中枢组胺对吗啡成瘾的形成和戒断后恐惧记忆作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如今吸毒已成为一个全球性的社会问题,毒品滥用已遍及全球200多个国家和地区。毒品种类繁多,但在我国仍以阿片类药物滥用为主。吗啡是阿片类药物的主要代表药物,吗啡最大缺点是极易成瘾,能很快发展成为依赖且不易戒断,即使戒断后复吸率也高。目前国内外均没有理想的治疗手段,所以迫切希望探索其神经生物学机制及治疗靶点,并寻找一些安全、有效、低成本的理想药物来治疗阿片(吗啡)成瘾。
     目前认为脑内多种神经递质和神经调质系统参与阿片(吗啡)成瘾,除内源性阿片系统外,还有多巴胺(DA)系统、兴奋性氨基酸系统等。研究者试图解析这些非阿片靶受体系统在毒品成瘾中的作用机制并寻求相关治疗药物。脑内DA神经系统是阿片类引起精神依赖作用的轴心部位。
     组胺能神经的胞体唯一位于下丘脑结节乳头核,组胺能神经元在脑内有着广泛而弥散的投射。作为脑内一种重要的神经递质或调质,通过H_1、H_2、H_3受体发挥着多种神经调节作用,如参与调节睡眠—觉醒活动、学习和记忆、情绪等生理作用。最近有报道组胺也参与调节药物成瘾的机制,如口服的止咳药(含可待因和H_1受体拮抗药)具有成瘾性。组胺H_2受体拮抗药zolantidine能提高吗啡诱导的奖赏作用,并且加速DA的代谢。H_1/H_2受体双基因敲除小鼠和组氨酸脱羧酶基因敲除(histidine decarboxylase gene knockout,HDCKO)小鼠促进甲基苯丙胺成瘾。这些研究都提示中枢组胺可能在药物成瘾中发挥着抑制作用,但是迄今尚不清楚中枢组胺在吗啡成瘾形成过程中的作用。
     此外,药物成瘾表现为不顾后果的强迫性用药和失去控制的觅药行为。药物成瘾是一种记忆性疾病,成瘾过程伴随着在特定的神经环路中以特殊的方式形成突触可塑性改变,这些部位包括海马、杏仁核、皮层。成瘾记忆是一种畸形记忆,其主要特点是顽固存在,有的甚至持续一生,而且药物成瘾者常伴有认知功能的损伤如学习记忆能力下降,注意力不集中,焦虑。而这些认知损伤反过来是成瘾药物的复吸的重要原因之一,这提示可以通过利用改变认知功能来调节药物成瘾的进程。另一方面,组胺能神经系统参与调节神经元的突触可塑性和神经元兴奋性。在离体细胞和脑片电生理的研究发现,组胺可能直接作用于NMDA受体的多胺位点并增强NMDA受体依赖的长时程增强。脑室内注射组胺,或腹腔内给予组氨酸都可以改善动物在多种动物模型中的认知功能障碍,而且脑内组胺水平与学习记忆的能力有着密切的相关性。以上的结果均提示,组胺可通过调节认知功能来抑制吗啡诱导的成瘾以及复吸。但是目前尚无中枢组胺对吗啡成瘾以及学习记忆等三者关联的报告,所以很有必要研究在吗啡成瘾和戒断过程中认知功能的改变以及组胺的作用。
     因此,在本研究中,利用整体行为学、免疫组化、生化等实验方法探讨脑内内源性组胺对吗啡诱导的条件性位置偏爱形成过程的作用,并探讨吗啡戒断过程认知功能的改变以及组胺能神经系统在其中的作用。
     第一部分内源性组胺抑制吗啡诱导的条件性位置偏爱的形成过程
     为了探讨内源性组胺在吗啡诱导的奖赏性觅药行为中的作用,本研究采用条件性位置偏爱(conditioned place preference,CPP)模型来评价吗啡奖赏作用,同时利用高效液相结合电化学技术检测脑内多巴胺(DA)、3,4-二羟苯乙酸(DOPAC)、组胺、谷氨酸、γ-氨基丁酸(GABA),使用免疫组化技术用来观察组胺能神经元的形态学改变。我们发现腹腔内分别注射2、5、10 mg/kg吗啡能剂量依赖性地诱导大鼠的CPP的形成。我们还进一步发现10 mg/kg吗啡多次注射后能显著性降低腹侧被盖核(VTA)和伏隔核(NAc)中组胺的含量,同时升高两个脑区的DOPAC/DA比率;并且观察到位于结节乳头核(TM)的组胺能神经元的胞体萎缩变小,数目也减少。腹腔内注射组氨酸(50,100 0r 200 mg/kg)能升高脑内组胺含量,同时剂量依赖性地抑制了10 mg/kg吗啡所诱导的CPP形成。电毁损双侧TM能降低脑内VTA和NAc区内的组胺含量,但不影响谷氨酸酸和GABA水平;电毁损双侧TM还增强1 mg/kg吗啡(单独给药没有明显作用)所诱导的CPP形成,同时升高VTA和NAc区内的DOPAC/DA比率。而组氨酸能逆转TM毁损对组胺含量、DOPAC/DA比率和CPP形成的作用。我们还利用组氨酸脱羧酶基因敲除小鼠(histidine decarboxylase gene knockout,HDCKO)小鼠进一步发现,HDCKO小鼠比野生型(wild-type,WT)小鼠对吗啡诱导CPP更敏感,同时VTA和NAc区内的DOPAC/DA比率更高。这些结果都提示中枢组胺能够抑制吗啡诱导的CPP形成,该作用可能是通过调节DA的活性来实现的。
     第二部分组氨脱羧酶基因敲除小鼠增强吗啡戒断对线索恐惧记忆消除的损害
     以前研究已表明吗啡成瘾能降低学习记忆,产生负性情感,而组胺在许多的学习记忆及吗啡成瘾中具有调节作用,但组胺在对吗啡戒断后的学习记忆损伤中的作用未见报道。因此,在本研究中我们采用条件性恐惧性记忆和恐惧记忆消除模型,前者是神经生物学上主要研究关联性情绪记忆的模型,后者是人类焦虑性疾病暴露治疗的临床前模型。实验中给予组氨酸脱羧酶基因敲除小鼠(histididedecarboxylase gene knockout,HDCKO)和野生型(wild-type,WT)小鼠皮下注射吗啡或生理盐水,每天两次,连续5 d,吗啡注射剂量每天递增,从开始的10mg/kg提高到最后一天的50 mg/kg。戒断7 d后小鼠分别接受线索恐惧训练或背景恐惧训练,然后在随后的4 d内每天接受一个线索或背景恐惧记忆的消除,用Western blot技术检测杏仁核、内侧前额叶皮层(mPFC)、海马的细胞外信号调节激酶(ERK)的磷酸化水平。实验发现吗啡戒断对线索和背景恐惧记忆的获得没有影响,对背景恐惧记忆的消除也无作用,但能抑制线索恐惧记忆的消除。HDCKO小鼠提高线索和背景恐惧记忆的获得,但对线索和背景恐惧记忆的消除没有作用。但HDCKO小鼠增强了吗啡戒断对线索恐惧记忆消除的抑制作用,与行为学实验结果相一致是,,吗啡戒断能明显降低WT和HDCKO小鼠在线索恐惧记忆消除第4次训练后杏仁核和mPFC脑区的ERK磷酸化水平,但对海马脑区的ERK磷酸化没有作用;HDCKO小鼠在线索恐惧记忆消除训练的第4次训练后杏仁核、mPFC脑区的ERK蛋白没有明显磷酸化激活。这些结果提示:吗啡戒断能选择性抑制恐惧记忆的消除,此作用是通过抑制杏仁核和mPFC脑区内ERK蛋白磷酸化来实现的;组胺缺乏能增强线索和背景恐惧记忆的获得以及增强吗啡戒断对线索恐惧记忆消除的抑制作用。
Drug addiction has become a global social problem.Drug abuse has spread to more than 200 countries and areas around the world.In china,opioids dominate in many abused drugs.Morphine is a representative substance among opioids.It is easy to develop into morphine tolerance and addiction.Morphine addiction is difficult to withdrawal;and even after withdrawal from morphine addiction,there is a high rate of relapse.At present,there are no satisfactory treatments at home and abroad. Therefore,it is urgent to explore the neurobiological mechanisms underlying the opioids addiction,and thereby find therapeutic targets and develop safe,effective, low-cost drugs.
     Now,many studies showed that many neurotransmitters and neuromodulators are involved in opioids(morphine)addiction.Apart from endogenous opioidergic system,opioids addiction recruits dopaminergic and some other excitatory amino acid systems.The researchers study the role of non-opioidergic system involved in drug addiction and try to find new drugs to treat opioids(morphine)addiction.It is considered that dopaminergic system play an important role in psychical dependence of opioids.
     The tuberomamillary(TM)nucleus of the hypothalamus was the sole site of histaminergic neurons whose efferent fibers project to almost the entire brain. Histamine plays an important role as both neurotransmitter and neuromodulator in the brain.Through its H_1,H_2 and H_3 receptors,histamine participates in various physiological and behavioral functions including the sleep-wake cycle,learning and memory,emotion.Recently,it has been reported that histamine is involved in modulating drug addiction.For example,oral antitussives including codeine and H_1 receptor antagonist are addictive.Histamine H_2 receptor antagonist,zolantidine, promotes morphine-induced reward and accelerates the metabolism of dopamine,but histamine can inhibit morphine - induced reward by decreasing the dopamine release. The histidine decarboxylase gene knockout mice(HDCKO)and H_1/H_2 receptor gene double knockout mice are more sensitive to methamphetamine action.These findings suggest that histamine may play an inhibitory role in morphine addiction.However,it is unclear what is the role of endogenous histamine in development of morphine addiction.
     In addition,drug addiction is defined as compulsive drug use and loss of control over drug-seeking behavior despite negative consequences.Drug addiction is a memory disorder that is associated with aberrant formation of synaptic plasticity in certain neural circuit including the hippocampus,amygdala,and prefrontal cortex. Addiction memory is an aberrant memory which has an important characteristic of stubborn persistence,even maintained one's whole life.Drug addiction is usually associated with impairment of cognitive function including learning,memory,anxiety and attention.Conversely,cognitive impairments may contribute to drug relapse. Therefore,improving the cognitive function could be used to regulate the process of drug addiction.On the other hand,histaminergic system is involved in synaptic plasticity and neuronal excitability.Histamine can activate polyamine site of NMDA receptor and enhance NMDA-dependent Long-Term Potentiation in vitro. Intracerebroventricularly(i.c.v.)administered histamine or intraperitoneal injection (i.p.)of histidine can alleviate cognitive dysfunction in many animal models. Furthermore,the level of brain histamine is closely related with learning and memory. These results suggest that histamine may inhibit addiction and relapse by modulating cognitive impairments induced by morphine addiction.However,as yet there is no report related to endogenous histamine,morphine addiction,learning and memory. Therefore,it is necessary to investigate the effect of endogenous histamine on morphine addiction and cognitive impairments after morphine addiction.
     Therefore,in this study,behavioral animal model,immunohistochemistry technique and biochemical detection method will be used to investigat the effect of endogenous histamine on the development of morphine-induced conditioned place preference and the role of the histaminergic system in the change of cognition after morphine withdrawal.
     PartⅠEndogenous histamine inhibits the development of morphine-induced conditioned place preference
     This study is designed to investigate the effects of brain histamine on the processes leading to morphine-induced reward-seeking behavior.The model of conditioned place preference(CPP)was used to assess the rewarding effect of morphine.The levels of histamine,glutamate,gamma-aminobutyric acid(GABA), dopamine(DA)and 3,4 - dihydroxyphenylacetic acid(DOPAC)were measured with high-performance liquid chromatography.Immunohistochemistry technique was used to observe the morphological changes of neurons.We found that intraperitoneal injection of morphine(2,5 or 10 mg/kg)induced the development of CPP in a dose-dependent manner.In addition,repeated morphine administrations(10 mg/kg) decreased the histamine content and in the ventral tegmental area(VTA)and nucleus accumbens(NAc)and reduced number and size of histaminergic neurons in the tuberomammillary nucleus(TM).It also markedly increased the DOPAC/DA ratios in the VTA and NAc.Intraperitoneal injection of histidine(50,100 or 200 mg/kg) dose-dependently inhibited the development of morphine-induced CPP.Bilateral lesions of the TM,which decreased the histamine levels of the VTA and NAc, potentiated the development of CPP induced by morphine(1 mg/kg,a dose producing no appreciable effect when given alone).It increased the DOPAC/DA ratios in the VTA and NAc,but did not change the glutamate or GABA levels in these nuclei. Histidine reversed the effects of TM lesions.Furthermore,histidine decarboxylase gene knockout(HDCKO)mice were more sensitive to morphine-induced CPP than wild-type(WT)mice,and the DOPAC/DA ratio in VTA and NAc of HDCKO mice is higher than that of WT mice.Therefore,these results indicate that brain histamine plays an important role in inhibiting the development of morphine-induced reward-seeking behavior,and this inhibitiory function may works by modulating dopaminergic activity.
     PartⅡHistidine decarboxylase gene knockout mice potentiates impairment of cued fear extinction induced by morphine withdrawal
     Previous studies have shown that morphine addiction impairs learning and memory and produces negative emotion.Histamine plays an important modulation on morphine addiction,learning,memory and emotion.However,little is known about the effect of histamine on impairment of learning and memory after morphine withdrawal.In the present study,we use fear conditioning and fear extinction,fear conditioning has long been an important model of associative learning and fear extinction is an important preclinical model for exposure therapy of human anxiety disorders.Histidine decarboxylase gene knockout(HDCKO)and wild - type(WT) mice were administrated subcutaneously morphine hydrochlodde or saline twice per day for continuous 5 days.The dose was 10 mg/kg on the first day,and gradually increased to 50 mg/kg on the fifth day.The mice received an cued or contextual fear conditioning session 7 days after the last morphine injection.During subsequent days, rats received four cued or contextual extinction sessions(one session per day). Western blot was used to detect the extracellular signal-regulated kinase(ERK) phosphorylation in amygdala,medial prefrontal cortex(mPFC)and hippocampus. Morphine withdrawal did not affect the acquisition of cued or contextual fear memory, but it produced impairment in cued but not contextual fear extinction.Histamine deficiency markedly potentiated the acquisition of learning in cued and contextual fear conditioning in the HDCKO mice,but had no effect on cued and contextual fear extinction.However,histamine deficiency potentiated the inhibitory role of morphine withdrawal in cued fear extinction.Consistent with the behavioral results,morphine withdrawal decreased ERK phosphorylation in the amygdala and mPFC but not in the hippocampus of WT and HDCKO mice,and ERK might not be phosphorylad in the amygdale and mPFC of HDCKO mice after the 4th training of cued fear extinction. These results suggest that morphine withdrawal selectively impairs the cued fear extinction through inhibiting the ERK phosphorylation in the amygdale and mPFC. Histamine deficiency not only enhances acquisition the cued and contextual fear conditioning and but also potentiates the impairment of extinction of cued fear memory.
引文
1.杨良(1998).海洛因的毒性及危害[M].第1版.北京:中国医药科技出版社1:39-42.
    2.杨良(1998).海洛因成瘾的临床诊断及治疗[M].第1版.北京:中国医药科技出版社 1:54-8.
    3.Lu L,Fang Y,Wang X(2008).Drug Abuse in China:Past,Present and Future.Cell Mol Neurobiol 28:479-90.
    4.Michels Ⅱ,Fang YX,Zhao D,et al(2007).Comparison of drug abuse in Germany and China.Acta Pharmacol Sin 28:1505-18.
    5.Shaham Y,Shalev U,Lu L,et al(2003).The reinstatement model of drug relapse:history,methodology and major findings.Psychopharmacology(Berl)168:3-20.
    6.Fang Y,Wang Y,Shi J,et al(2006).Recent trends in drug abuse in China.Acta Pharma Sin 27:140-4.
    7.蔡志基(2005).近期世界毒品形势及所造成的严重危害.中国药物依赖性杂志 15:63-7.
    8.秦伯益(1999).戒毒现状纵横谈.中国药物依赖性杂志 8:81-5.
    9.Berke JD,Hyman SE(2000).Addiction,dopamine,and the molecular mechanisms of memory.Neuron 25:515-32.
    10.Nestler EJ(2001).Molecular basis of long-term plasticity underlying addiction.Nat Rev Neurosci 2:215-28.
    11.Hyman SE,Malenka RC(2001).Addiction and the brain:the neurobiology of compulsion and its persistence.Nat Rev Neurosci 2:695-703.
    12.Boening JA(2001).Neurobiology of an addiction memory.J Neural Transm 108:755-65.
    13.Nestler EJ(2001).Neurobiology:Total fecal—the memory of addiction.Science 292:2266-7.
    14.Di Chiara G(1999).Drug addiction as dopamine-dependent associative learning disorder.Eur J Pharmacol 37:13-30.
    15.Robbins TW,Evedtt BJ(1999).Drug addiction:bad habits adds up.Nature 398:567-70.
    16. Everitt BJ, Dickinson A, Robbins TW (2001). The neuropsychological basis of addictive behaviour. Brain Res Rev 36:129-38.
    17. Koob GF, Sanna PP, Bloom FE (1998). Neuroscience of addiction. Neuron 21:467-76.
    18. Schwartz JC, Arrang JM, Garabarg M, et al (1991). Histaminergic transmission in the mammalian brain. Physiol Rev 71:1-51.
    19. Brown RE, Stevens DR, Hass HL (2001). The physiology of brain histamine. Prog Neurobiol 63:637-72.
    20. Endou M, Yanai K,Sakurai E, et al (2002). Food-deprived activity stress decreased the activity of the histaminergic neuron system in rats. Brain Res 891:32-41.
    21. Chen Z, Li ZY, Sakurai E, et al (2003). Chemical kindling induced by pentylenetetrazol in histamine H1 receptor gene knockout mice (H_1KO), histidine decarboxylase-deficient mice (HDC-/-) and mast cell-deficient W/Wv mice. Brain Res 968:162-6.
    22. Jin C, Sakurai E, Kiso Y,, et al (2005). Influence of low dietary histamine on the seizure development of Chemical kindling induced by pentylenetetrazol in Sprague-Dawley rats. Acta Pharmacol Sin 26:423-7.
    23. Tani N, Kaneko S, Minamikawa S, et al (1984). A clinical study of SS-BRON solution-W dependency. Jpn J Alcohol Depend 19:205-10.
    24. Showalter CV (1980). T's and blues: abuse of pentazocine and tripelennamine. J Am Med Assoc 244:1224-5.
    25. Suzuki T, Takamori K, Misawa M, et al (1995). Effects of the histaminergic system on the morphine-induced conditioned place preference in mice. Brain Res 675:195-202.
    26. Iwabuchi K, Kubota Y, Ito C, et al (2004). Methamphetamine and brain histamine: a study using histamine-related gene knockout mice. Ann N Y Acad Sci 1025:129-34.
    27. Rogers RD and Robbins TW (2001). Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250-7.
    28. Rogers RD and Robbins TW (2003). The neuropsychology of chronic drug abuse. In MA Ron & TW Robbins (Eds), Disorders of brain and mind. Cambridge: Cambridge University Press.
    29. Volkow ND, Fowler JS, Wang GJ (2003). The addicted human brain: Insights from imaging studies. J Clin Invest 111:1444-51.
    30. Volkow ND, Fowler JS, Wang GJ (2004). The addicted human brain viewed in the light of imaging studies: Brain circuits and treatment strategies. Neuropharmacology 47:3-13.
    31. Kamei C, Okumura Y, Tasaka K (1993). Influence of histamine depletion on learning and memory recollection in rats. Psychopharmacology (Berl) 111: 376-82.
    32. Chen Z, Sugimoto Y, Kamei C (1999). Effects of intracerebroventricular injection of alpha-fluoromethylhistidine on radial maze performance in rats.Pharmacol Biochem Behav 64:513-8.
    33. Dere E, De Souza-Silva MA, Spieler RE, et al (2004). Changes in motoric, exploratory and emotional behaviours and neuronal acetylcholine content and 5-HT turnover in histidine decarboxylase-KO mice. Eur J Neurosci 20: 1051-8.
    34. Passani MB, Cangioli I, Baldi E, et al (2001). Histamine H_3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur J Neurosci 14:1522-32.
    35. Baldi E, Bucherelli C, Schunack W, et al (2005). The H_3 receptor protean agonist proxyfan enhances the expression of fear memory in the rat. Neuropharmacology 48:246-51.
    36. Giovannini MG, Efoudebe M, Passani MB, et al (2003). Improvement in fear memory by histamine-elicited ERK2 activation in hippocampal CA3 cells. J Neurosci 23:9016-23.
    37. Dai H, Kaneko K, Kato H, et al (2007). Selective cognitive dysfunction in mice lacking histamine H_1 and H_2 receptors. Neurosci Res 57:306-13.
    38. Liu L, Zhang S, Zhu Y, et al. (2007). Improved learning and memory of contextual fear conditioning and hippocampal CAI long-term potentiation in histidine decarboxylase knock-out mice. Hippocampus 17:634-41.
    39. Finlay JM and Zigmond MJ (1997). The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochem Res. 22:1387-94.
    40. Marlatt GA and Gordon JR (1985). Relapse Prevention. Guildford Press, New York.
    41. Davis M (1992). The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353-75.
    42. Fendt M and Fanselow MS (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23:743-60.
    43. Finlay JM and Zigmond MJ (1997). The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochem. Res. 22:1387-94.
    44. Sinha R, Catapano D, O'Malley, S. (1999). Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacology 142:343-51.
    45. Bertotto ME, Bustos SG, Molina VA, et al (2006).Influence of ethanol withdrawal on fear memory: Effect of D-cycloserine. Neuroscience 142:979-90.
    46. Peleg-Raibstein D and Feldon J (2008). Effects of withdrawal from an escalating dose of amphetamine on conditioned fear and dopamine response in the medial prefrontal cortex. Behav Brain Res 186:12-22.
    47. Pezze MA, Feldon J, Murphy CA (2002). Increased conditioned fear response and altered balance of dopamine in the shell and core of the nucleus accumbens during amphetamine withdrawal. Neuropharmacology 42:633-43.
    48. Isoardi NA, Martijena ID, Carrer HF, et al (2004). Increased fear learning coincides with neuronal dysinhibition and facilitated LTP in the basolateral amygdala following benzodiazepine withdrawal in rats. Neuropsychopharmacology 29:1852-64.
    49. Davis JA, James JR, Siegel SJ, et al (2005). Withdrawal from chronic nicotine administration impairs contextual fear conditioning in C57BL/6 mice. J Neurosci 25:8708-13.
    1. Masukawa Y, Suzuki T, Misawa M (1993). Differential modification of the rewarding effects of methamphetamine and cocaine by opioids and antihistamines. Psychopharmacology (Berl) 111: 139-43.
    2. Houdi AA, Bardo MT, Van Loon GR (1989). Opioid mediation of cocaine-induced hyperactivity and reinforcement. Brain Res 497: 195-8.
    3. Schechter MD, Calcagnetti DJ (1993). Trends in place preference conditioning with a cross-indexed bibliography; 1957-1991. Neurosci Biobehav Rev 17: 21-41.
    4. Schwartz JC, Arrang JM, Garbarg M, et al (1991). Histaminergic transmission in the mammalian brain. Physiol Rev 71: 1-51.
    5. Haas H and Panula P (2003). The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4: 121-30.
    6. Wada H, Inagaki N, Yamatodani A, et al (1991). Is the histaminergic neuron system a regulatory center for whole-brain activity? Trends Neurosci 14: 415-8.
    7. Panula P, Pirvola U, Auvinen S, et al (1989). Histamine immunoreactive nerve fibers in the rat brain. Neuroscience 28: 585-610.
    8. Privou C, Knoche A, Hasenohrl RU, et al (1998). The H_1- and H_2- histamine blockers chlorpheniramine and ranitidine applied to the nucleus basalis magnocellularis region modulate anxiety and reinforcement related processes. Neuropharmacology 37: 1019-32.
    9. Cohn CK, Ball GG, Hirsch J (1973). Histamine: effect on self-stimulation. Science 180:757-8.
    10. Rassnick S and Kornetsky C (1991). L-Histidine attenuates the effects of pentazocine on rewarding brain-stimulation. Life Sci 48: 1729-36.
    11. Nath C, Patnaik GK, Saxena RC, et al (1997). Evaluation of inhibitory effect of diphenhydramine on benzodiazepine dependence in rats. Indian J Physiol Pharmacol 41: 42-6.
    12. Halpert AG, Olmstead MC, Beninger RJ. (2002) Mechanisms and abuse liability of the anti-histamine dimenhydrinate. Neurosci Biobehav Rev 26: 61-7.
    13. Paxinos G and Watson C. The rat brain in stereotaxic coordinates, 4th ed. San Diego: Academic Press, 1998.
    14. Jin CL, Yang LX, Wu XH, et al (2005). Effects of carnosine on amygdaloid kindled seizures in Sprague-Dawley rats. Neuroscience 135: 939-47.
    15. Doyon WM, York JL, Diaz LM, et al (2003). Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcohol Clin Exp Res 27: 1573-82.
    16. Moore KE, Demarest KT, Lookingland KJ (1987). Stress, prolactin and hypothalamic dopaminergic neurons. Neuropharmacology 26: 801-8.
    17. Mucha RF, van der Kooy D, O'Shaughnessy M, et al (1982). Drug reinforcement studied by the use of place conditioning in rat. Brain Res 243: 91-105.
    18. Suzuki T, Funada M, Narita M, et al (1993). Morphine induced place preference in the CXBK mouse: characteristics of μ-opioid receptor subtypes. Brain Res 602: 45-52.
    19. Huang EY, Liu TC, Tao PL (2003). Co-administration of dextromethorphan with morphine attenuates morphine rewarding effect and related dopamine releases at the nucleus accumbens. Naunyn- Schmiedebergs Arch Pharmacol 368: 386-92.
    20. Bals-Kubik R, Ableitner A, Herz A, et al (1993). Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264: 489-95.
    21. Olmstead MC and Franklin KB (1997). The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. Behav Neurosci 111: 1324-34.
    22. Onodera K, Yamatodani A, Watanabe T, et al (1994). Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioral disoders. Prog Neourobiol 42: 685-702.
    23. Barke KE and Hough LB (1994). Characterization of basal and morphineinduced histamine release in the rat periaqueductal gray. J Neurochem 63: 238-44.
    24. Suzuki T, Takamori K, Misawa M, et al (1995). Effects of the histaminergic system on the morphine-induced conditioned place preference in mice. Brain Res 675: 195-202.
    25. Itzhak Y and Martin JL (2000). Scopolamine inhibits cocaine-conditioned but not unconditioned stimulant effects in mice. Psychopharmacology (Berl) 52: 216-23.
    26. Schroeder JP and Packard MG (2002). Posttraining intra-basolateral amygdale scopolamine impairs food- and amphetamine-induced conditioned place preferences. Behav Neurosci 116: 922-7.
    27. Kamei C and Tasaka K (1993). Effect of histamine on memory retrieval in old rats. Biol Pharm Bull; 16: 128-32.
    28. Huang YW, Chen Z, Hu WW, et al (2003). Facilitating effect of histamine on spatial memory deficits induced by dizocilpine as evaluated by 8-arm radial maze in SD rats. Acta Pharmacol Sin 24: 1270-6.
    29. Wagner U, Weiler HT, Huston JP (1993). Amplification of rewarding hypothalamic stimulation following a unilateral lesion in the region of the tuberomammillary nucleus. Neuroscience 52: 927-32.
    30. Wagner U, Segura-Torres P, Weiler T, et al (1993). The tuberomammillary nucleus region as a reinforcement inhibiting substrate: facilitation of ipsihypothalamic self-stimulation by unilateral ibotenic acid lesions. Brain Res 613:269-74.
    31. Frisch C, Hasenohrl RU, Huston JP (1999). Memory improvement by post-trial injection of lidocaine into the tuberomammillary nucleus, the source of neuronal histamine. Neurobiol Learn Mem 72: 69-77.
    32. Kohler C, Swanson LW, Haglund L, et al (1985). The cytoarchitecture, histochemistry and projections of the tuberomammillary nucleus in the rat. Neuroscience 16: 85-110.
    33. Bannon MJ and Roth RH (1983). Pharmacology of mesocortical dopamine neuron. Pharmacol Rev 35: 53-68.
    34. Fleckenstein AE, Lookingland KJ, Moore KE (1993). Activation of mesolimbic dopaminergic neurons following central administration of histamine is mediated by Hi receptors. Naunyn- Schmiedebergs Arch Pharmacol 347: 50-4.
    35. Chiavegatto S, Nasello AG, Bernardi MM (1998). Histamine and spontaneous motor activity: biphasic changes, receptors involved and participation, of the striatal dopamine system. Life Sci 62: 1875-88.
    36. Huston JP, Wagner U, Hasenohrl RU (1997). The tuberomammillary nucleus projections in the control of learning, memory and reinforcement processes: evidence for an inhibitory role. Behav Brain Res 83: 97-105.
    37. Watanabe T and Yanai K (2001) Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography. Tohoku J Exp Med 195:197-217.
    38. Ohtsu H, Tanaka S, Terui T, et al. (2001). Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett 502:53-6.
    39. Katz RJ and Gormezano GA (1979). A rapid and inexpensive technique for assessing the reinforcing effects of opiate drugs. Pharmacol Biochem Behave 11:213-33.
    40. Cunningham CL, Ferree NK, Howard MA (2003). Apparatus bias and place conditioning with ethanol in mice. Psychopharm acology (Berl) 170:409-22.
    41. Carr GD, Fibiger HC, Phillips AG (1989). Conditioned place preference as a measure of drug reward. In: Liebman, JM CooPer, SJ Eds. The neuropharmacological basis of erward.
    42. Gong YX, Wang HJ, Zhu YP, et al (2007). Carnosine ameliorates morphine-induced conditioned place preference in rats. Neurosci Lett 422:34-8.
    43. Gong YX, Lv M, Zhu YP, et al (2007). Endogenous histamine inhibits the development of morphine-induced conditioned place preference. Acta Pharmacol Sin 28:10-8.
    44. Berke JD and Hyman SE (2000). Addiction, dopamine and the molecular mechanisms of memory. Neuron 25:515-32.
    45. Hyman SE and Malenka RC (2001). Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695-703.
    1. Boening, J. A (2001). Neurobiology of an addiction memory. J Neural Transm, 108:755-65.
    2. Nestler EJ (2001). Neurobiology. Total recall-the memory of addiction. Science 292:2266-7.
    3. Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161-79.
    4. Chastain RL, Lehman WE, Joe GW (1986). Estimated intelligence and long-term outcomes of opioid addicts. Am J Drug Alcohol Abuse 12: 331-40.
    5. Franken IH, Kroon LY, Wiers RW, et al (2000). Selective cognitive processing of drug cues in heroin dependence. J Psychopharmacol 14: 395-400.
    6. Grant S, Contageggi C, London ED (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia 38: 1180-7.
    7. Guerra D, Sole A, Cami J, et al (1987). Neuropsychological performance in opiate addicts after rapid detoxification. Drug Alcohol Depend 20: 261-70.
    8. Lee TM and Pau CW (2002). Impulse control differences between abstinent heroin users and matched controls. Brain Inj 16: 885-9.
    9. Stout PR and Farrell LJ (2002). OpioidsFeffects on human performance and behavior. Forensic Sci Rev 14: 1-14.
    10. Strang J and Gurling H (1989). Computerized tomography and neuropsychological assessment in long-term high-dose heroin addicts. Br J Addict 84:1011-9.
    11. Spain JW and Newsom GC (1991). Chronic opioids impair acquisition of both radial maze and Y maze choice escape. Psychopharmacology 105: 101-6.
    12. Pu L, Bao GB, Xu NJ, et al (2002). Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci 22:1914-21.
    13. Davis M (1992). The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353-75.
    14. Fendt M, Fanselow MS (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23:743-60.
    15. Blanchard RJ and Blanchard DC (1971). Defensive reactions in the albino rats. Learn Motiv 2: 351-62.
    16. Myers KM and Davis M (2002). Behavioral and neural analysis of extinction. Neuron 36:567-84.
    17. Swift RM and Stout RL (1992). The relationship between craving, anxiety and other symptoms in opioid withdrawal. J Subst Abuse 4:19-26.
    18. De Graaf R, Bijl RV, Spijker J, et al (2003). Temporal sequencing of lifetime mood disorders in relation to comorbid anxiety and substance use disorders: findings from the Netherlands Mental Health survey and Incidence Study. Soc Psychiatry Psychiatr Epidemiol 38: 1-11.
    19. Kelly JF, McKellar JD, Moos R (2003). Major depression in patients with substance use disorders: relationship to 12-step self-help involvement and substance use outcomes. Addiction 98: 499-508.
    20. Pezze MA, Feldon J, Murphy CA (2002).Increased conditioned fear response and altered balance of dopamine in the shell and core of the nucleus accumbens during amphetamine withdrawal. Neuropharmacology 42:633-43.
    21. Bertotto ME, Bustos SG, Molina VA, et al (2006). Influence of ethanol withdrawal on fear memory: Effect of D-cycloserine. Neuroscience 142:979-90.
    22. Burke KA, Franz TM, Gugsa N, et al (2006). Prior cocaine exposure disrupts extinction of fear conditioning. Learn Mem 13:416-21.
    23. Haas H and Panula P (2003). The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4: 121-30.
    24. Chen Z, Zhao Q, Sugimoto Y, et al (1999). Effects of histamine on MK-801-induced memory deficits in radial maze performance in rats. Brain Res 839:186-9.
    25. Chen Z, Sugimoto Y, Kamei C (1999). Effects of intracerebroventricular injection of alpha-fluoromethylhistidine on radial maze performance in rats.Pharmacol Biochem Behav 64:513-8.
    26. Chen Z and Kamei C (2000). Facilitating effects of histamine on spatial memory deficit induced by scopolamine in rats. Acta Pharmacol Sin 21:814-8.
    27. Chen Z (2000). Effect of histamine H3-receptor antagonist clobenpropit on spatial memory of radial maze performance in rats. Acta Pharmacol Sin 21:905-10.
    28. Huang YW, Chen Z, Hu WW, et al. (2003). Facilitating effect of histamine on spatial memory deficits induced by dizocilpine as evaluated by 8-arm radial maze in SD rats. Acta Pharmacol Sin 24:1270-6.
    29. Huang YW, Hu WW, Chen Z, et al. (2004). Effect of the histamine H3-antagonist clobenpropit on spatial memory deficits induced by MK-801 as evaluated by radial maze in Sprague-Dawley rats. Behav Brain Res 151:287-93.
    30. Liu L, Zhang S, Zhu Y, et al (2007). Improved learning and memory of contextual fear conditioning and hippocampal CAI long-term potentiation in histidine decarboxylase knock-out mice. Hippocampus 17:634-41.
    31. Gong YX, Wang HJ, Zhu YP, et al (2007). Carnosine ameliorates morphine-induced conditioned place preference in rats. Neurosci Lett 422:34-8.
    32. Gong YX, Lv M, Zhu YP, et al (2007). Endogenous histamine inhibits the development of morphine-induced conditioned place preference. Acta Pharmacol Sin 28:10-8.
    33. Zarrindast MR, Eidi M, Eidi A, et al (2002). Effects of histamine and opioid systems on memory retention of passive avoidance learning in rats. Eur J Pharmacol 452:193-7.
    34. Zarrindast MR, Fazli-Tabaei S, Khalilzadeh A, et al (2005). Cross state-dependent retrieval between histamine and lithium. Physiol Behav 86:154-3.
    35. Zarrindast MR, Khalilzadeh A, Rezayat M, et al (2005). Influence of intracerebrovntricular (i.c.v.) administration of histaminergic drugs on morphine state-dependent memory of passive avoidance in mice. Pharmacology 74:106-12.
    36. Zarrindast MR, Khalilzadeh A, Malekmohammadi N, et al (2006). Influence of morphine- or apomorphine-induced sensitization on histamine state-dependent learning in the step-down passive avoidance test. Behav Brain Res 171:50-5.
    37. Impey S, Obrietan K, Storm DR (1999) Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23:11-4.
    38. Schafe GE, Nadel NV, Sullivan GM, et al (1999) Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn Mem 6:97-110.
    39. Brambilla R, Gnesutta N, Minichiello L, et al (1997) A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390:281-5.
    40. Tronson NC, Schrick C, Fischer A, et al (2007). Regulatory Mechanisms of Fear Extinction and Depression-Like Behavior. Neuropsychopharmacology [Epub ahead of print]
    41. Fischer A, Radulovic M, Schrick C, Sananbenesi F, Godovac-Zimmermann J, Radulovic J, et al (2007). Hippocampal Mek/Erk signaling mediates extinction of contextual freezing behavior. Neurobiol Learn Mem. 87:149-58.
    42. Herry C, Trifilieff P, Micheau J, et al (2006). Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur J Neurosci 24:261-9.
    43. Egashira N, Li JC, Mizuki A, et al. (2006). Antagonistic effects of methanolic extract of Polygala telephioides on morphine responses in mice. J Ethnopharmacol 104:193-8.
    44. Papaleo F and Contarino A (2006). Gender- and morphine dose-linked expression of spontaneous somatic opiate withdrawal in mice. Behav Brain Res 170:110-8.
    45. Good AJ and Westbrook RF (1995). Effects of a microinjection of morphine into the amygdala on the acquisition and expression of conditioned fear and hypoalgesia in rats. Behav Neurosci 109:631-41.
    46. Westbrook RF, Good AJ, Kiernan MJ (1997). Microinjection of morphine into the nucleus accumbens impairs contextual learning in rats. Behav Neurosci 111:996-1013.
    47. Gerlai R (1998). Contextual learning and cue association in fear conditioning in mice: a strain comparison and a lesion study. Behav Brain Res 95:191-203.
    48. Gu C, Li P, Hu B, et al. (2008). Chronic morphine selectively impairs cued fear extinction in rats: implications for anxiety disorders associated with opiate use. Neuropsychopharmacology 33:666-73.
    49. Rogers RD and Robbins TW (2001). Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250-7.
    50. Briand LA, Robinson TE, Maren S (2007). Enhancement of auditory fear conditioning after housing in a complex environment is attenuated by prior treatment with amphetamine. Learn Mem 12:553-6.
    51. Suzuki WA (2006). Encoding new episodes and making them stick. Neuron 50: 19-21.
    52. Frohardt RJ, Guarraci FA, Bouton ME (2000). The effects of neurotoxic hippocampal lesions on two effects of context after fear extinction. Behav. Neurosci. 114:227-40.
    53. Harriosn JM, Allen RG, Pellegrino MJ, et al (2002). Chronic morphine treatment alters endogenous opioid control of hippocampal mossy fiber synaptic transmission. J Neurophysiol 87: 2464-70.
    54. Ito Y, Tabata K, Makimura M, et al (2001). Acute and chronic intracerebroventricular morphine infusions affect long-term potentiation differently in the lateral perforant path. Pharmacol Biochem Behav 70: 353-58.
    55. Velisek L, Stanton PK, Moshe SI, et al (2000). Prenatal morphine exposure enhances seizure susceptibility but suppresses long-term potentiation in the limbic system of adult male rats. Brain Res 869: 186-93.
    56. Doyle D, Holscher C, Rowan MJ, et al (1996). The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal area CAI in vivo. J Neurosci 16: 418-24.
    57. Maren S (1998). Effects of 7-nitroindazole, a neuronal nitric oxide synthase nNOS inhibitor, on locomotor activity and contextual fear conditioning in rats. Brain Res 804:155-58.
    58. Wiltgen BJ, Sanders MJ, Anagnostaras SG, et al (2006). Context fear learning in the absence of the hippocampus. J Neurosci 26:5484-91.
    59. Maren S, Aharonov G, Fanselow MS (1997). Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 88:261-74.
    60. Dai H, Kaneko K, Kato H, et al. (2007). Selective cognitive dysfunction in mice lacking histamine H_1 and H_2 receptors. Neurosci Res 57:306-33.
    61. Iwabuchi K, Kubota Y, Ito C, et al (2004). Methamphetamine and brain histamine: a study using histamine-related gene knockout mice. Ann N Y Acad Sci 1025:129-34.
    62. Coogan AN, O'Leary DM, O'Connor JJ (1999). P42/44 MAP Kinase inhibitor PD98059 attenuates multiple forms of synaptic plasticity in rat dentate gyrus in vitro. J Neurophysiol 81:103-10.
    63. Huang YY, Martin KC, Kandel ER (2000). Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 20:6317-25.
    64. Thomas GM and Huganir RL (2004). MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173-83.
    65. Barad M, Gean PW, Lutz B (2006). The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60: 322-8.
    66. Quirk GJ, Garcia R, Gonza'lez-Lima F (2006). Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 60: 337-43.
    67. Quirk GJ, Russo GK, Barron JL, et al (2000). The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20: 6225-31.
    68. Sotres-Bayon F, Cain CK, LeDoux JE (2006). Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 60: 329-36.
    69. Lu KT, Walker DL, Davis M (2001). Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J Neurosci 21:RC1621-5
    70. Hugues S, Chessel A, Lena I, et al (2006). Prefrontal infusion of PD098059 immediately after fear extinction training blocks extinction-associated prefrontal synaptic plasticity and decreases prefrontal ERK2 phosphorylation. Synapse 60:280-7
    71. Rudy JW, Kuwagama K, Pugh CR (1999). Isolation reduces contextual but not auditory-cue fear conditioning: a role for endogenous opioids. Behav Neurosci 113:316-23.
    72. Berman DE and Dudai Y (2001). Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291:2417-9.
    73. Holscher C, McGlinchey L, Anwyl R, et al (1996). 7-Nitro indazole, a selective neuronal nitric oxide synthase inhibitor in vivo, impairs spatial learning in the rat. Learn Mem 2:267-78.
    74. Eisch AJ, Barrot M, Schad CA, et al (2000). Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci USA 97:7579-84.
    75. Rogers RD and Robbins TW (2003). The neuropsychology of chronic drug abuse. In MA Ron & TW Robbins (Eds), Disorders of brain and mind. Cambridge: Cambridge University Press.
    76. Volkow ND, Fowler JS, Wang GJ (2003). The addicted human brain: Insights from imaging studies. J Clin Invest 111:1444-51.
    77. Volkow ND, Fowler JS, Wang GJ (2004). The addicted human brain viewed in the light of imaging studies: Brain circuits and treatment strategies. Neuropharmacology 47:3-13.
    78. el Kadi AO and Sharif SI (1996). The role of histaminergic-noradrenergic axis in naloxone-induced withdrawal symptoms in mice. Pharmacol Biochem Behav 55:49-54.
    1. Blanchard RJ, Yudko EB, Rodgers RJ, et al (1993). Defense system psychopharmacology: an ethological approach to the pharmacology of fear and anxiety. Behav Brain Res 58:155-65.
    2. LeDoux JE (2002). Synaptic Self. How Our Brains Become Who We Are. Penguin Books, New York.
    3. Kent JM and Rauch SL (2003). Neurocircuitry of anxiety disorders. Curr Psychiatry Rep 5:266-73.
    4. Millan M (2003). The neurobiology and control of anxious states. Prog Neurobiol 70: 183-244.
    5. Uys JD, Stein DJ, DanielsWM, et al (2003). Animal models of anxiety disorders. Curr Psychiatry Rep 5:274-81.
    6. Marlatt GA and Gordon JR (1985). Relapse Prevention. Guildford Press, New York.
    7. Sato M (1992). A lasting vulnerability to psychosis in patients with previous methamphetamine psychosis. Ann N Y Acad Sci 654:160-70.
    8. Finlay JM and Zigmond MJ (1997). The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochem Res 22:1387-94.
    9. Sinha R, Catapano D, O'Malley S (1999). Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacology 142:343-51.
    10. Fanselow MS (1980). Conditioned and unconditional components of postshock freezing. Pavlov. J Biol Sci 15:177-82.
    11. Fanselow MS and Helmstetter FJ (1988). Conditional analgesia, defensive freezing, and benzodiazepines. Behav Neurosci 102:233-43.
    12. Richmond MA, Murphy CA, Pouzet B, et al (1998). A computer controlled analysis of freezing behavior. J Neurosci Methods 86:91-99.
    13. Watson JB and Rayner P (1920). Conditioned emotional reactions. J Exp Psychol 3:1-14.
    14. Wolpe J and Rowan VC (1988). Panic disorder: a product of classical conditioning. Behav Res Ther 26:441-50.
    15. Wolpe J (1969). The Practice of Behavior Therapy 1st edn. Pergamon Press; 1969.
    16. Jones MC (1924). A laboratory study of fear: the case of Peter. Pedagogical Seminary 31:308-15.
    17. Craske MG (1999) Anxiety Disorders: Psychological Approaches to Theory and Treatment. Westview Press.
    18. Kitazawa S (2002). Ready to unlearn. Nature 416:270-3.
    19. Pavlov IP (1927). Conditioned Reflexes. London: Oxford University Press.
    20. McAllister WR, McAllister DE, Scoles MT, et al (1986). Persistence of fear-reducing behavior: Relevance for the conditioning theory of neurosis. J Abnorm Psychol 95:365-72.
    21. Rescorla RA and Wagner AR (1972). A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning II: Current Research and Theory, A. Black and W.F. Prokasy, eds. New York: Appleton-Century-Crofts. pp. 64-99.
    22. Wagner AR and Rescorla RA (1972). Inhibition and learning. In Inhibition in Pavlovian Conditioning, RA Boakes and MS Halliday, eds. London: Academic Press.
    23. Robbins SJ (1990). Mechanisms underlying spontaneous recovery in autoshaping. J. Exp. Psychol. Anim Behav Process 16:235-49.
    24. Bouton ME and Bolles RC (1979). Contextual control of the extinction of conditioned fear. Learn. Motiv. 10:455-66.
    25. Rodriguez BI, Craske MG, Mineka S, et al (1999). Context-specificity of relapse: effects of therapist and environmental context on return of fear. Behav Res Ther 37:845-62.
    26. Rescorla RA and Heth CD (1975). Reinstatement of fear to an extinguished conditioned stimulus. J Exp Psychol Anim Behav Process 1:88-96.
    27. Bouton ME and Bolles RC (1979). Role of contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim Behav Process 5:368-78.
    28. Bouton ME (1993). Context, time and memory retrieval in the interference paradigms of Pavlovian conditioning. Psychol Bull 114:80-99.
    29. Wagner AR (1981). SOP: a model of automatic memory processing in animal behavior. In Information Processing in Animals: Memory Mechanisms, N.E. Spear and R.R. Miller, eds. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 5-47.
    30. Weinberger NM (1998). Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiol Learn Mem 70:226-51.
    31. Diamond DM and Weinberger NM (1986). Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Res 372: 357-60.
    32. Gassanov UG, Merzhanova GK, Galashina AG (1985). Interneuronal relations within and between cortical areas during conditioning in cats. Behav Brain Res 15:137-46.
    33. Brons JF and Woody CD (1980). Long-term changes in excitabil ity of cortical neurons after Pavlovian conditioning and extinction. J Neurosci Physiol 44:605-15.
    34. Quirk GJ, Armony JL, LeDoux JE (1997). Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19:613-24.
    35. Armony JL, Quirk GJ, LeDoux JE (1998). Differential effects amygdala lesions on early and late plastic components of auditory cortex spike trains during fear conditioning. J Neurosci 18:2592-601.
    36. LeDoux JE, Romanski L, Xagoraris A (1989). Indelibility of subcortical memories. J Cogn Neurosci 1:238-43.
    37. Teich AH, McCabe PM, Gentile CC, et al. (1989). Auditory cortex lesions prevent the extinction of heart rate conditioning to tonal stimuli in rabbits. Brain Res 480:210-8.
    38. Butter CM, Mishkin M, Rosvold HE (1963). Conditioning and extinction of a food-rewarded response after selective ablation of frontal cortex in rhesus monkeys. Exp Neurol 7:65-75.
    39. Sotres-Bayon F, Cain CK, LeDoux JE (2006). Brain mechanisms of fear extinction: Historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 60:329 -36.
    40. Morgan MA, Romanski LM, LeDoux JE (1993). Extinction of emotional learning: Contribution of medial prefrontal cortex. Neurosci Lett 163:109-13.
    41. Morgan MA and LeDoux JE (1995). Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 109:681- 8.
    42. Quirk GJ, Russo GK, Barron JL, et al (2000). The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20:6225-31.
    43. Milad MR and Quirk GJ (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70 -4.
    44. Quirk GJ, Repa C, LeDoux JE (1995). Fear conditioning enhances short latency auditory responses of lateral amygdala neurons: Parallel recordings in the freely behaving rat. Neuron 15:1029 -39.
    45. Rogan MT, Staubli UV, LeDoux JE (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604-7.
    46. Knight DC, Smith CN, Cheng DT, et al (2004). Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn Affect Behav Neurosci 4:317-25.
    47. Phelps EA, Delgado MR, Nearing KI, et al (2004). Extinction learning in humans: Role of the amygdala and vmPFC. Neuron 43:897-905.
    48. Wilson A, Brooks DC, Bouton ME (1995). The role of the rat hippocampal system in several effects of context in extinction. Behav Neurosci 109:828- 36.
    49. Frohardt RJ, Guarraci FA, Bouton ME (2000). The effects of neurotoxic hippocampal lesions on two effects of context after fear extinction. Behav Neurosci 114:227-40.
    50. Walker DL and Davis M (2002). The role of glutamate receptors within the amygdala in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 71:379-92.
    51. Kullmann DM, Asztely F, Walker MC (2000). The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD, and epilepsy. Cell Mol Life Sci 57:1551-61.
    52. Watkins JC and Collingridge GL (1989). The NMDA Receptor. New York: Oxford University Press.
    53. Falls WA, Miserendino MJD, Davis M (1992). Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 12:854-63.
    54. Walker DL, Ressler KJ, Lu KT, et al (2002). Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear potentiated startle in rats. J Neurosci 22:2343-51.
    55. Tang YP, Shimizu E, Dube GR, et al. (1999). Genetic enhancement of learning and memory in mice. Nature 401:63-9.
    56. Weisskopf M, Bauer EP, LeDoux JE (1999). L-type voltagegated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci 19 RC48.
    57. Cain C, Blouin A, Barad MG (2002). L-type voltage-gated calcium channels are required for extinction, but not for acquisition or expression, of conditional fear in mice. J Neurosci 22:9113-21.
    58. McGaugh JL, Castellano C, Brioni J (1990). Picrotoxin enhances latent extinction of conditioned fear. Behav Neurosci 104:264-7.
    59. Harris JA and Westbrook RF (1998). Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology (Berl.) 140:105-15.
    60. Cahill L and McGaugh JL (1996). Modulation of memory storage. Curr Opin Neurobiol 6:237-42.
    61. McGaugh JL (2000). Memory: a century of consolidation. Science 287:248-251.
    62. Cain CK, Blouin AM, Barad M (2004). Adrenergic transmission facilitates extinction of conditional fear in mice. Learn Mem 11:179-87.
    63. Berman DE and Dudai Y (2001). Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291:2417-19.
    64. Williams GV and Goldman-Rakic PS (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572-5.
    65. Greba Q and Kokkinidis L (2000). Peripheral and intraamygdalar administration of the dopamine D1 receptor antagonist SCH 23390 blocks fear-potentiated startle but not shock reactivity or the shock sensitization of acoustic startle. Behav Neurosci 114:262-72.
    66. Borowski TB and Kokkinidis L (1996). Contribution of ventral tegmental area dopamine neurons to expression of conditioned fear: effects of electrical stimulation, excitotoxin lesions, and quinpirole infusion on potentiated startle in rats. Behav Neurosci 110:1349-64.
    67. Borowski TB and Kokkinidis L (1994). Cocaine preexposure sensitizes conditioned fear in a potentiated acoustic startle paradigm. Pharmacol. Biochem Behav 49:935-42.
    68. Willick ML and Kokkinidis L (1995). Cocaine enhances the expression of fear-potentiated startle: Evaluation of state-dependent extinction and the shock-sensitization of acoustic startle. Behav Neurosci 109:929-38.
    69. Borowski TB and Kokkinidis L (1998). The effects of cocaine, amphetamine, and the dopamine Dl receptor agonist SKF 38393 on fear extinction as measured with potentiated startle: Implications for psychomotor stimulant psychosis. Behav Neurosci 112:952-65.
    70. E1-Ghundi M, O'Dowd BF, George SR (2001). Prolonged fear responses in mice lacking dopamine Dl receptor. Brain Res 892:86-93.
    71. Gallagher M and Colombo PJ (1995). Aging and the cholinergic hypothesis of cognitive decline. Curr Opin Neurobiol 5:161-8.
    72. Han JS, Holland PC, Gallagher M (1999). Disconnection of the amygdala central nucleus and substantia innominata/nucleus basalis disrupts increments in conditioned stimulus processing in rats. Behav Neurosci 113:143-51.
    73. Prado-Alcala RA, Haiek M, Rivas S, et al (1994). Reversal of extinction by scopolamine. Physiol Behav 56:27-30.
    74. Roldan G, Cobos-Zapiain G, Quirarte GL, et al (2001). Dose - and time -dependent scopolamine-induced recovery of an inhibitory avoidance response after its extinction in rats. Behav Brain Res 121:173-9.
    75. Marsicano G, Wotjak CT, Azad SC, et al. (2002). The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530-4.
    76. Dudai Y (2002). Molecular bases of long-term memories: a question of persistence. Curr Opin Neurobiol 12:211-6.
    77. Schafe GE, Nader K, Blair HT, et al (2001). Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci 24:540-6.
    78. Lu KT, Walker DL, Davis M. (2001). Mitogen-activated protein kinase cascade in the basolateral nucleus of the amygdala is involved in extinction of fear-potentiated startle. J Neurosci 21:RC162.
    79. Szapiro G, Vianna MR, McGaugh JL, et al (2003). The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus 13:53-8.
    80. Berke JD and Hyman SE (2000). Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515-32.
    81. Nestler EJ (2001). Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:215-28.
    82. Hyman SE and Malenka RC (2001). Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695-703.
    83. Everitt BJ, Dickinson A, Robbins TW (2001). The neuropsychological basis of addictive behaviour. Brain Res. Brain Res Rev 36: 129-38.
    84. Robinson TE, Gorny G, Mitton E, et al (2001). Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39: 257-66
    85. Vanderschuren LJ and Kalivas PW (2000). Alterations in dopaminergic and glutaminergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies. Psychopharmacology 151: 99-120.
    86. Burke KA, Franz TM, Gugsa N, et al (2006). Prior cocaine exposure disrupts extinction of fear conditioning. Learn Mem 13:416-21.
    87. Kim J, Lee S, Park K, et al. (2007) Amygdala depotentiation and fear extinction. Proc Natl Acad Sci 104:20955-60.
    88. Kim JJ and Jung MW (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 30:188-202.
    89. Quirk GJ and Mueller D (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56-72.
    90. Lattal KM (2007).Effects of ethanol on encoding, consolidation, and expression of extinction following contextual fear conditioning. Behav Neurosci 121:1280-92.
    91. Bertotto ME, Bustos SG, Molina VA, et al (2006). Influence of ethanol withdrawal on fear memory: Effect of D-cycloserine. Neuroscience 142:979-90.
    92. Gu C, Li P, Hu B, et al. (2008). Chronic morphine selectively impairs cued fear extinction in rats: implications for anxiety disorders associated with opiate use. Neuropsychopharmacology 33:666-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700