用户名: 密码: 验证码:
型材多点弯曲中的成形缺陷及其抑制方法的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多点成形是将传统模具离散为规则排列的、高度可调的基本体群,并通过控制基本体的相对位置,使基本体冲头构造出所需的包络面对坯料进行曲面成形。与传统模具成形相比,多点成形节约了大量制造模具的时间和费用,实现了一机多用的设想。多点成形作为一种新颖的柔性成形工艺已被广泛应用于工业生产领域。随着当今社会现代化的不断发展,在各行各业中,节约能源已被公认为是现代企业生存的基础。所以,在飞机、汽车和轮船等制造业中,人们越来越重视轻量化结构设计。在轻量化结构设计中,往往采用一种框架式结构,而型材弯曲类零件不仅具有轻量化的结构,同时还能满足较高的刚度要求,具有广泛的应用前景。因此,型材弯曲工艺成为当今材料加工领域的研究热点之一。
     型材多点弯曲成形工艺将多点成形与型材成形相结合,利用多点成形压力机的柔性特点,实现型材弯曲类零件的柔性化和高效性成形,特别适用于生产多品种、中小批量的产品以及研制开发新产品,同时也拓宽了多点成形技术的应用范围。随着计算机技术和有限元数值模拟技术的不断发展,数值模拟技术已成为型材弯曲研究的重要方法之一。本文利用有限元数值模拟技术全面系统地分析型材多点弯曲成形中工艺参数对成形件的影响规律,探讨成形过程中的变形特点,采用三维测量仪对制件进行检测,对比分析模拟结果和实验结果,并探寻抑制及消除成形缺陷的有效方法。
     本文研究的主要内容和结论总结如下:
     1.研究建立型材多点弯曲成形工艺的有限元模型
     在板材多点成形数值模拟的基础上,提出了型材多点弯曲成形工艺,探讨了冲头与型材的相对位置,对冲头结构进行了改进,编制了型材多点弯曲成形的基本体调形程序,探讨了型材多点弯曲成形方式,建立了型材多点弯曲成形过程的有限元模型,实现了型材多点弯曲成形过程的数值模拟,得到了压痕、截面畸变和回弹等缺陷的有限元模拟结果。
     2.基于有限元方法研究板管多点成形中的压痕
     压痕是多点成形所特有的成形缺陷。本文分析了多点成形中压痕的产生机理以及压痕的类型。以一个新的材料本构关系为基础,对微型板多点成形进行了模拟分析,探讨了尺寸效应对成形件表面质量的影响,得到了板材厚度、晶粒尺寸和冲头尺寸对表面质量的影响规律。对管材多点弯曲成形过程进行了数值模拟,通过分析模拟结果,探讨了变形程度、管壁厚度和管材直径等工艺参数对压痕的影响。分析结果表明:变形程度越小,管壁厚度越大,管材直径越小时成形件的压痕越不明显;反之,则成形件的压痕越明显。利用实验室现有成形设备对管材多点弯曲成形中的压痕进行了验证,实验结果与模拟结果基本吻合。为了抑制压痕的产生,提高成形件的表面质量,提出了采用添加弹性介质的方法增大接触面积,分析了弹性介质的材质、厚度和成形过程中其压缩量对压痕的影响规律。
     3.采用数值模拟方法研究管材多点弯曲成形中的截面畸变
     截面畸变是型材弯曲成形中特有的成形缺陷。本文分析了截面畸变的形成机理,并定义了截面畸变率作为衡量截面变形程度的标准,对无弹性介质条件下管材多点弯曲成形的截面变形进行了数值模拟研究,分析了几种工艺参数对截面畸变的影响规律。获得了管壁厚度、管材直径和变形程度与截面畸变率的变化规律。研究结果表明:随着管壁厚度和目标曲率半径的减小,截面畸变率增大,而管材直径越大,截面畸变率也越大。同时,提出了填充液体对管壁施加一个支撑力的方法,抑制管材截面畸变;在模拟时,用均布压强代替填充液体对管壁的支撑,分析了不同均布压强和不同弹性介质压缩量条件下端部截面畸变率的情况;根据端部截面变形的程度,给出了工艺改进前后管材直径与最小弯曲半径之间的关系。
     4.角型材多点弯曲成形过程的研究
     简述了角型材多点弯曲方式,分析了不同弯曲方式下角型材的变形过程和受力情况。模拟了不同截面尺寸、不同材料参数和不同变形程度的角型材多点弯曲成形过程,通过分析模拟结果,得到了不同工艺参数对弦板侧向移动量和扭转角的影响规律。总结了不同截面尺寸、不同材料参数和不同目标曲率半径对成形件精度影响的变化规律。根据这些曲线,可以确定弦板侧向移动量和扭转角随不同工艺参数变化而改变的趋势。为了提高角型材多点弯曲成形件的精度,提出了采用两个角型材同时成形的对称成形法来抑制弦板的侧向移动和扭转,并进行了数值模拟和成形实验,证明了对称成形法的成形效果和可行性。同时,基于平截面和单向应力等假设条件,分析了角型材多点弯曲成形中的成形力,从弹塑性力学和有限元接触分析角度推导了成形力的计算方法,并通过分析模拟结果获得了几种因素对成形力的影响规律,即随着弦板与腹板的比值和成形件变形程度的增大,所需成形力增大;收边弯曲时所需成形力大于放边弯曲时所需成形力;对称成形时的成形力大于单独成形时成形力的2倍。
     5.研究型材的回弹及其抑制方法
     研究了型材弯曲后产生回弹的原因,分析了回弹后成形件中应力的分布规律;根据型材回弹前后的平均曲率,得到了成形件回弹量的计算公式;探讨了采用显式-隐式算法进行回弹分析的可行性。对管材和角型材的弯曲回弹进行了系统的数值模拟研究,分析了型材厚度、截面尺寸和变形程度对成形件回弹量的影响规律。归纳了不同工艺参数与回弹量的变化规律。研究结果表明:型材厚度越大、截面尺寸越大,目标曲率半径越小时,回弹量越小。并进行了管材多点弯曲成形和回弹实验,通过对比实验结果和模拟结果,验证了管材弯曲回弹分析模型的可靠性。提出了采用反复成形法抑制回弹,简述了反复成形法的基本思路和具体的实现步骤。通过数值模拟获得了补偿量对成形曲率的影响规律,对不同补偿量下成形件的精度进行了分析,研究结果表明:补偿量与回弹后的曲率半径成反比;随着补偿量的增加,成形误差减小。实现了动态显式算法与静态隐式算法的相互转化;完成了型材反复弯曲成形过程的数值模拟。在补偿量一定的条件下,分析了反复成形次数对成形件精度的影响,研究结果表明:随着反复成形次数的增加,成形误差逐渐减小,成形件形状越来越接近目标形状。
Multi-point forming (MPF) is a flexible forming technology for 3-D surface parts. Its basic idea is to make the traditional die discrete, using the ordered and height adjustable elements instead of the traditional die, which make punches formed the required envelope surface by controlling the relative displacements of elements. Compared with the traditional die forming, MPF can save a lot of time and cost in manufacturing die and achieve a plan that is one machine can have several usages. As a new-style flexible forming process, MPF has been widely applied to the industrial production. With the development of modernization in current society, energy conservation is publicly known as the survival foundation for modern enterprises. Therefore, in the manufacture, such as aircraft, automobile and shipbuilding, people pay more and more attention to the structural design of lightweight in which a kind of frame style structure is usually adopted. While the bending parts of profile not only have the lightweight structure, but also can satisfy the requirement of higher stiffness, therefore, they will have an extensive future. For this reason, the bending process of profile has become one of hot topics in the material processing field.
     The multi-point bending process of profile combines MPF with profile forming, using the flexible features of MPF press to realize the flexible and efficient forming for the bending parts of profile. It is particularly suitable for producing the multi-item and small-lot products and developing new products, meanwhile, it also widens the application of MPF technology. With the further development of computer technology and finite element method, the technology of numerical simulation has become one of the important methods for studying the profile bending. In this paper, finite element method was utilized to analyze the influence of the technological parameter on formed parts in profile multi-point bending, discussing the deformation characters during the forming process, detecting formed parts by a 3-D measuring instrument, comparing simulation results with experimental results and seeking the effectiveness method to suppress and remove the forming defects.
     The main contents and conclusions are as follows:
     1. Study on building the finite element model of multi-point bending process for profile
     Based on the numerical simulation of MPF for sheet, the multi-point bending process of profile was put forward, and the relative positions between the punch and the profile were discussed. The punch was carried out the optimal selection. The element adjustment program of the multi-point bending process for profile was compiled. The forming mode of profile multi-point bending was discussed. The finite element model of multi-point bending for profile was built. The numerical simulation of the process of multi-point bending for profile was achieved, obtaining the defects from the results of finite element simulation, such as dimple, cross-section distortion and springback.
     2. Based on the finite element method, study the dimple in sheet and tube multi-point forming
     Dimple is a particular forming defect in the process of MPF. In this paper, the reasons for dimples on formed parts and the types of dimples were analyzed in MPF. Based on a new material constitutive relation, simulation analysis of the micro multi-point sheet forming was carried out, discussing the influence of size effect on the surface quality of formed parts and obtaining the influence rules of sheet thickness, grain size and punch size on surface quality. Meanwhile, the numerical simulation of the process of tube multi-point bending was carried out. By analyzing the results of numerical simulation, the influence of the technological parameters, including deformation degree, the thickness of tube wall and tube diameter, on dimple was discussed. The results show that when the deformation degree is smaller, the tube wall is thicker and the tube diameter is smaller, then the dimple of formed parts is not obvious; on the contrary, the dimple of formed parts is obvious. With the forming device in my lab, the simulation results of tube multi-point bending, which are nearly the same as the experimental results, were verified. In order to suppress dimpling and improve the surface quality of formed parts, a method that is to use an elastic medium to increase the contact area was put forward. The influence rule of the material and thickness of elastic medium and its decrement in forming process on dimple was analyzed.
     3. Research on the cross-section distortion in tube multi-point bending by using numerical simulation method
     Cross-section distortion is a special forming defect in profile bending forming. In this paper, the reasons for cross-section distortion were analyzed and the cross-section distortion rate was defined as the criterion to measure the deformation degree of cross-section. Without elastic medium, the cross-section deformation of tube multi-point bending was simulated, which analyzed the influence rule of several forming parameters on cross-section distortion. The change rule between the cross-section distortion rate and the parameters which include the thickness of tube wall, tube diameter and deformation degree was obtained. The results show that the cross-section distortion rate increases as the thickness of tube wall and the target curvature radius decreases, while the cross-section distortion rate increases as the tube diameter increases. Meanwhile, a method, which is to fill the tube with liquid to support tube wall, was put forward to suppress the cross-section distortion of tube, but in the simulation, the liquid was replaced by the uniform pressure, and the edge cross-section distortion rate was analyzed under different uniform pressure and different elastic medium decrements. According to the deformation degree of the edge cross-section, the relationship between the tube diameter and the minimum bending radius was given before and after improving technology.
     4. Research on the process of multi-point bending for angle profile
     Recounted the multi-point bending modes of angle profile simply, the deformed process and the forced situation were analyzed under different bending modes. The process of multi-point bending for angle profile was simulated under different cross-section dimensions, material parameters and deformation degrees and the influence of different technological parameters on the lateral movement value and torsional angle of boom plate was obtained by analyzing simulation results. The change rules which describes the influence of different cross-section dimensions, material parameters and target curvature radii on the precision of formed parts was concluded. According to these curves, the variation tendency of the lateral movement value and torsional angle of boom plate can be determined as the technological parameter changed. In order to improve the precision of formed parts in multi-point bending for angle profile, the symmetrical forming method which made two angle profiles formed simultaneously was put forward to suppress the lateral movement value and torsion of boom plate. According to the numerical simulation and forming experiment, the effectiveness and feasibility of the symmetrical forming method were verified. At the same time, based on the section assumption and the uniaxial stress assumption, the forming force in multi-point bending for angle profile was analyzed and the computing method of forming force was deduced from the view of the elastic-plastic mechanics and the finite element contact analysis. The influence rules of several factors on forming force was obtained by analyzing simulation results, that is, the required forming force increases as the rate of boom plate to web plate and the deformation degree of formed parts increases; the required forming force in“flange in”bending is larger than that in“flange out”bending; the forming force in symmetrical forming is more than twice as large as that in separate forming.
     5. Study on springback and its suppression method for profile
     The causes for generating springback were studied after bending profile and the distribution rule of stress in the formed parts of profile was analyzed after springback. According to the average curvature of profile before and after springback, the computing formula of springback amount of formed parts was deduced. The feasibility, with the explicit-standard algorithm to carry out the analysis of springback, was discussed. The process of the bending springback for tube and angle profile was simulated systematically and the influence rule of the thickness of profile, cross-section dimension and deformation degree on springback amount of formed parts was analyzed. The change rule between different technological parameters and springback amount was concluded. It results that when the thickness of profile and the cross-section dimension are larger and the target curvature radius is smaller, then the springback amount is smaller. The forming and springback experiments of tube multi-point bending were carried out. The precision of springback analysis model for tube bending parts was verified by comparing the experimental results with the simulation results. The reiterative forming method was put forward to reduce springback, and the basic ideas and concrete step of reiterative forming process were given. The effect of the compensation quantity on the forming curvature was obtained by numerical simulation, and the precision of formed parts was analyzed under different compensation quantities. It results that the compensation quantity is inversely proportional to the curvature radius after springback; the forming error decreases gradually as the compensation quantity increases. The mutual transformation between the explicit results and the standard results was realized, and the numerical simulation of reiterative bending process for profile was achieved. With a fixed compensation quantity, the influence of reiterative forming time on the precision of formed parts was analyzed. It results that the forming error gradually decreases as the reiterative forming time increases, and the shape of formed parts is more and more close to the target shape.
引文
[1]野本敏治.多点フしス法にとゐ船体外板の曲げ加工に关すゐ基础的研究[J].日本造船学会论文集第170号,1991,587~598.
    [2] M.Z. Li,Z.Y. Cai,Z. Sui. Multi-point forming technology for sheet metal[J]. Journal of Materials Processing Technology,2002,129:333~338.
    [3]中岛尚正.针金束を用いた金型?电极の研究[J].日本机械学会志,昭和44年4月,72(603):32~40.
    [4]北野广雄.钢板曲げ加工用万能调整式プレス机械の研究[D].日本:京都大学,昭和36年1月.
    [5]西冈富仁雄等.ユニバサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第一报基础の研究)[J].日本造船学会论文集,昭和47年10月,(132):481~501.
    [6]西冈富仁雄等.ユニバサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第二报实用化研究)[J].日本造船学会论文集,昭和48年5月,(133):291~305.
    [7]世古成道,熊本盛秀等.三条プレスの开发[J].三菱重工技报,1976,13(6):64~72.
    [8] Yasuhiro Iwasaki,Hiroshi Shifa,Yoshiharu Taura.Forming of the Three-Dimensional Surface with a Triple-Row-Press[J].Advanced Technology of Plasticity,1984:483~488.
    [9]井关日出男等.由柔性工具进行局部成形的方法[C].日本第42回塑性加工联合讲演会论文集,1991:265~266.
    [10]井关日出男,加腾和典等.通过柔性工具进行逐次成形的方法[C].平成4年度塑性加工春季讲演会论文集,1992:527~530.
    [11]大冢守三等.多点成形法にょる船体外板の曲げ加工[C].平成8年度塑性加工春季讲演会论文集,1996:512~513.
    [12] David E.Hardt,David C.Gossard.A Variable Geometry Die for Sheet Metal Forming:Machine Design and Control[C].Proc.Jt.Autom.Control Conf.,1980:366~367.
    [13] David E.Hardt,B.A.Olsen,B.T.Allison,K.Pasch.Sheet Metal Forming with Discrete Die Surface[C].Proc:9th NAMRC,1981:275~280.
    [14] David E.Hardt,R.Davis Webb.Sheet Metal Die Forming Using Closed-Loop Shape Control[J].Annals of the CIRP,1982,31:165~169.
    [15] David E.Hardt,M.A.Roberts,K.A.Stelson.Closed-Loop Shape Control of A Roll-Bending Process[C].Trans.of ASME,Journal of Dynamic System Measurement and Control,1982,104(4):317~322.
    [16] David E.Hardt,B.chen.Control of A Sequential Brakeforming Process[J].Control Manuf.:Process Rob.Syst,1983:246~253.
    [17] David E. Hardt , R . Davis Webb . Closed-Loop Control of Three-Dimensional Sheet Forming[J].Comput.-Based Fact.Autom,1984:381~387.
    [18] Michael Hale , David E. Hardt . Dynamic Analysis and Control of a Roll Bending Process[C].Proc.Am.Control Conf.,1986(1):578~586
    [19] R.D.Webb,David E.Hardt.A Transfer Function Description of Sheet Metal Forming for Process Control[J].Journal of Engineering for Industry,1991,113:44~52.
    [20] David E.Hardt,Mary C.Boyce,Karl B.Ouster hout.A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts[J].Comput.-Based Fact.Autom,1993,69~76.
    [21] D.F.Walczyk,David E.Hardt.Design and Analysis of Reconfigurable Discrete Dies for Sheet Metal Forming[J].Journal of Manufacturing System,1998,17(6):436~454.
    [22] Edwin Haas,Robert C. Schwarz,John M. Papazian.Design and Test of a Reconfigurable Forming Die[J].Journal of Manufacturing Processes,2002,4(1):77~85.
    [23] M. Yasar,Z. Kormaz,M. Gavas.Forming Sheet Metals by Means of Multi-point Deep Drawing Method[J].Journal of Materials and Design,2007,28:2647~2653.
    [24] Se Yun Hwang,Jang Hyun Lee,Yong Sik Yang,Mi Ji Yoo.Springback Adjustment for Multi-point Forming of Thick Plates in Shipbuilding[J]. Computer-Aided Design,2010,42(11):1001~1012.
    [25]中村敬一,李明哲.油压式多点プレス实验装置の试作(板材多点成形法の研究第2报)[C].平成4年度日本塑性加工春季讲演会论文集,1992:523~526.
    [26]李明哲,中村敬一.多点成形における不良现象の发生及ぴその抑制(板材多点成形法の研究第3报)[C].第43回日本塑性加工联合讲演会论文集,1992:425~428.
    [27]中村敬一,李明哲.ねじれ形状の多点成形に关する实验的检讨(板材多点成形法の研究第4报)[C].第43回日本塑性加工联合讲演会论文集,1992:429~432.
    [28]岛昭夫,中村敬一,李明哲.ねじれ形状に对应した多点プレス成形CAD/CAMシステムの开发(板材多点成形法の研究第5报)[C].第45回日本塑性加工联合讲演会论文集,1994:335~338.
    [29]中村敬一,岛昭夫,李明哲.多点プレス成形装置の开发(板材多点成形法の研究第6报)[C].第45回日本塑性加工联合讲演会论文集,1994:339~342.
    [30]李明哲,赵晓江等.球形曲面多点分段成形实验研究[J].塑性工程学报,1996,3(4):19~26.
    [31]李明哲,赵晓江等.板材二维曲面多点分段成形实验研究[J].农业机械学报,1997,28(1):123~126.
    [32]李明哲,赵晓江等.多点分段成形中的几种成形方法[J].中国机械工程,1997,8(1):87~90.
    [33]李明哲,苏世忠,李广权.金属板材无模多点成形专用CAD/CAM/CAT软件的开发[J].中国机械工程,1997,8(3):298~342.
    [34] Li Mingzhe,LiuYuhong,et al.Multi-Point Forming:A Flexible Manufacturing Method for a 3-D Surface Sheet[J].Journal of Materials Processing Technology,1999,87:277~280.
    [35] Li Mingzhe,Liu Chunguo,Chen Qingmin.Research on Multi-point Forming of Three-DimensionalSheet Metal Parts[C].6th International Conference on Technology of Plasticity,Nuremberg,Germany,1999,1:189~194.
    [36] Li Mingzhe,Liu Chunguo,Cai Zhongyi.A Dieless Forming Technique for Sheet Metal[C].1999 International Conference on Science and Technology,Seoul,Korea,1999,7.
    [37] Li Mingzhe,Su Shizhong.The Flexible System for Manufacturing Three Dimensional Curved Sheet with Technology of Multi-point Forming[C]. ICAMT’99 Proceedings of 1999 International Conference on Advanced Manufacturing Technology,Science Press New York,ltd,1999:294~297.
    [38] Li Mingzhe,Liu Chunguo,Su Shizhong.Research on a Flexible Forming System of Sheet Metal[C].IFAC 5th Symposium on Low Cost Automation,1998,9.
    [39] Cai Zhongyi,Li Mingzhe.Optimum Path Forming Technique for Sheet Metal and its Realization in Multi-point Forming[J].Journal of Materials Processing Technology,2001,110:136~141.
    [40] Mingzhe Li,Wenzhi Fu,Yongsheng Pei,et al.2000KN Multi-point Forming Press and its Application to the Manufacture of High-speed Trains[J].Advanced Technology of Plasticity,2002,28~31:979~984.
    [41]李明哲,陈建军,隋振.板材三维曲面多点成形技术[J].新技术新工艺,2000(10):27~29.
    [42]崔相吉,蔡中义,李明哲.板材三维曲面零件的多点成形理论与方法[J].兵工学报,2002,23(4):521~524.
    [43]孙刚.多点成形时成形方式与变形缺陷的数值模拟研究[D].长春:吉林大学,2006.
    [44] Zhongyi Cai,Mingzhe Li.Multipoint Forming of Three-dimension the Sheet Metal and the Control of the Forming Process[J].International Journal of Pressure Vessels and Piping, 2002,79:289~296.
    [45] M.Z. Li,Z.Y. Cai,et al.Multi-point Forming Technology for Sheet Metal[J].International Journal of Processing Technology,2002,129:333~338.
    [46] F.X. Tan,M.Z. Li,Z.Y. Cai.Research on the Process of Multi-point Forming for the Customized Titanium Alloy Cranial Prosthesis[J].Journal of Materials Processing Technology, 2007,187~188:453~457.
    [47] G. Sun,M.Z. Li,X.P. Yan,P.P. Zhong.Study of Blank-holder Technology on Multi-point Forming of Thin Sheet Metal[J].Journal of Materials Processing Technology,2007,187~188:517~520.
    [48] Z.R. Qian,M.Z. Li,F.X. Tan.The Analyse on the Process of Multi-point Forming for Dish Head[J].Journal of Materials Processing Technology,2007,187~188:471~475.
    [49] Linfa Peng,Xinmin Lai,Mingzhe Li.Transition Surface Design for Blank Holder in Multi-point Forming[J].International Journal of Machine Tools & Manufacture, 2006,46:1336~1342.
    [50] Z.Y. Cai,S.H. Wang,X.D. Xu, M.Z. Li.Numerical Simulation for the Multi-point Stretch Forming Process of Sheet Metal[J].Journal of Materials Processing Technology,2009,209(1):396~407.
    [51]李明哲,胡志清,蔡中义,龚学鹏.自由曲面工件多点连续成形方法[J].机械工程学报,2007,43(12):155~159.
    [52]胡志清,李明哲,龚学鹏.三维板类件的连续柔性成形技术研究[J].塑性工程学报,2008,15(1):51~54.
    [53] Z.Q. Hu, M.Z. Li, Z.Y. Cai, X.P. Gong.Continuous Flexible Forming of Three-dimensional Surface Parts Using Bendable Rollers[J].Int. J. Materials Science and Engineering A,2009,499:234~237.
    [54]龚学鹏.三维曲面柔性卷板成形技术的研究[D].长春:吉林大学,2007.
    [55]陈琼.三维曲面柔性卷板成形过程的数值模拟研究[D].长春:吉林大学,2008.
    [56]方建国.柔性卷板成形过程中起皱和端部效应的数值模拟研究[D].长春:吉林大学,2008.
    [57]龚学鹏.三维曲面板类件的多点滚压成形研究[D].长春:吉林大学,2009.
    [58]李广权,李达,李东平,李明哲.板材多点成形时复杂边界条件的研究[J].哈尔滨工业大学学报,2000,32(5):75~77.
    [59]蔡中义,李明哲,陈建军.板材多点成形隐式算法数值模拟专用软件及关键技术[J].哈尔滨工业大学学报,2000,32(4):82~88.
    [60]苏世忠,李明哲,陈建军.有限元多晶体模型模拟铝板多点成形过程[J].哈尔滨工业大学学报,2000,32(4):117~119.
    [61]汪华,周贤宾.飞机蒙皮多点成形用复合柔性垫层的结构参数优化[J].航空学报,2007,28(6):1482~1486.
    [62]罗红宇,李东升,曾元松,邹方,白雪飘.蒙皮拉性可重构柔性模具模面生成系统开发及应用研究[J].塑性工程学报,2006,13(6):61~65.
    [63]白雪飘,曾元松,吴为,李志强.典型双曲率零件柔性多点模具蒙皮拉形技术研究[J].塑性工程学报,2007,14(6):105~113.
    [64]杨沿平,黄智,莫旭辉,胡燕平.基于曲面离散化方法的模具曲面制造关键技术与装备[J].中国机械工程,2003,14(24):2099~2101.
    [65]张琦.金属板材多点“三明治”成形的数值模拟及实验研究[D].哈尔滨:哈尔滨工业大学,2007.
    [66] Q. Zhang,Z.R. Wang,T.A. Dean.Multi-point Sandwich Forming of a Spherical Sector with Tool-shape Compensation[J].Journal of Materials Processing Technology,2007,194:74~80.
    [67] Q. Zhang,T.A. Dean,Z.R. Wang.Numerical Simulation of Deformation in Multi-point Sandwich Forming[J].International Journal of Machine Tools & Manufacture,2006,46:699~707.
    [68] Q. Zhang , Z.R. Wang , T.A. Dean . The Mechanics of Multi-point Sandwich Forming[J].International Journal of Machine Tools & Manufacture,2008,48:1495~1503.
    [69] Z.R. Wang,B.G. Teng,Q. Zhang.Multi-point Sandwich Forming[J].Advanced Technology of Plasticity,2005:563~564.
    [70]李广权,李明哲,苏世忠,李淑慧,刘纯国.板材多点成形时摩擦边界条件的处理方法[J].农业机械学报,1999,30(2):99~103.
    [71]蔡中义,李明哲,李广权.金属成形数值模拟中的接触单元法[J].中国机械工程,2000,11(8):933~935.
    [72]蔡中义,李明哲,李湘吉.板材成形回弹数值分析的静力隐式方法[J].中国机械工程,2002,13(17):1458~1461.
    [73] Cai Zhongyi, Li Mingzhe, Feng Zhaohua.Theory and Method of Optimum Path Forming for Sheet Metal[J].Chinese Journal of Aeronautics,2001,14(2):118~122.
    [74]李淑慧.板料多点成形工艺的有限元仿真研究[D].长春:吉林工业大学,1999.
    [75]李明哲,李淑慧,柳泽,陈建军,李广权.板料多点成形过程起皱现象数值模拟研究[J].中国机械工程,1998,9(10):34~38.
    [76]李淑慧,李明哲,蔡中义,姚建国.板料多点弯曲过程及回弹现象的数值模拟[J].农业机械学报,2000,31(1):112~115.
    [77]陈建军.多点成形CAD与分段多点成形工艺的研究[D].长春:吉林大学,2002.
    [78]李雪,李明哲,蔡中义.使用弹性介质的多点成形过程数值模拟研究[J].塑性工程学报,2003,10(5):20~24.
    [79]李雪,李明哲,蔡中义.多点成形过程中弹性介质对成形质量的影响[J].哈尔滨工业大学学报,2005,37(2):194~197.
    [80]宋雪松,蔡中义,李明哲.板材多点成形过程中成形力的数值模拟[J].吉林大学学报(工学版),2004,34(2):226~231.
    [81]宋雪松,蔡中义,李明哲.多点成形中压痕的数值模拟及极限成形力的分析[J].材料科学与工艺,2004,12(4):368~371.
    [82]孙刚,李明哲,蔡中义.多点成形时工艺方式与工件压痕的关系研究[J].材料科学与工艺,2004,12(4):360~363.
    [83]孙刚,李明哲,蔡中义,钱直睿.薄板多点成形时不同的工艺方式对起皱的影响[J].哈尔滨工业大学学报,2006,38(4):633~635,643.
    [84]孙刚,李明哲,崔相吉,邓玉山.不同的多点成形工艺方式对回弹的影响[J].北京科技大学学报,2006,28(3):274 ~277.
    [85]钱直睿,李明哲,黄晓燕.封头的多点成形工艺分析和数值模拟研究[J].塑性工程学报,2006,13(2):40~43,56.
    [86]钱直睿,李明哲,孙刚,谭富星,金文姬.球形ICI多道次多点成形的数值模拟研究[J].吉林大学学报(工学版),2007,37(2):338~342.
    [87]钱直睿,李明哲,谭富星.多点压机成形与多道次多点模具成形的数值模拟研究[J].塑性工程学报,2007,(3).
    [88]谭富星,李明哲,钱直睿.钛合金颅骨修复体的多点成形数值模拟[J].吉林大学学报(工学版),2006,36(6):851~855.
    [89]谭富星,李明哲,蔡中义.钛合金网板多点成形起皱缺陷的数值模拟[J].西安交通大学学报,2007,41(9):1026~1030.
    [90]谭富星,李明哲,蔡中义.带孔网板数字化多点成形过程中拉裂缺陷的有限元分析[J].机械工程学报,2008,44(6):120~124.
    [91]张传敏,付文智,李明哲.采用弹性垫抑制多点数字化拉形工艺中的压痕[J].吉林大学学报(工学版),2009,1(1):83~87.
    [92]杨玉英,董昀,赵立红.帽形型材绕弯件的曲率一致性[J].材料科学与工艺,2004,12(1):91~94.
    [93] Frank V.Extrusion, Channel and Extrusion bending: a review [J].Journal of Materials Processing Technology,1999,87:1~27.
    [94]吉田正敏,藤原昭文.ァルミ中空矩形截面型材の曲げ加工ぞぉけるしわ,ひずみ量予测[J].塑性と加工,1997,38(440):803~808.
    [95] Frode Paulsen,Torgeir Welo.Cross-sectional Deformations of Rectangular Hollow Sections in Bending:PartⅡ-Analytical Models[J].International Journal of Mechanical Sciences,2001,43:131~152.
    [96] Frode Paulsen,Torgeir Welo,Odd Perry Svik.A Design Method for Rectangular Hollow Sections in Bending[J].Journal of Material Process Technology,2001,113:699~704.
    [97]鄂大辛.管无芯弯曲中塑性变形规律的研究[J].塑性工程学报,2006,13(1):5~12.
    [98]鄂大辛,宁汝新.管材无芯弯曲的最小相对弯曲半径[J].机械工程学报,2007,43(5):219~222.
    [99]鄂大辛,郭学东,宁汝新.管材弯曲中应变中性层位移的分析[J].机械工程学报,2009,45(3):307~310.
    [100]刘婧瑶,唐承统,宁汝新.薄壁管纯弯曲塑性成形分析及回弹计算[J].塑性工程学报,2009,16(2):5~14.
    [101]古涛,鄂大辛等.管材弯曲壁厚变形的有限元模拟与试验分析[J].模具工业,2006,32(4):17~20.
    [102]古涛,鄂大辛等.管材弯曲成形的有限元模拟与实验分析[J].锻压装备与制造技术,2006,1:66~68.
    [103]何花卉,鄂大辛等.管材弯曲时横截面畸变的试验及有限元分析[J].现代制造工程,2006,11:40~42.
    [104]岳永保,杨合.薄壁管小弯曲半径数控弯曲壁厚减薄实验研究[J].锻压技术,2007,10:58~62.
    [105]寇永乐,杨合等.薄壁管数控弯曲截面畸变的实验研究[J].塑性工程学报,2007,14(5):26~31.
    [106]刘郁丽,杨合等.薄壁矩形管弯曲过程截面畸变的三维有限元分析[J].塑性工程学报,2007,14(3):72~74.
    [107]赵刚要.薄壁矩形管绕弯成形失稳起皱的数值模拟[D].西安:西北工业大学,2007.
    [108]唐建阳,万敏.铝合金型材张力绕弯成形几何缺陷数值模拟分析[J].锻压技术,2005,1:29~32.
    [109]王祺,刘劲松等.镁合金型材绕弯成形回弹性能研究[J].沈阳理工大学学报,2009,28(6):31~34.
    [110]温彤,陈霞,裴春雷.可变管径绕弯模具弯管的理论与实验研究[J].中国机械工程,2010,21(9):1119~1122.
    [111]张贺刚.型材转台式拉弯的力学分析与回弹分析[D].西安:西北工业大学,2004.
    [112]于成龙.型材转台式拉弯的力学分析和数值模拟[D].西安:西北工业大学,2005.
    [113] J.E. Miller,S. Kyriakides,A.H. Bastard.On Bend-stretch Forming of Aluminum Extruded Tubes-I: Experiments [J].International Journal of Mechanical Sciences,2001,43:1283~1317.
    [114] A.A. EI-DOMIATY , A.N. SHABARAM , M.D. AL-ANSARY . Determination of Stretch-bendability of Sheet-metals[J].International Jounral of Machine Tools & Manufacture,1996(36):635~650.
    [115] Toshihiko Kuwabara,Susumu Takahashi,Kohji ITO.Curling Analysis of Sertch-bent-unbent Sheet Metal-springback Analysis of Metal II[J].Journal of the JSTP,1996(431):1352~1359.
    [116] Toshihiko Kuwabara,Susumu Takahashi,Kohji ITO.Springback Aanlysis of Sheet Metal Subjected to Biaxial Stertch-bending-springback Analysis of Sheet Metal IV[J].Journal of the JSTP,1997(437):582~586.
    [117] Frode Paulsen,Torgeir Welo.Cross-sectional Deformations of Rectangular Hollow Sections in Bending: PartⅠeEperiments [J].International Journal of Mechanical Sciences,2001,43:109~129.
    [118] Frode Paulsen,Torgeir Welo.A Design Method for Prediction of Dimensions of Rectangular Hollow Sections Formed in Stretch Bending [J].Journal of Materials Processing Technology,2002,128(1~3):48~66.
    [119] Edmundo Corona . A Simple Analysis for Bend-stretch Forming of Aluminum Extrusions[J].International Journal of Mechanical Sciences,2004,46:433~448.
    [120] A.H. Clausen,O.S. Hopperstad,M. Langseth.Stretch Bending of Aluminum Extrusions: Effect of Tensile Sequence[J].Journal of Engineering Mechanics,1999,125(5):521~529.
    [121] Tore Tryland,Odd S. Hopperstad,Magnus Langseth.Design of Experiments to Identify Material Properties[J].Materials and Design,2000,21:477~492.
    [122] O.G. Lademo,Odd S. Hopperstad,Magnus Langseth.An Evaluation of Yield Criteria and Flow Rules for Aluminum Alloys[J].International Journal of Plasticity,1999,15:192~208.
    [123] K.A. Malo,O.S. Hopperstad,O.G. Lademo.Calibration of Anisotropic Yield Criteria Using Uniaxial Tension Tests and Bending Tests[J].Journal of Materials Processing Technology,1998,(80~81):538~544.
    [124]余同希,张亮炽.塑性弯曲理论及其应用[M].北京:科学出版社,1992,45~86.
    [125] A.A. EI-Domiaty , A.A. Elsharkawy . Stretch-bending Analysis of U-section Beams[J].International Journal of Machine Tools and Manufacture,1998,38:75~95.
    [126] A. EI-Megharbel,A.A. EI-Domiaty,M. Shaker.Springback and Residual Stresses after Stretch Bending of Workhardening Sheet Metal[J].Journal of Materials Processing Technology,1990,24:191~200.
    [127] A.A. Elsharkawy,A.A. El-domiaty.Determination of Stretch-bend Ability Limits and Springback for T-section Beams[J].Journal of Materials Processing Technology,2001,110(3):265~276.
    [128] Arild H. Clausen,Odd S. Hopperstad,Magnus Langseth.Stretch Bending of Aluminium Extrusions for Car Bumpers[J].Journal of Materials Processing Technology,2000,102:24~28.
    [129] Arild H. Clausen,Odd S. Hopperstad,Magnus Langseth.Sensitivity of Model Parameters in Stretch Bending of Aluminium Extrusions[J].International Journal of Mechanical Sciences,2001,43:427~453.
    [130] O.S. Hopperstad,et al.Reliability-based Analysis of a Stretching-bending Process for Aluminium Extrusions[J].Computers and Structures,1999,71:63~75.
    [131] O.S. Hopperstad,T. Berstad,H. Ilstad,et al.Effects of the Yield Criterion on Local Deformation in Numerical Simulation of Profile Forming[J].Journal of Materials Processing Technology,1998,80~81:551~555.
    [132]金朝海,周贤宾,刁可山.铝合金型材拉弯成形回弹的有限元模拟[J].材料科学与工艺,2004,12 (4):394~397.
    [133]金朝海,周贤宾,刁可山.铝合金矩形管拉弯成形过程的数值模拟[J].材料科学与工艺,2004,12(6):572~575.
    [134]刁可山,周贤宾,李晓星.矩形截面型材拉弯成形[J].北京航空航天大学学报,2005,31(2):134~137.
    [135]金朝海,周贤宾.型材2D张臂式拉弯机构运动仿真及夹钳轨迹自动生成[J].中国机械工程,2006,17:99~102.
    [136]金朝海,谷诤巍,赵亚夫,周贤宾.基于数控代码的2D型材拉弯夹钳运动轨迹确定及有限元仿真[J].中国机械工程,2008,19(17):2069~2073.
    [137]金朝海,周贤宾,谷诤巍,赵亚夫.基于位移控制的型材2D张臂式拉弯加载轨迹设计及数控代码生成[J].塑性工程学报,2009,16(2):66~71.
    [138]李小强,周贤宾,金朝海,郝长岭.型材拉弯数值模拟夹钳边界条件的一种等效模型[J].塑性工程学报,2009,16(1):64~69.
    [139]孟鹏飞,李晓星,金朝海,高宏志,尹萍.大型复杂截面型材拉弯成形数值模拟[J].航天制造技术,2010,6:50~54.
    [140]张秉璋.横压纵拉弯曲变形过程分析[J].航空工艺技术,1993,3:13~15.
    [141]吴建军,张贺刚,王俊彪,王永军.等边角型材带侧压型材拉弯的力学与回弹分析[J].中国机械工程,2006,17(5):542~548.
    [142]于成龙,王俊彪,王永军.基于指数强化模型的预拉力影响角型材拉弯的回弹分析[J].材料科学与工艺,2011,19(1):131~138.
    [143]王俊彪,于成龙,王永军,张贤杰.拉弯过程中预拉力对角型材零件回弹的影响规律[J].航空制造技术,2006,1:98~100.
    [144]周欢,贺尔铭,王红建等.复杂截面型材二维拉弯回弹数值模拟研究[J].科学技术与工程,2010,10(14):3475~3489.
    [145]鱼二强,贺尔铭,王红建.非对称型材拉弯成形的数值模拟研究[J].科学技术与工程,2011,11(15):3476~3493.
    [146]谢兰生,胡浩.型材拉弯回弹有限元分析[J].航空精密制造技术,2004,40(5):34~36.
    [147]徐义.镁合金型材弯曲变形过程数值模拟研究[D].长沙:湖南大学,2008.
    [148]谷诤巍,蔡中义,徐虹.拉弯成形的数值分析与工艺优化[J].吉林大学学报(工学版),2009, 39(5):1167~1171.
    [149]《航空制造工程手册》总编委员会.航空制造工程手册(飞机钣金工艺)[M].北京:航空工业出版社,1992, 8.
    [150]曾田,小西.塑性と加工[J].1962, 3(18):474.
    [151]曾田,小西.塑性と加工[J].1963, 4(31):515.
    [152] N.E. Hansen, O. Jannerup.Modeling of Elastic-Plastic Bending of Beams Using a Roller Bending Machine [J].J. Eng. Indust., 1979, 101:304.
    [153] M.M. SeddeiK,J.B. Kennedy.Deformation in Hollow Structural Section (HSS) Member Subjected to Cold-bending[J].Int.J.Mech.Sci.,1987,29(3):195~212.
    [154]赵丽娟.型材滚弯及其在线检测系统[J].模具技术,2003,1:29~31.
    [155]周养萍.变曲率型材数控滚弯加工的实现[J].锻压装备与制造技术,2008,1:85~88.
    [156]周养萍,亓江文.型材变曲率滚弯过程有限元模拟[J].机械科学与技术,2008,27(8):1113~1120.
    [157]周养萍,亓江文.飞机Z形框滚弯加工数值模拟与分析[J].塑性工程学报,2010,17(5):27~42.
    [158]边红霞.L_型钢弯曲变形过程的有限元分析[D].沈阳:沈阳大学,2010.
    [159]陈高翔.Z形型材滚弯成形有限元模拟及数值分析[D].西安:西安理工大学,2010.
    [160]金霞,刘海燕.基于神经网络的U型材单轴柔性滚弯成形回弹预测[J].机械科学与技术,2009,28(4):464~467.
    [161]金霞,鲁世红.U型材单轴柔性滚弯成形回弹有限元分析[J].南京航空航天大学学报,2010,42(1):117~121.
    [162]孙家军.U型材单轴柔性滚弯成形技术研究及其有限元分析[D].南京:南京航空航天大学,2010.
    [163]何祝斌,王仲仁,唐奉,葛杰.铝合金型材聚氨酯柔性垫弯曲研究[J].塑性工程学报,2008,15(1):36~40.
    [164] W.G. Chen.Experimental and Numerical Study on Bending Collapse of Aluminum Foam-filled Hat Profiles[J].International Journal of Solids and Structures,2001,38:7919~7944.
    [165] Y. Choi, H.T. Yeo, J.H. Park, G.H. Oh, S.W. Park.A Study on Press Forming of Automotive Sub-frame Parts Using Extruded Aluminum Profile[J].Journal of Materials Processing Technology,2007,187~188:85~88.
    [166]王书鹏,高锦张,贾俐俐.空腹型材压弯过程的失稳研究[J].模具工业,2007,33(10):33~36.
    [167]戴谋军.铝合金管材压弯过程数值模拟研究[D].长沙:湖南大学,2008.
    [168]刘芷丽,詹梅,杨合等.圆管压扁-压弯连续变形过程有限元模型的建立及截面畸变研究[J].塑性工程学报,2008,15(5):101~107.
    [169]宋江腾,臧勇,崔福龙,崔丽红.非对称型材压弯过程应变规律的有限元分析[J].机械设计与制造,2008,9:72~74.
    [170]宋江腾,臧勇,崔福龙,崔丽红.非对称型材压弯过程截面畸变的数值模拟[J].机械设计与制造,2009,3:123~125.
    [171]温彤,季筱玮.薄壁矩形管的压弯变形分析与弯曲质量的改善[J].热加工工艺,2010,39(19):111~117.
    [172]王大勇,李伟,陆兴,栾俏梅.U型钢压弯的有限元分析与回弹预测[J].模具工业,2010,36(4):19~22.
    [173] K. Chung, D. Lee.板材成形土艺的计算机辅助分析[M].《世界塑性加土最新技术》,1987.
    [174] H.D. Hibbit, et al.A Finite Element Formulation for Problems of Large Strain and Large Displacement[J].Int.J.Solids Structures,1970,6:1069~1086.
    [175] J.R. Osias, et al.Finite Elasto-plastic Deformation[J].Int.J.Solids Structures,1974,10:321~339.
    [176] R.M. McMeeking, J.R. Rice.Finite Element Formulation for Problems of Large Elastic-plastic Deformation[J].Int.J.Solids Structures,1975,11:601~615.
    [177] S.C. Tang.Large Elasto-plastic Strain Analysis of Flanged Hole Forming[J].Computer&Structures, 1981,13.
    [178] S.C. Tang.Large Strain Analysis of an Inflating Membrane[J].Computer& Structures,1982,15(1).
    [179] F.J. Arlinghaus, W.H. Frey, et al.Finite Element Modeling of a Stretch Formed Part[J].The Metallurgical Society,1985,51~64.
    [180] E. Nakamachi . A Finite Element Simulation for the Sheet Metal Forming Processes[J].Int.J.Num.Meths.Eng.,1988,25:283~292.
    [181] H. Aoh, E. Nakamachi.3-D Sheet Metal Forming Simulations of Automobile Panel by Thin ShellFinite Element Method[J].VDI BERICHTE NR894,1991:357~379.
    [182] S.C. Tang.A Local 3-D Model for Automotive Sheet Metal Forming Analysis[J].Advanced Technology of Plasticity,1993,3:1647~1652.
    [183] E. Nakamachi, H. Tongru.Development of Virtual Manufacturing System for Automotive Sheet Forming[J].Advanced Technology of Plasticity,1993,3:1799~1804.
    [184] S.C. Tang, L.B. Chappuis, J. Mathe.Thin Shell Element Simulation of Sheet Metal Forming Processes[J].Ibid,1990,1757~1761.
    [185] E. Nakamachi, A. Makinouchi.Description of Tool Geometry and Formulation of Deformation Dependant Contact Problem[J].VDI BERICHTE,Zurich,Switzerland,1991,75~107.
    [186] N. Kawka, A. Makinouchi.Finite Element Simulation of Sheet Metal Forming Processes by Simultaneous Use of Membrane[C].Shell and Solid Elements,UNIFORM'92,Sophia,Antipolis,1992:491~ 496.
    [187] T.R. Huo, E. Nakamachi.3-D Dynamic Explicit Finite Element Simulation of Sheet Metal Forming[C].Proc.of 4th ICTP,Beijing,China,1993:1828~1833.
    [188] Ted Belytschko, Wing Kam Liu, Brian Moran.Nonlinear Finite Elements for Continua and Structures[J]. John Wiley & Sons,1943.
    [189]黄克智.非线性连续介质力学[M].北京:清华大学出版社, 1985.
    [190]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1997.
    [191]孟凡中.弹塑性有限变形理论和有限元方法[M].北京:清华大学出版社, 1985.
    [192]李晓星.板材成形模拟的研究和应用[J].金属成形工艺,2003,21:6~9.
    [193] Huo Tongru, E. Nakamachi.3-D Dynamic Explicit Finite Element Simulation of Sheet Forming[J].Advanced Technology of Plasticity,1993,3:1828~1833.
    [194] Chen Kuokuang, Peter C. Sun.Evaluation of a Dynamic Explicit Finite Element Code for Binder Forming Calculations[C].SAE International Congress and Exposition, Detroit, Michigan, February 27-March 2, 1995:19~26.
    [195] E. Nakamachi, Huo Tongru.Dynamic-explicit Type Elastic Plastic Finite Element Simulation of Sheet Metal Forming-hemispherical Punch Drawing[J].International Journal of Computer Aided Engineering and Software,1996,13:327~338.
    [196]赵腾伦.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007,p:247.
    [197]彼莱奇科,廖荣锦,默然着,庄茁译.连续体和结构的有限元[M].北京:清华大学出版社,2002.
    [198]蔡中义,李明哲,付文智.板材多点成形中压痕缺陷的分析与控制[J].锻压技术,2003,1:16~19.
    [199] R.W. Armstrong.On size effects in polycrystal plasticity[J].Journal of Mech. Phys. Solids,1961,9:196~199.
    [200] A. Messner, U. Engel, R. Kals, F. Vollertsen.Size effect in the FE-simulation of micro-forming process[J].Journal of Material Processing Technology,1994,45:371~376.
    [201] S. Mahabunphachai, M. Koc.Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales[J].International Journal of Machine Tools and Manufactory,2008,48:1014~1029.
    [202]王同海.管材塑性加工技术[M].北京:机械工业出版社,1998.
    [203]陈喜娣.板材多点成形的起皱和回弹数值分析[D].长春:吉林大学,2004.
    [204]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700