CT scanning technique, the CT scanner images, Mimics software directly dock with Abaqus software can directly assign values, which make the establishment of three-dimensional finite element model of Wallis and L4、5 lumbar faster and more accurate. The finite element model was validated and could be used on biomechanics test. After surgery fixed with Wallis system, Wallis interspinous distraction device can share the stress of the small joints and the disc. The stresses of Wallis system and spinous processes were increased, and the risk of fracture of spinous process is increased accordingly.
     PartⅢPreliminary evaluation of Wallis interspinous process distraction device in lumbar degenerative disease
     Objective:To explore the efficiency of the Wallis non-fusion system in the treatment of lumbar degenerative disease by clinical observation. Methods:Between August 2007 and October 2008,31 patients of lumbar degenerative conditions were treated alone by Wallis interspinous dynamic stabilization system or a combination of fixed-fusion cases in Dongzhimen Hospital, Beijing, China. Clinical follow-up was done for 18-40 months respectively after the operation,The time and blood loss of Wallis system operation were recorded, The curative effect was evaluated by ODI dysfunction index, JOA score, VAS score and the Chinese Medical Association Orthopaedic Section of lumbar spinal surgery group standard assessment surgery, The early effect and complications associated with Wallis posterior dynamic lumbar stabilization were recorded. Results:According to surgical planning in all cases the successful completion of surgery, alone Wallis system in the treatment of 19 patients, The average operation time was (75±22) min, The average time of Wallis system implanting was (23±8) min, the average intraoperative blood loss volume was (150±60) ml; Wallis system fixation and fusion surgery with 12 patients, The operation time was (140±45) min, the average Wallis system implantation time was (18±6) min, The average intraoperative blood loss was (350±100) ml. Good wound healing in all patients, schedule stitches. All patients did not occur in the spinous process fracture, nerve damage, implant rupture, infection and other complications Were followed up for 18-40 months, mean 26.8 months, all patients had varying degrees of symptoms and signs of improvement:before and after 2 weeks and the final follow-up VAS pain scores were:7.65±1.30,3.85±1.53,3.75±1.51, JOA scores were:13.50±3.25 24.51±2.22,23.95±2.69, ODI scores were:40.26±3.42,22.05±4.30,22.31±2.89. After 2 weeks and the final follow-up VAS, JOA, ODI score compared with the preoperative difference was statistically significant (P<0.01), the last follow-up pain VAS, JOA. ODI score and after 2 weeks no significant difference (P<0.05), follow-up of all cases were not found in the Wallis system, shift, loosening, fracture, no lumbar kyphosis, spinous process fracture, recurrence of symptoms, etc. The last follow-up of patients overall satisfaction with surgery degree was 92.3%. Conclusion:Combination of clinical and imaging follow-up observation, Wallis system of short-term treatment of lumbar degenerative disease satisfactory outcome, the current can be used as an alternative treatment. The long-term efficacy remains to be further clinical follow-up observation.
引文
[1]Christie SD, Song JK, Fessler RG.Dynamic interspinous process
    technology [J].Spine,2005,30(Suppl 16):73-78.
    [2]Whitesides TE Jr. The effect of an interspinous implant on intervertebral disc pressures [J].Spine,2003,28(16):1906-1907.
    [3]Minns RJ, Walsh WK. Preliminary design and experimental studies of a novel soft implant for correcting sagittal plane instability in the lumbar spine. Spine 1997,22(16):1819-1827.
    [4]王洪立,姜建元.腰椎棘突间分离装置研究进展[J].中国脊柱脊髓杂志2008,18(8):631-634.
    [5]喻林,石志才.腰椎棘突间内固定器的基础研究及临床应用[J].中国组织工程研究与临床康复2008,12(44):8737-8741.
    [6]Senegas J. Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments:the Wallis system. Eur Spine J 2002;11 (2):164-169.
    [7]Senegas J, Vital JM, Pointillart V, et al. Long-term actuarial survivorship analysis of an interspinous stabilization system. Eur Spine J 2007;16 (8):1279-1287.
    [8]Floman Y, Millgram MA, Smorgick Y, et al. Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar discherniations in patients undergoing primary disc excision.J Spinal Disord Tech 2007;20(5): 337-341.
    [9]昌耘冰,王义生,柯雨洪等Wallis棘突间动态稳定系统的初步临床应用[J]. 中国临床解剖学杂志,2009,27(4):487-489.
    [10]林阳,李锋,陈安民.棘突间动态稳定系统治疗腰椎间盘突出症的早期观察[J]. 生物骨科材料与临床研究,2008,5(5):12-14.
    [11]凌为其,丁亮华,何双华,等.Wallis棘突稳定系统在退变性下腰痛治疗中的应用[J].南通医学院学报,2009,29(5):372-373.
    [12]俞兴,徐林,毕连涌等.棘突间动态稳定系统治疗腰椎退行性疾病初期效果分析[J].中国矫形外科杂志,2009,23(17):1786-1788.
    [13]雷仲民,孙佩宇,张翔.腰椎棘突间动态稳定系统(Wallis)在腰椎退行性疾病中的应用及近期效果观察[J].中国中医骨伤科杂志,2009,17(10):26-28.
    [13]王义生,柯雨洪,肖丹等.腰椎棘突间稳定器(Wallis)早期疗效分析[J].中国骨科临床与基础研究杂志,2010,2(3):8-11.
    [13]梁春祥,陈克冰,刘少喻等Wallis动态稳定系统置入治疗腰椎失稳症的效果[J].中国组织工程研究与临床康复,2010,14(4):609-714.
    [16]杨述华,许伟华,叶树楠. Wallis棘突间动态固定防治腰椎退变的短期效果[J].中华骨科杂志,2009,29(1):12-16.
    [17]Boeree N. Dynamic stabilization of the lumbar motion segment with the Wallis system[C].New York:Spine Arthroplasty Society,2005.
    [18]Tatwar V, Lindsey D, Fredrick A, et al. Insertion loads of the X-STOP interspinous process distraction system designed to treat neurogenic intermittent claudication[J]. Eur Spine J,2005,10(7):1007.
    [19]Manal S, Efthimios K, Malcolm N. Effects of X-Stop device on sagittal lumbar spinekinematics in spinal stenosis[J]. J Spine Disord Tech,2006, 19(5):328-333.
    [20]Joshua C, Sharmila M, Derek P. The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication[J].Spine, 2005,30(7):744-749.
    [21]Dimitriy K, Matthew H, Ken H, et al. The X STOP interspinous process decompression versus laminectomy for treatment of lumbar spinal stenosis: economic analysis[J]. Neurosurg,2006,59(2):458.
    [22]Richards JC, Majumdar S, Lindsey DP, et al.The treatment mechanism of an interspinous process implant for lumbar neu-rogenic intermittent claudication[J].Spine,2005,30(7):744-749.
    [23]Manal S.Influence of X-STOP on Neural Foramina and Spinal Canal in Spinal Stenosis[J].Spine,2006,31(25):2598-2962.
    [24]Siddiqui M, Nicol M, Karadimas E, et al. The positional magnetic resonance imaging changes in the lumbar spine following insertion of a novel interspinous process distraction device[J].Spine,2005,30(23):2677-2682.
    [25]Lee J, Hida K, Toshitaka S, et al. An interspinous process distractor(X-STOP)for lumbar spine stenosis in elderly patients[J].J Spinal Disord Tech,2004,17(1):72-77.
    [26]Swanson KE, Lindsey DP, Hsu KY, et al. The effects of an interspinous implant on intervertebral disc pressures. Spine 2003;28(1):26-32
    [27]Craig M, Derek P, Amy D, et al. The effect of an interspinous process implant on facet loading during extension[J].Spine,2005,30(8):903-907.
    [28]Lindsey DP, Swanson KE, Fuchs, et al. The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine[J].Spine,2003,28(19):2192-2197.
    [29]Zucherman.JF,Hsu KY,Hartjen CA,et al. A multicenter,prospective. randomized trial evaluating the X-STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication:two-year follow-up results. Spine 2005;30(12):1351-1358
    [30]KondrashovDG, HannibalM, HsuKY, et al. Interspinous process decompression with the X-STOP device for lumbar spinal stenosis:a 4-year follow-up study[J]. J Spinal Disord Tech,2006,19(5):323-327.
    [31]Zucherman JF, Hsu KY, Hartjen CA, et al. A prospective randomized multi-center study for the treatment of lumbar spinal stenosis with the X-STOP interspinous implant:1-year results. Eur Spine J 2004; 13(1): 22-31.
    [32]Tsai KJ, Murakami H, Lowery GL, et al. A biomechanical evaluation of an interspinous device(Coflex) used to stabilize the lumbar spine. J Surg Orthop Adv 2006;15(3):167-172.
    [33]Eif M, Schenke H. The Interspinous-U:Indication, Experience, and Results[C].New York:Spine Arthroplasty Society,2005.
    [34]Cho KS. Clinical outcome of the Interspinous-U(posterior dis-traction device)in the elderly lumbar spine[C].New York:Spine Arthroplasty Society,2005.
    [35]Kong DS, Kim ES, Eoh W. One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability.J Korean Med Sci 2007;22(2):330-335.
    [36]何剑星,王维佳.Cof lex植入系统在退变性腰椎管狭窄症中的应用[J].中国组织工程研究与临床康复,2009,13(13):2523-2526.
    [37]徐海栋,傅强,侯铁胜.脊柱非融合U型棘突间钛合金材料植入治疗早期腰椎间盘突出伴动态椎管狭窄的腰椎力学性能.中国组织工程研究与临床康复[J],2009,13(13):2465-2469.
    [38]关凯,李放,张志成,等.应用棘突间植入物治疗退行性腰椎管狭窄症近期效果观察.华北国防医药,2008,20(5):30-31.
    [39]邱贵兴.正确评价脊柱退变性疾病的非融合治疗技术[J].中华外科杂志,2006,44(8):1081-1083.
    [40]Mariottini A, Pieri S, Giachi S, et al. Preliminary results of a soft novel lumbar intervertebral prothesis(DIAM)in the degenerative spinal pathology. Acta Neurochir Suppl 2005;92:129-131.
    [41]Guizzardi G, Petrini P, Fabrizi AP, et al.The use of DIAM(interspinous stress-breaker device)in the DDD:Italian multi-center experience[C].New York:Spine Arthroplasty Soc,2005.
    [42]Taylor J, Pupin P, Delajoux S, et al. Device for intervertebral assisted motion:technique and initial results. Neurosurg Focus 2007;22(1):6.
    [43]Jerosch J, Moursi MG. Foreign body reaction due to polyethyleneswear after mi plantation of an interspinal segment[J]. Arch Orthop Trauma Surg, 2008,128(1):1-4.
    [1]Belytschko TB, Andriacchi TP, Schuhz AB, et al. Analog studies of forces in human spine:computational techniques. J Biomech.1973; 6(4):361-371
    [2]Liu YK, Ray G, Hirsch. The resistance of the lumber spine to direct shear[J]. Orthop Clin North Am,1975,6(1):33-49.
    [3]裴国献,张元智主编.数字骨科学.人民卫生出版社,2009.502-530
    [4]邝磊.脊柱腰骶段的三维有限元建模及生物力学分析[M]. 中南大学,2007
    [5]张美超,刘阳,刘则玉等.利用Mimics和Freeform建立中国数字人上颌第一磨牙三维有限元模型[J]. 医用生物力学,2006,24(3):208-211.
    [6]付淼,李莉,何叶松Mimics与医学图像三维重建[J]. 中国现代医学杂志,2010,20(19):3030-3032.
    [7]苏雨涛,李彦生,韩景芸.CT数据三维重建及可视化技术的研究[J].机械设计与制造,2009,(1):191-193.
    [8]戴力扬,屠开元,徐印坎,等.腰椎椎体应力分布的三维有限元分析[J]. 中国临床解剖学杂志.1991,9:46-48.
    [9]Shirazi-Adl A, Analysis of role of bone compliance on mechanics of a lumbar motion segment. J Biomech Eng,1994,116:408.
    [10]Kulak RF, et al.Biomechanical characteristics of motion segments and intervertebral discs.[J] Orthop ClinN orth Am,1975,6:121
    [11]Spilker RL, et al.Mechanical response of a simple finite element model of the intervertebral disc under complex loading.[J].Binomech,1984,17:103
    [12]King Al, et al. A three dimensional finite dynamic response analysis of a vertebral with experimental verification[J].J. B iomech,1979,12:277
    [13]Yang K H, et al.Finite element model of a functional spinal unit[M].American society of mechanical engineers biomechanics symposium 1983,13 7-14
    [14]杜东鹏,葛宝丰,陈东安等.腰椎三维几何和力学模型.兰州医学院学报,1997,23(1):7-8
    [15]钱忠来,唐天驰,杨惠林等.腰椎椎间盘三维有限元分析.苏州大学学报(医学版),2002;22(1):4-7
    [16]Lu YM, HutonWC, Gharpuray VM.Can variations in tervertebral disc height affect the mechanical function of disc[J].Spine,1996,121(19): 2208-2216
    [17]袁野,靳安民,何丽英等.利用CT扫描及CAD技术建立腰椎活动节段的有限元模型.中国临床解剖学杂志,2002,20(4):298-300
    [18]靳安民,袁野,曹虹等.腰椎活动节段的有限元模型研究。颈腰痛杂志,2002,23(3):181-183
    [19]杨强.全脊椎整块切除术在治疗胸腰椎肿瘤中的应用及相关研究[D].山东大学,2010.
    [20]Kim Y.Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segment.Spine,2001,26:1437-1442
    [21]刘红欣,王以进.腰椎椎间植骨融合的三维有限元分析。医用生物力学,2001,16(3):169-73
    [22]韦兴,侯树勋,张美超等.腰椎滑脱短节段固定器的初步有限元分析。中国脊柱脊髓杂志2002,12(5):363-5
    [23]Zander T, Rohlmann A, Burra NK. Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clin Biomech (Bristol, Avon).2006 Qct;21(8):767-774.
    [24]赵文志,苏晋,陈秉智等.有限元分析在腰椎生物力学研究中的应用[J].中国组织工程研究与临床康复,2009,13(30):5927-5930
    [25]李芳燕.基于三维有限元模型的脊柱生物力学特性研究[M].东华大学,2008,
    [1]俞兴,徐林,毕连涌等.棘突间动态稳定系统治疗腰椎退行疾病初期效果分析[J]. 中国矫形外科杂志,2009,12:1786-1788.
    [2]Senegas J,Vital JM,Pointillart V,et al. Long-term actuarial survivorship analysis of an interspinous stabilization system. Eur Spine J.2007,16(8):1279-1287.
    [3]王洪立,姜建元.腰椎棘突间分离装置研究进展[J]. 中国脊柱脊髓杂志,2008,18(8):632-634.
    [4]苏雨涛,李彦生,韩景芸.CT数据三维重建及可视化技术的研究[J].机械设计与制造,2009,1:191-193.
    [5]Kling Petersen T,Rydmark M. Modeling and modification of medical 3D objects:the benefit of using haptic modeling tool [J]. Stud Health Technol Ifoml,2000,70:162-167.
    [6]Kumar MN, Jaequot F, Hall H. Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for Degenerative disc disease[J]. Eur Spine J,2001,4:309-313.
    [7]Gibson JN,Grant IC,Waddell G. The cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis[J]. Spine,1999,24(17):1820-1832.
    [8]Huang RC,Girardi FP,Lim MR,et al. Advantages and disadvantages of nonfusion technology in spine surgery [J]. Orthop Clin N Am,2005,36:263-269.
    [9]迟大明,朱悦.非融合固定在退行性腰椎疾病中的应用[J].中华骨科杂志,2005,10:622-624.
    [10]姚庆强,王黎明,桂鉴超等.基于CT建立早期退变腰椎活动节段的三维有限元模型[J].南京医科大学学报,2007,22(10):1084.
    [11]Lindsey DP, Swanson KE, Fuchs P, et al. The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine,2003,28(19):2192-2197.
    [12]徐广辉,郭开今,周冰等. 腰椎棘突间区的影像解剖学研究及其临床意义[J].解剖与临床,2008,13(1):20-22.
    [13]郭开今.腰椎棘突间相关区域的解剖学研究及棘突间内固定的三维有限元分析[D].苏州大学,2006.
    [14]Morriss J, Moreland J, Burkhart H. et al. Pre-surgical evaluation of interrupted aortic arch with 3-dimensional reconstruction of CT images. Ann Thorac Surg,2007; 84(1):299.
    [15]Feichtinger M. MosSbock R. Karcher H. Evaluation of bone volume following bone grafting in patients with unilateral clefts of lip, alveolus and palate using a CT-guided three-dimensional navigation system. J Craniomaxillofac Surg.2006; 34(3),144-149.
    [16]黎弘,蔡元龙,姜航毅.基于微机的医学图像三维重建[J]. 中国生物医学工程学报,1995,3:226-234.
    [17]Yune HY. Two-dimensional-three-dimensional reconstruction computed tomography techniques. Dent Clin North Am,1993,37(4):613-626.
    [18]Brink JA. Technical aspects of helical(spiral) CT. Radiol Clin North Am, 1995,33(5):825-841.
    [19]Hemmy DC, Zonneveld FW, Lobreqt S, et al. A decade of three-dimensional imaging:a review Part 1 historical development[J]. Invest Radiol,1994, 29 (4):489-496.
    [20]Wang G, Yu H, De Man B. An outlook on X-ray CT research and development[J]. Medical Physic 2008,35(3):1051-1064.
    [21]张韶辉,李严兵.三维重建技术在椎弓根螺钉内固定中的应用进展[J].中国脊柱脊髓杂志,2010,20(5):425-427.
    [22]张伟,张铁良,张玉朵.医学图像三维重建及其临床应用进展[J].国际骨科学杂志,2008,29,(4):214-215.
    [23]李宏权,杨育生.颌面部骨组织三维测量法进展[J].口腔颌面外科杂志,2009,19(3):214-218.
    [24]张海钟,步荣发,黄旭明,等.颅面骨三维定量测量及其临床意义[J].中国临床解剖学杂志,1999,17(3):195-198.
    [25]郑冬,邹德威,吴继功等.腰椎间小关节螺旋CT三维测量、观察及临床意义[J].解剖学杂志,2009,32(2):238-242.
    [26]张美超,刘阳,刘则玉等.利用Mimics和Freeform建立中国数字人上颌第一磨牙三维有限元模型[J]. 医用生物力学,2006,24(3):208-211.
    [27]付淼,李莉,何叶松Mimics与医学图像三维重建[J]. 中国现代医学杂志,2010,20(19):3030-3032.
    [28]郭开今,袁峰,张志明,等.腰椎棘突间区域的应用解剖[J].江苏医药,2006,32(6):546-548.
    [29]刘刚,颜连启,郭开今等.腰椎棘突间区的解剖学参数及临床意义[J].中国矫形外科杂志,2006,11(1):10-13.
    [30]贾建新,颋杜.腰椎棘突及其间隙的应用解剖学研究[J].包头医学院学报.2009,25(4):18-20.
    [31]宗立本,左金良,徐军等.腰椎椎板的解剖测量及临床意义[J]. 中国矫形外科杂志,1999,6(1):872-873.
    [32]许崧杰,陈学明,刘亚东等Wallis系统治疗腰椎间盘突出症的早期疗效观察[J]. 中华中医药杂志,2010,25(10):1583-1585.
    [1]林阳,李锋,陈安民.棘突间动态稳定系统治疗腰椎间盘突出症的早期观察[J].生物骨科材料与临床研究,2008,5(5):12-14.
    [2]昌耘冰,王义生,柯雨洪等Wallis棘突间动态稳定系统的初步临床应用[J]. 中国临床解剖学杂志,2009,27(4):487-489.
    [3]俞兴,徐林,毕连涌等.棘突间动态稳定系统治疗腰椎退行疾病初期效果分析[J].中国矫形外科杂志,2009,17(12):1786-1788.
    [4]刘瑞,徐林,张元智等Wallis腰椎非融合系统有限元模型的建立[J].生物骨科材料与临床研究,2010,12(6):8-10.
    [5]陈肇辉.腰推棘突间撑开装置的三维有限元分析及临床应用研究[D].第二军医大学,2010.
    [6]Schmidt H, Heuer F, Drumm J, et al. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment[J]. CLIN BIOMECH,2007,22(4):377-384.
    [7]El-Rich M, Arnoux P, Wagnac E, et al. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions[J]. J Biomech,2009,42(9):1252-1262.
    [8]王乃国.腰椎棘突间动力固定的三维有限元分析和前瞻性临床研究[D].北京协和医学院,2010.
    [9]Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression[J]. Spine,1986,11(9):914-927.
    [10]姚庆强,王黎明,蒋纯志等.非融合棘突间撑开器治疗腰椎早期退腰痛的三维有限元分析[J].中国骨与关节损伤杂志,2008,23(4):292-295.
    [11]Mulholland RC The myth of lumbar instability:the importance of abnormal loading as a cause of low back pain [J]. Eur Spine J,2008,17 (5):619-625.
    [12]胥少汀,葛宝丰,许印坎等.实用骨科学[M].3版.北京:人民军医出版社,2006:1137-1150.
    [13]姚庆强,王黎明. 动力性固定技术治疗退变性腰部疼痛的研究进展[J]. 医学综述,2006,12(23):10-11.
    [14]Blumenthal S, McMee PC, Guyer ltD, et al. A prospective randomized multicenter Food and Drug Administration investigafional device exemption study of lumbar total disc replacement with the Charit6 artificial disc versus lumbar fusion. Part I:egaluation of clinical outcomes[J]. Spine,2005,30(14):1565-1575.
    [15]Belytschko TB, Andriacchi TP, Schultz AB, Galante JO. Analog spine: computational techniques. J Biomech.1973,6(4):361-371.
    [16]Belytschko T, Kulak RF, Schultz AB. Finite element stress analysis of an intervertebral disc[J]. J Biomech,1974,7:277-285.
    [17]Viceconti M, Olsen S, Nolte LP, et al. Extracting clinically relevant data from finite element simulations. Clin Biomech.2005; 20(5):451-454.
    [18]张美超,钟世镇. 国内生物力学中有限元的应用研究进展[J].解剖科学进展,2003,9(1):53.
    [19]裴国献,张元智主编.数字骨科学.人民卫生出版社,2009.
    [20]贾连顺,袁文,王岩等.现代脊柱外科学.北京:人民军医出版社,2007.55.
    [21]任中武,张美超,倪斌等.上颈椎三维非线性有限元模型的建立及其有效性分析[J].脊柱外科杂志,2007,6:159-162.
    [22]Yoganadan N, Kumaresan S, Voo L, et al. Finite element applications in human cervical spine modeling(Review). Spine,1996,21(15):1824-1834.
    [23]Panjabi MM.Cervical spine models for biomechanical research. Spine, 1998,23 (24):2684-2700.
    [24]万磊,李义凯.有限元方法在腰椎研究中的应用[J].中国骨与关节损伤杂志[J],2006,21(2):158-160.
    [25]刘耀升,陈其听,廖胜辉等.腰椎L4-L5活动节段有限元模型的建立与验证[J].第二军医大学学报,2006,27(6):665-669.
    [26]Senegas J. Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments:the Wallis system. Eur Spine J,2002.11 Suppl 2:p. S164-169.
    [27]Schulte TL. The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur Spine J, 2008.17(8):p.1057-1065.
    [28]Lafage, V, et al. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Spine(Phila Pa 1976),2007.32(16):p.1706-1713.
    [29]曾腾辉,闫洪印,李振宇Wallis棘突内固定对腰椎活动度和关节内压的影响[J].深圳中西医结合杂志,2009,19(4):204-207.
    [30]潘兵,张志敬,卢一生等Wallis棘突间动态稳定装置的生物力学研究[J]. 中华实验外科杂志.2010,27(11):1642-1644.
    [31]Crawford RP,Cann CE, Keaveny TM, et al. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography[J]. Bone,2003,33(4):744-750.
    [32]Shepherd DET, Leahy JC, Mathias KJ, et al. Spinous process strength [J]. Spine,2000,25:319-323.
    [33]Talwar V, Lindsey DP, Frederick AD, et al Insertion loads of the X STOP interspinous process distraction system designed to treat neurogenic intermittent claudication [J]. Eur Spine J,2005,15: 908-912.
    [1]Christie SD,Song JK, Fessler RG. Dynamic interspinous process technology [J].Spine,2005,30(Suppl 16):73-78.
    [2]郑晓勇,侯树勋,李利等.腰椎融合术后相邻节段的退变与临床疗效的关系.中国矫形外科杂志.2009,17(23):1782-1785.
    [3]Park P, Garton HJ, Gala VC, et al. Adjacent segment disease after lumbaror lumbosacral fusion:review of the literature [J].Spine,2004, 29(17):1938-1944.
    [4]Okuda S, Miyauchi A, Oda T, et al. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients[J].J Neurosurg Spine, 2006,4 (4):304-9.
    [5]Senegas J,Vital JM, Guerin J, et al.Stabilisation lombaire souple.In:GIEDA-Instabilites vertebrales lombaires.Expansion Scientifique Francaise.Paris,2009,10:122-132.
    [6]Boeree N. Dynamic stabilization of the degenerative lumbar motion segment: the wallis system. Spine J,2005,5 (suppl):89-90.
    [7]Senegas J, Vital JM, Pointillart V, et al. Long-term actuarial survivorship analysis of an interspinous stabilization system. Eur Spine J,2007,16:1279-1287.
    [8]俞兴,徐林,毕连涌等.棘突间动态稳定系统治疗腰椎退行性疾病初期效果分析[J].中国矫形外科杂志,2009,17(23):1786-1788.
    [9]Senegas J. Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments:the Wallis system[J]. Eur Spine J,2002,2: 164-169.
    [10]吴采荣.Wallis棘突间动态稳定系统治疗腰椎退变性疾病的临床应用研究[D].苏州大学,2010.
    [11]俞兴,徐林,毕连涌等.腰椎后外侧融合应用纳米晶胶原基骨材料初步效果分析[J].中国矫形外科杂志,2005,13(8):586-588.
    [12]Battie MC, Videman T, Parent E. Lumbar disc degeneration:epidemiology and genetic influences. Spine.2004; 29(23):2679-2690.
    [13]Silver FH, Siperko LM. Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix? Crit Rev Biomed Eng 2003; 31 (4):255-331.
    [14]Urban JP. Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine.2004 Dec 1; 29(23):2700-2709.
    [15]Walker MH, Anderson DG. Molecular basis of intervertebral disc degeneration. Spine J 2004; 4:158S-166S.
    [16]Gibson JN. Grant IC. Waddel 1G. The cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis[J].Spine, 1999,17:1820-1832.
    [17]Lehmann TR, Spratt KF, Tozzi JE, et al.Long-term follow-up of lower lumbar fusion patients[J].Spine,1987,2:97-104.
    [18]McNally DS, Shackleford IM, Goodship AE, et al. In vivo stress measurement can predict pain on discography[J].Spine,1996,22: 2580-2587.
    [19]Swanson KE, Lindsey DP, Hsu KY, et al. The effects of an interspinous implant on intervertebral disc pressures[J].Spine,2003,1:26-32.
    [20]穆岭.Wall is动态稳定系统治疗腰椎退行性疾病的近期疗效观察[D].北京中医药大学,2010.
    [21]许崧杰,陈学明,刘亚东等. Wall is系统治疗腰椎间盘突出症的早期疗效观察[J].中华中医药杂志,2010,25(10):1583-1585.
    [22]刘亚东,陈学明,于振山.Wall is棘突间动态固定系统的研究应用进展[J].中国矫形外科杂志,2011,19(1):40-42.
    [23]Korovessis P, Papazisis Z, Koureas G,et al. Rigid semi-rigid versus dynamic instrumentation for degenerative lumbar spinal stenosis:a correlative radiological and clinical analysis of short-term results [J].Spine, 2004,7:735-742.
    [24]凌为其,丁亮华,何双华,等.Wall is棘突稳定系统在退变性下腰痛治疗中的应用[J].南通医学院学报,2009,29(5):372-373.
    [25]迟大明,朱悦.非融合固定在退行性腰椎疾病中的应用[J].中华骨科杂志,2005,10:622-624.
    [26]杨述华,许伟华,Wall is棘突间动态固定防治腰椎退变的短期效果.中华骨科杂志,2009,29:p.12-16.
    [27]Lafage V, Gangnet N, Senegas J, et al.New interspinous implant evaluation using an in vitro biomechanical study combined with a finite element analysis[J].Spine,2007,16:1706-1713.
    [28]Shepherd DE, Leahy JC, Mathias KJ, et al. Spinous process strength. Spine(PhilaPal 976),2000,25(3):319-323.
    [29]雷仲民,孙佩宇,张翔.腰椎棘突间动态稳定系统(Wallis)在腰椎退行性疾病中的应用及近期效果观察[J].中国中医骨伤科杂志,2009,17(10):26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700