rAAV2介导的靶向缺氧诱导因子2的siRNA对人胰腺癌抑制作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分EPAS1、VEGF在胰腺癌中表达的意义及相关性
     目的研究胰腺癌组织中缺氧诱导因子2(EPAS1/HIF-2α)、血管内皮生长因子(VEGF)和微血管密度(MVD)的表达及与临床病理特征之间的关系。
     方法应用逆转录聚合酶链反应(RT-PCR)、免疫印迹(western blotting)、免疫组化(IHC)S-P法检测60例胰腺癌及相应正常胰腺组织中EPAS1、VEGF mRNA和蛋白的表达和分布,同时检测MVD作为判断血管生成的指标,分析其间的相关性以及与肿瘤临床病理特征之间的关系。
     结果EPAS1、VEGF和MVD在胰腺癌组织中的表达明显高于正常胰腺组织, VEGF在mRNA和蛋白水平均增高(t=6.10,P=0.0003;t=98.41,P=0.0001),但EPAS1只在蛋白水平增高(t=22.51,P=0.0001)。此外,三者之间的表达具有显著相关性(EPAS1和VEGF之间,r=0.73583,P=0.0041;VEGF和MVD之间,r=0.85783, P= 0.0001;EPAS1和MVD间,r=0.64062,P=0.0003), EPAS1和VEGF的阳性表达与胰腺癌的TNM分期、肿瘤大小有关。
     结论胰腺癌组织中EPAS1和VEGF呈过量表达,且EPAS1的表达与VEGF及MVD呈显著正相关。EPAS1可通过上调VEGF表达来促进胰腺癌血管生成从而在胰腺癌的发生发展中起重要作用。
     第二部分靶向EPAS1的小干扰RNA的设计与功能筛选
     目的构建编码EPAS1 mRNA的shRNA质粒表达载体,并筛选出基因沉默效果最明显的shRNA质粒表达载体。
     方法根据EPAS1的基因序列设计三条shRNA作为RNA干扰靶点,分别构建3个shRNA质粒表达载体并通过PCR和测序进行鉴定。经鉴定正确后分别稳定转染PANC-1细胞,实时荧光定量PCR(RQ-PCR)和western blotting分别从mRNA和蛋白质水平检测抑制效果。
     结果构建的质粒表达载体经PCR鉴定均可扩增出预期条带,测序证明质粒构建成功。靶向EPAS1基因的shRNA对稳定转染的PANC-1细胞中EPAS1 mRNA和蛋白质表达均有抑制作用:在常氧状态下,EPAS1-shRNA-1、EPAS1-shRNA-2和EPAS1-shRNA-3对EPAS1 mRNA表达的抑制率分别为67.5%、46.8%、47.9%(P<0.05),在缺氧状态下的抑制率分别为86.6%、55.1%、56.4%(P<0.05);在常氧状态下,EPAS1-shRNA-1、EPAS1-shRNA-2、EPAS1-shRNA-3对EPAS1蛋白表达的抑制率分别为48.8%、18.9%、28.9%(P<0.05),在缺氧状态下的抑制率分别为73.6%、40.0%、37.2%(P<0.05)。其中以EPAS1-shRNA-1的抑制作用最明显。
     结论成功构建了靶向EPAS1基因的shRNA质粒表达载体.其中抑制效果最明显的shRNA质粒表达载体为pGCsi-U6/Neo/GFP/EPAS1-shRNA-1质粒。
     第三部分rAAV2-EGFP-U6-EPAS1-siRNA的构建与鉴定
     目的构建并制备携带靶向EPAS1基因的shRNA的2型重组腺相关病毒载体。
     方法将PCR法扩增所得EGFP-U6-EPAS1-siRNA片段插入载体质粒pSNAV2.0- lacz-α的EcoR I和Sal I酶切位点,构建重组质粒pSNAV2.0-EGFP-U6-EPAS1- siRNA。以HSV1-rc/ΔUL2为辅毒,包装rAAV2-EGFP-U6-EPAS1-siRNA病毒。对所获病毒载体进行SDS-PAGE、PCR鉴定分析和滴度测定。
     结果SDS-PAGE、PCR鉴定分析结果表明靶向EPAS1基因的shRNA片段成功包装入rAAV2载体,病毒纯度在95%以上。点杂交法测定rAAV2基因组滴度约为1×1012v.g. /L。
     结论成功制备了rAAV2-EGFP-U6-EPAS1-siRNA病毒载体。
     第四部分EPAS1-siRNA对人胰腺癌细胞生物学行为影响的体外研究
     目的观察由rAAV2携带的EPAS1-siRNA对体外培养的人胰腺癌细胞的抑制作用。
     方法将rAAV2-EGFP-U6-EPAS1-siRNA转染入人胰腺癌细胞株PANC-1中,并测定转染效率。分别在常氧和缺氧状态下进行细胞培养。RT-PCR、IHC S-P法、western blotting检测EPAS1和VEGF mRNA和蛋白表达,MTT法检测PANC-1增殖能力,Giemsa染色、Hoechst 33342和PI双染、Annexin V-FITC/PI双染和DNA Ladder检测细胞凋亡,ABC-ELISA检测分泌性VEGF水平, CAM试验检测血管生成,CAM成瘤试验检测肿瘤生长能力。
     结果rAAV2-EGFP-U6-EPAS1-siRNA被成功地转染入PANC-1细胞中,FCM测定转染效率在40%左右。与阴性对照组和空白对照组比较,实验组PANC-1细胞的EPAS1和VEGF mRNA的表达明显受到抑制(EPAS1 mRNA:常氧状态下,F=44.64,P=0.0002;缺氧状态下,F=53.33,P=0.0012。VEGF mRNA:常氧状态下,F=25.36,P=0.0012;缺氧状态下,F=56.62,P=0.0001)。同样的结果见于蛋白表达的检测中(EPAS1蛋白:常氧状态下,F=46.12,P=0.0002;缺氧状态下,F=602.11,P=0.0001。VEGF蛋白:常氧状态下,F=46.69,P=0.0002;缺氧状态下,F=64.56,P=0.0001)。同时,实验组细胞增殖能力下降(F=83.85,P=0.0001),凋亡率增高(在缺氧状态下,F=124.98, P=0.0001),分泌性VEGF水平下降(在缺氧状态下,F=9.83,P=0.0128)。实验组CAM的血管计数明显少于对照组(常氧状态下F=29.04,P=0.0008,缺氧状态下,F=88.01,P=0.0001),CAM移植瘤生长受抑制,肿瘤体积小于对照组(F=64.04, P=0.0001)。
     结论在体外,rAAV2-EGFP-U6-EPAS1-siRNA能抑制人胰腺癌细胞PANC-1的EPAS1和VEGF基因表达,并能抑制细胞增殖,促进凋亡,抑制CAM血管形成与移植瘤生长。
     第五部分EPAS1-siRNA对人胰腺癌抑制作用的体内研究
     目的在整体水平研究rAAV2-EGFP-U6-EPAS1-siRNA对人胰腺癌生长、转移和浸润行为的抑制作用。
     方法建立人胰腺癌裸鼠皮下移植瘤模型、腹腔转移模型和原位移植模型。在皮下模型中,按1×1012v.g./kg标准在瘤内分别注射rAAV2-EGFP-U6-EPAS1-siRNA、rAAV2-EGFP和NS,观察抑瘤效果,IHC S-P法检测EPAS1、VEGF蛋白表达及MVD值,TUNEL和透射电镜检测凋亡。在腹腔转移模型中,按1×1012v.g./kg标准分别腹腔注射rAAV2 -EGFP-U6-EPAS1-siRNA、rAAV2-EGFP和NS,计数种植瘤数目。在原位模型中,按1×1012v.g./kg标准分别腹腔注射rAAV2-EGFP-U6-EPAS1-siRNA、rAAV2-EGFP和NS,观察抑瘤效果及转移情况。
     结果实验组皮下移植瘤生长明显受抑制,体积和重量明显小于阴性对照组和空白对照组(体积,F=171.09,P=0.0001;重量,F=199.50,P=0.0001),EPAS1、VEGF蛋白表达弱于对照组(EPAS1,H=3.18,P=0.2043;VEGF,H=6.16,P =0.046), MVD值明显小于对照组(F=55.42,P=0.0001),凋亡指数明显小于对照组(F= 286.57,P=0.0001)。实验组裸鼠腹腔种植瘤数目明显少于对照组(F=52.23,P=0.0001)。实验组裸鼠原位移植瘤的体积和重量明显小于对照组(体积,F=27.52,P=0.0001;重量, F=102.41, P=0.0001),远处转移率是16.7%,而对照组裸鼠远处转移率是50%。
     结论在体内实验中,rAAV2-EGFP-U6-EPAS1-siRNA能明显抑制人胰腺癌的生长与转移,促进凋亡,减少新生血管形成,显示一定的抑瘤效应。
PartⅠThe significance and correlation of EPAS1 and VEGF expression in pancreatic carcinoma
     Objective To investigate the expressions of Endothelia PAS domain protein1 (EPAS1),vascular endothelial growth factor(VEGF) and microvessel density(MVD) as well as the relationships among them,and the relationships to the clinicopathologic features of human pancreatic carcinoma.
     Methods In 60 cases of resected specimens of pancreatic carcinoma and their corresponding normal pancreatic tissues,RT-PCR was used to detect the expression levels of EPAS1 and VEGF mRNAs,western blotting and immunohistochemical SP method were used to examine the expression levels and distributions of EPAS1 and VEGF proteins respectively. MVD regarded as a marker of angiogenesis was explored also.The correlations among them and their relationships to the clinicopathologic characteristics of human pancreatic carcinoma were analyzed.
     Results Higher expressions of EPAS1,VEGF and MVD were detected in pancreatic carcinoma than in normal pancreatic tissue,for VEGF both at mRNA and protein level(t=6.10,P=0.0003; t=98.41,P=0.0001), for EPAS1 only at protein level (t= 22.51,P=0.0001). Furthermore, significant correlations were observed among them (between EPAS1 and VEGF, r=0.73583,P=0.0041; between VEGF and MVD, r= 0.85783, P=0.0001; between EPAS1 and MVD, r=0.64062, P=0.0003), the positive expressions of EPAS1 and VEGF were closely related with TNM staging and tumor size of pancreatic carcinoma.
     Conclusions Both EPAS1 and VEGF are overexpressed in pancreatic carcinoma, and the expression of EPAS1 is directly correlated with that of VEGF and the value of MVD significantly. EPAS1 may be involved in the angiogenesis of pancreatic carcinoma by upregulating the expression of VEGF, and play an important role in the carcinogenesis and aggression in pancreatic carcinoma.
     PartⅡDesign and screening of the small interfering RNA targeting EPAS1 gene
     Objective To construct a plasmid expression vector coding for the short hairpin RNA (shRNA) targeting EPAS1 mRNA.
     Methods Three plasmid expression vectors coding for shRNA targeting EPAS1 gene sequence were constructed.The recombinant plasmids were identified by PCR and sequencing, and then transfected stably into PANC-1 cells respectively. The EPAS1 gene silencing effect was detected by quantitative RT-PCR and western blotting.
     Results The expected bands were amplified from the plasmids coding for shRNA by PCR,then sequencing confirmed that the EPAS1-shRNA plasmids were successfully constructed. Transfection of PANC-1 cells with shRNA plasmids resulted in an inhibition of EPAS1 mRNA and protein expressions respectively.For EPAS1-shRNA-1, EPAS1- shRNA-2 and EPAS1-shRNA-3,the inhibitory rates of EPAS1 mRNA expression were 67.5%, 46.8% and 47.9% in normoxic condition (P<0.05),as 86.6%, 55.1% and 56.4% in hypoxic condition (P<0.05);And the inhibitory rates of EPAS1 protein expression were 48.8% , 18.9 % and 28.9% respectively in normoxic condition (P<0.05),compared with 73.6%, 40.0% and 37.2% respectively in hypoxic condition (P<0.05).The most potent effect of silencing EPAS1 gene expression was conducted by EPAS1-shRNA-1.
     Conclusions The plasmid expression vectors coding for shRNA targeting EPAS1 mRNA have been constructed successfully, of which pGCsi-U6/Neo/GFP/EPAS1- shRNA-1 effectively silences EPAS1 gene the most in PANC-1 cells.
     PartⅢConstruction and identification of rAAV2-EGFP-U6-EPAS1-siRNA
     Objective To construct and prepare the recombinant adeno-associated virus serotype 2 (rAAV2) vector for expressing short hairpin RNA(shRNA) targeting EPAS1 mRNA.
     Methods By inserting the sequence that contained EGFP-U6-EPAS1-siRNA into the EcoR I and Sal I site of vector plasmid pSNAV2.0-lacz-α,we constructed the recombinant vector of plasmid pSNAV2.0-EGFP-U6-EPAS1-siRNA.The recombinant vector of plasmid,BHK cell lines and helper virus HSV1-rc/ΔUL2 were used for the package of rAAV2-EGFP-U6-EPAS1-siRNA vector.The viral purity,identity,titer of rAAV2 viral stock were analyzed by the methods of SDS-PAGE,PCR and dot-blot respectively.
     Results The results of SDS-PAGE and PCR indicated that the shRNA fragment targeting EPAS1 was successfully packaged into rAAV2,and the viral purity of rAAV2 was above 95%.The titer of rAAV2 was approximately 1×1012v.g. /L.
     Conclusions The viral vector of rAAV2-EGFP-U6-EPAS1-siRNA is successfully constructed and prepared.
     Part IV Study of the impact of biological behaviors on human pancreatic carcinoma cells by EPAS1-siRNA in vitro
     Objective To observe the inhibitory effects of EPAS1-siRNA mediated by rAAV2 on human pancreatic carcinoma cells cultured in vitro.
     Methods rAAV2-EGFP-U6-EPAS1-siRNA was transfected into human pancreatic carcinoma cell line PANC-1, and the efficiency of transfection was detected. The cells were cultured under normoxic and hypoxic conditions respectively.Then RT-PCR, immunohistochemical SP method and western blotting were used to detect EPAS1, VEGF mRNA and protein expression. While MTT assay was used to determine proliferation rate of PANC-1. Detection of apoptosis was manipulated by the means of Giemsa staining, Hoechst 33342/PI double staining, Annexin V-FITC/PI double staining and DNA Ladder.And secretory VEGF level was measured by ABC-ELISA.Furthermore, CAM assay was used to detect angiogenesis in CAM.At last,a transplanted tumor model of pancreatic carcinoma on CAM was established to check the growth ability of tumor.
     Results rAAV2-EGFP-U6-EPAS1-siRNA was successfully transfected into PANC-1 cells, and the transfection efficiency detected by FCM was about 40%. Expressions of EPAS1 and VEGF mRNA were significantly inhibited in PANC-1 cells of experimental group,compared with in that of negative control group or blank control group (for EPAS1 mRNA: in normoxic condition, F=44.64, P=0.0002; in hypoxic condition, F=53.33, P=0.0012. for VEGF mRNA: in normoxic condition, F=25.36, P=0.0012; in hypoxic condition,F=56.62, P=0.0001). The same results were found as detecting their protein expressions (for EPAS1 protein: in normoxic state, F=46.12,P=0.0002; in hypoxic state, F=602.11,P=0.0001. for VEGF protein: in normoxic state, F=46.69, P=0.0002; in hypoxic state, F=64.56, P=0.0001).Meanwhile,in experimental group cells, ability of proliferation was inhibited(F=83.85, P=0.0001), apoptotic rate increased (in hypoxic state, F=124.98, P=0.0001), and secretory VEGF level decreased(in hypoxic state,F=9.83, P=0.0128).The count of newly formed blood vessels of experimental group was significanly less than that of control groups(in normoxic condition, F=29.04, P=0.0008; in hypoxic condition, F=88.01, P=0.0001). Lastly, growth of transplanted tumor on CAM was depressed, as tumor of experimental group was smaller than that of control groups (F=64.04, P=0.0001).
     Conclusions rAAV2-EGFP-U6-EPAS1-siRNA can inhibit expressions of EPAS1 and VEGF gene, cell proliferation, and promote apoptosis in human pancreatic carcinoma cell of PANC-1 in vitro. It can also inhibit angiogenesis and growth of transplanted tumor on CAM.
     Part V Research for inhibition human pancreatic carcinoma by EPAS1-siRNA in vivo
     Objective To research inhibition of biological behaviors of human pancreatic carcinoma such as growth,metastasis and invasion by rAAV2-EGFP-U6-EPAS1-siRNA in vivo.
     Methods Human pancreatic carcinoma transplanted subcutaneously in nude mouse,peritoneal metastasis model of human pancreatic carcinoma and model of surgical orthotopic implantation of human pancreatic carcinoma were established firstly. rAAV2- EGFP-U6-EPAS1-siRNA, rAAV2-EGFP and NS were intratumorally injected with 1×1012 v.g./kg respectively in subcutaneous xenograft model, inhibitory effect of tumor growth was observed , EPAS1 and VEGF protein expressions as well as value of MVD were detected by immunohistochemical SP method, TUNEL staining and transmission electron microscopy were used to determine apoptosis. rAAV2-EGFP-U6-EPAS1-siRNA, rAAV2- EGFP and NS were intraperitoneal injected with 1×10~(12) v.g./kg respectively in peritoneal metastasis model of nude mouse, the number of metastases was counted. rAAV2-EGFP- U6-EPAS1-siRNA, rAAV2-EGFP and NS were intraperitoneal injected with 1×10~(12)v.g./kg respectively in the model of surgical orthotopic implantation, inhibitory effect of tumor growth and metastasis of tumor were observed.
     Results Growth rate of subcutaneous xenograft significantly decreased in experimental group , the tumor’s size and weight of experimental group were significantly lesser than those of negative control group and blank control group (for volume, F=171.09, P=0.0001; for weight, F=199.50, P=0.0001).For experimental group, expressions of EPAS1 and VEGF proteins were weaker than those of control groups (for EPAS1, H=3.18, P=0.2043; for VEGF, H=6.16, P=0.046), values of MVD and apoptotic index(AI) were significantly lesser than those of control groups (for MVD, F=55.42, P=0.0001; for AI, F=286.57, P=0.0001). And number of peritoneal seeding was less in experimental group than in control groups(F=52.23, P=0.0001). The size and weight of orthotopic implantation in experimental group were significantly less than those in control groups (for volume, F=27.52, P=0.0001; for weight, F=102.41, P=0.0001). While distant metastasis rate was 16.7% in experimental group, compared with 50% in control groups.
     Conclusions rAAV2-EGFP-U6-EPAS1-siRNA can dramatically inhibit growth and metastasis, promote apoptosis and reduce neovascularization of human pancreatic carcinoma in vivo.
引文
1. Tian H,Mcknight SL,Russell DW.Endothelia PAS domain protein (EPAS1),a transcription factor selectively expressed in endothelial cell.Genes Dev,1997,11(1):72-82.
    2. Giatromanolaki A,Koukourakis MI,Sivridis E,et a1.Relation of hypoxia inducible factor 1αand 2αin operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival.Br J Cancer,2001,85(6):881-890.
    3.Birner P,Schindle M,Obermair A,et al. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer.Cancer Res,2000,60(17):4693-4696.
    4.Weidner N. Intratumor microvessel density as a prognostic factor in cancer.Am J Pathol,1995,147(1):9-19.
    5. Pili R and Donehower RC.Is HIF-1 alpha a valid therapeutic target? J Natl Cancer Inst,2003,95(7):498-499.
    6. Turner KJ, Moore JW, Jones A,et al. Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation.Cancer Res,2002,62(10):2957-2961.
    7. L?fstedt T,Fredlund E,Holmquist-Mengelbier L,et a1. Hypoxia inducible factor-2alpha in cancer.Cell Cycle,2007,6(8):919-926.
    8. Raval RR,Lau KW,Tran MG,et al. Contrasting properties of hypoxia -inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cellcarcinoma.Mol Cell Biol, 2005,25(13):5675-5686.
    9. Giatromanolaki A,Sivridis E,Fiska A ,et al. Hypoxia-inducible factor-2 alpha(HIF-2 alpha) induces angiogenesis in breast carcinomas.Appl Immunohistochem Mol Morphol,2006,14(1):78-82.
    10. Zimmer M,Doucette D, Siddiqui N,et al. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors.Mol Cancer Res, 2004,2(2):89-95.
    11. Lando D,Peet DJ,Whelan DA, et al.Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science,2002,295(5556):858-861.
    12. Shinojima T,Oya M,Takayanagi A,et a1.Renal cancer cells lacking hypoxia inducible factor (HIF)-1{alpha} expression maintain vascular endothelial growth factor expression through HIF-2 {alpha}.Carcinogenesis, 2007,28(3): 529-536.
    13. Büchler P,Reber HA, Büchler M,et al. Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas,2003,26(1):56-64.
    14. H?pfl G, Ogunshola O and Gassmann M. HIFs and tumors-causes and consequences. Am J Physiol Regul Integr Comp Physiol, 2004,286(4):R608-623.
    15. Ratcliffe PJ.HIF-1 and HIF-2:working alone or together in hypoxia? J Clin Invest,2007,117(4):862-865.
    16. Ikeda N,Adachi M,Taki T,et al.Prognostic significance of angiogenesis in human pancreatic cancer.Br J Cancer,1999,79(9/10):1553-1563.
    17. Raspollini MR,Castiglione F,Garbini F,et al. Correlation of epidermal growth factor receptor expression with tumor microdensity vessels and with vascular endothelial growth factor expression in ovarian carcinoma. Int J Surg Pathol,2005,13(2):135-142.
    1. Brummelkamp TR,Bernards R,Agami R,et al. A system for stable expression of short interfering RNAs in mammalian cells.Science,2002,296(5567): 550-553.
    2. Sui G, Soohoo C, Affarel B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.Proc Natl Acad Sci U S A, 2002, 99(8):5515-5520.
    3. Elbashir SM,Martinez J,Patkaniowska A, et al. Functional anatomy of siRNA for mediating efficient RNAi in Drosophila melanogaster embryo lysate.EMBO J,2001,20(23):6877-6888.
    4. Tuschl T, Elbashir S, Harborth J, et al. Selection of siRNA duplexes from the target mRNA sequence.In: The siRNA user guide.2004.
    5. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol,2004,22(3):326-330.
    6. Napoli C, Lemieux C and Jorgensen R.Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans.Plant Cell,1990,2(4):279-289.
    7. Guo S, Kemphues KJ.par-1,a gene required for establishing polarity in C.elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed.Cell,1995,81(4):611-620.
    8. Fire A,Xu SQ,Montgomery MK,et a1.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature,1998,391(6669): 806-811.
    9. Li H,Li WX,Ding SW.Induction and suppression of RNA silencing by an animal virus.Science,2002,296 (5571):1319-1321.
    10. Kawasaki H and Taira K.Induction of DNA methylation and gene silencing by short interfering RNAs in human cells.Nature,2004,431(7005):211-217.
    11. Morris KV,Chan SW L,Jacobsen SE,et a1.Small interfering RNA-induced transcriptional gene silencing in human cells.Science,2004,305(5688): 1289 -1292.
    12. Grishok A,Pasquinelli AE,Conte D,et a1.Genes and mechanisms related to RNA interference regulate expression of the smal1 temporal RNAs that control C.elegans developmental timing.Cell,2001,106(1):23-24.
    13. Fleming JB,Shen GL,Holloway SE,et a1.Molecular consequences of silencing mutant K-ras in pancreatic cancer cells:justification for K-ras-directed therapy.Mol Cancer Res,2005,3(7):413-423.
    14. Reynolds A,Leake D,Boese Q,et a1.Rational siRNA design for RNA interference.Nat Biotechnol,2004,22(3):326-330.
    15. Schwarz DS,Hutvágner G,Du T,et a1.Asymmetry in the assembly of the RNAi enzyme complex.Cell, 2003,115(2):199-208.
    16. Khvorova A,Reynolds A and Jayasena SD.Functional siRNAs and miRNAs exhibit strand bias.Cell, 2003,115(2):209-216.
    17. Paul CP,Good PD,Winer I,et a1.Effective expression of small interfering RNA in human cells.Nat Biotechno1,2002,20(5):505-508.
    18. Katoh T,Susa M,Suzuki T,et a1.Simple and rapid synthesis of siRNA derived from in vitro transcribed shRNA.Nucleic Acids Res Suppl,2003,(3): 249-250.
    19. Yu JY,DeRuiter SL and Turner DL.RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells.Proc Natl Acad Sci U S A,2002,99(9): 6047-6052.
    20. Miyagishi M and Taira K. U6 promoter-driven siRNAs with four uridine 3’overhangs efficiently suppress targeted gene expression in mammalian cells.Nat Biotechnol,2002,20(5):497-500.
    21. Pai SI,Lin YY and Macaes B.Prospects of RNA interference therapy for cancer.Gene Ther,2006,13(6): 464-477.
    22. Wu HL,Huang LR,Huang CC,et a1. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant. Gastroenterology,2005,128(3):708-716.
    23. Westerhout EM,Ooms M,Vink M,et a1.HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome.Nucleic Acids Res,2005,33(2): 796-804.
    1. Batchu RB,Shammas MA,Wang JY,et a1.Dual level inhibition of E2F-1 activity by adeno-associated virus Rep78.J Biol Chem,2001,276(26): 24315 -24322.
    2. Dong WJ,Wu XB,Liu DP,et a1.Analysis of adeno-associated virus-mediated ex vivo transferred human beta-globin gene in bone marrow engrafted mice. J Biomed Sci,2002,9(3):253-260.
    3. Kay MA,Glorioso JC and Naldini L. Viral vectors for gene therapy:the art of turning infectious agents into vehicles of therapeutics.Nat Med,2001, 7(1):33-40.
    4. Han G,Li Y, Wang J,et a1. Active tolerance induction and prevention of autoimmune diabetes by immunogene therapy using recombinant adenoassociated virus expressing glutamic acid decarboxylase 65 peptide GAD(500-585).J Immunol,2005,174(8):4516-4524.
    5. Kay MA and Nakai H.Looking into the safety of AAV vectors. Nature,2003, 424(6946):251.
    6. Chuah MK, Collen D and VandenDriessche T.Biosafety of adenoviral vectors. Curr Gene Ther,2003,3(6):527-543.
    7. Samulski RJ, Chang LS and Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression.J Virol,1989,63(9):3822-3828.
    8. Duan D,Yue Y,Yan Z,et a1. A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med,2000,6(5):595-598.
    9. Gao GP,Lu F,Sanmiguel JC,et a1. Rep/Cap gene amplification and high-yieldproduction of AAV in an A549 cell line expressing Rep/Cap. Mol Ther,2002,5(5 Pt 1):644-649.
    10. Xiao X,Li J,Samulski RJ,et a1.Production of high-titer recombinant adeno -associated virus vectors in the absence of helper adenovirus.J Virol, 1998, 72(3):2224-2232.
    11.伍志坚,吴小兵,侯云德.一组可提供AAV载体复制和包装功能的重组HSV-1.中华实验和临床病毒学杂志,2002,16(1):74-78.
    12.伍志坚,吴小兵,侯云德.系列腺病毒伴随病毒载体的构建及表达β-半乳糖苷酶的研究.病毒学报,2000,16(1):1-6.
    13.邹蓓艳,陈立,伍志坚,等.肌注腺伴随病毒基因治疗血友病B的安全性研究.病毒学报,2001,17(4):301-306.
    14. Clark KR, Liu X, McGrath JP, et al. Highly purified recombinant adeno -associated virus vectors are biologically active and free of detectable helper and wild-type viruses.Hum Gene Ther,1999, 10(6):1031-1039.
    15. Zolotukhin S, Byrne BJ, Mason E, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther, 1999,6(6):973-985.
    16. Grimm D, Kern A, Rittner K, et al. Novel tools for production and purification of recombinant adenoassociated virus vectors.Hum Gene Ther, 1998,9(18):2745-2760.
    17. Wu XB, Dong XY, Wu ZJ,et al.A novel method for purification of recombinant adenoassociated virus vectors on a large scale. Chinese Science Bulletin,2001,46(6):485-489.
    18.朱东明,李德春,张子祥,等. 2型重组腺相关病毒/增强型绿色荧光蛋白转染胰腺癌细胞PANC-1的体外研究.中华实验外科杂志,2007,24(9):1144.
    19. Chirmule N, Propert K, Magosin S, et al. Immune responses to adenovirus and adeno-associated virus in humans.Gene Ther,1999,6(9):1574-1583.
    20. Bellucci M, De Marchis F, Mannucci R, et al. Jellyfish green fluorescent protein as a useful reporter for transient expression and stable transformation in Medicago sativa L. Plant Cell Rep, 2003,22(5):328-337.
    1. Mahendra G,Kumar S,Isayeva T,et a1.Antiangiogenic cancer gene therapy by adeno-associated virus 2-mediated stable expression of the soluble FMS-like tyrosine kinase-1 receptor. Cancer Gene Ther,2005,12(1):26-34.
    2. Veldwijk MR,Berlinghoff S,Laufs S,et a1. Suicide gene therapy of sarcoma cell lines using recombinant adeno-associated virus 2 vectors. Cancer Gene Ther,2004,l1(8):577-584.
    3.朱东明,李德春,张子祥,等. 2型重组腺相关病毒/增强型绿色荧光蛋白转染胰腺癌细胞PANC 1的体外研究.中华实验外科杂志,2007,24(9):1144.
    4. Yang ZF, Wu XB, Tsui TY,et a1. Recombinant adeno-associated virus vector: Is it ideal for gene delivery in liver transplantation? Liver Transpl, 2003,9(4):411-420.
    5.陈焱,陈方平,王光平等.2型重组腺相关病毒对脐血CD34+造血干/祖细胞的转导条件的优化.临床血液学杂志2006,l9(2):97-100.
    6. Veldwijk MR, Fruehauf S, Schiedlmeier B, et al. Differential expression of a recombinant adeno-associated virus 2 vector in human CD34+ cells and breast cancer cells. Cancer Gene Ther,2000,7(4):597-604.
    7. Koukourakis MI,Giatromanolaki A,Sivridis E,et a1.Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamouscell head-and-neck cancer.Int J Radiat Oncol Biol Phys,2002,53(5):1192-1202.
    8. Giatromanolaki A,Koukourakis MI,Sivridis E,et a1.Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer,2001,85(6):881-890.
    9. Kato Y,Asano K,Mogi T,et al.Clinical significance of circulating vascular endothelial growth factor in dogs with mammary gland tumors.J Vet Med Sci,2007,69(1):77-80.
    10. von Marschall Z, Cramer T, H?cker M,et a1.Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma.Gut,2001,48(1):87-96.
    11. Yuan Y, Hilliard G, Ferguson T,et al. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha.J Biol Chem,2003, 278(18): 15911-15916.
    12. Damert A,Machein M,Breier G,et a1.Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms.Cancer Res,1997,57(17):3860-3864.
    13. H?pfl G, Wenger RH, Ziegler U,et a1. Rescue of hypoxia-inducible factor-1alpha-deficient tumor growth by wild-type cells is independent of vascular endothelial growth factor.Cancer Res,2002,62(10):2962-2970.
    14. Favier J, Plouin PF, Corvol P,et a1.Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors.Am J Pathol,2O02,161(4):1235-1246.
    15. Sato M, Tanaka T, Maeno T,et a1.Inducible expression of endothelial PAS domain protein-1 by hypoxia in human lung adenocarcinoma A549 cells. Role of Src family kinases-dependent pathway.Am J Respir Cell Mol Biol,2002,26(1): 127-134.
    16. Xia G, Kageyama Y, Hayashi T,et a1.Regulation of vascular endothelialgrowth factor transcription by endothelial PAS domain protein 1 (EPAS1) and possible involvement of EPAS1 in the angiogenesis of renal cell carcinoma. Cancer,2001,91(8):1429-1436.
    17. Maemura K, Hsieh CM, Jain MK,et a1.Generation of a dominant-negative mutant of endothelial PAS domain protein 1 by deletion of a potent C-terminal transactivation domain.J Biol Chem,1999,274(44):31565-31570.
    18. Yu EZ,Li YY,Liu XH,et a1.Antiapoptotic action of hypoxia-inducible factor-1 alpha in human endothelial cells.Lab Invest,2004,84(5):553-561.
    19. Akakura N, Kobayashi M, Horiuchi I,et a1.Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation.Cancer Res,2001,61 (17):6548-6554.
    20.Semenza GL.Targeting HIF-1 for cancer therapy.Nat Rev Cancer,2003,3 (10):721-732.
    21. Helton R, Cui J, Scheel JR,et a1.Brain-specific knock-out of hypoxia- inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage.J Neurosci,2005,25(16):4090-41O7.
    22. Guppy M,Brunner S,Buchanan M,et a1.Metabolic depression:a response of cancer cells to hypoxia.Comp Biochem Physiol B Biochem Mol Biol,2005,140(2):233-239.
    23. Wagner KF, Hellberg AK, Balenger S, et al. Hypoxia-induced mitogenic factor has antiapoptotic action and is upregulated in the developing lung: coexpression with hypoxia-inducible factor-2alpha.Am J Respir Cell Mol Biol,2004,31(3):276-282.
    24.孔雷,曹建军,杨为检,等.乳腺癌中缺氧诱导因子-2α,微血管密度与细胞凋亡的关系.中国普通外科杂志,2006,15(4):298-300.
    25. Castro-Rivera E, Ran S, Thorpe P,et al. Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci U S A,2004,101(31):11432-11437.
    26. Yanagisawa M, Kurihara H, Kimura S,et al.A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature,1988;332(6163): 41l -415.
    27.朱东明,李德春,张子祥.缺氧诱导因子2与肿瘤的研究进展.国际外科学杂志, 2007,34(4):255-258.
    28. Zaman K,Ryu H,Hall D,et a1.Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin.J Neurosci,1999,19(22):9821-9830.
    1. Giordano FJ and Johnson RS.Angiogenesis:the role of the microenvironment in flipping the switch. Curr Opin Genet Dev,2001,11(1):35-4O.
    2. Bergers G and Benjamin LE.Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003,3(6):401-410.
    3. Blagosklonny MV. Antiangiogenic therapy and tumor progression.Cancer Cell,2004,5(1):13-17.
    4. AI-Hallaq HA,River JN,Zamora M,et a1. Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation. Int J Radiat Oncol Biol Phys,1998,41(1):151-159.
    5. Carmeliet P,Jain RK. Angiogenesis in cancer and other diseases. Nature, 2000,407(6801):249-257.
    6. Hanahan D and Folkman J.Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis。Cell,1996,86(3):353-364.
    7. Schuch G,Kisker O,Atala A,et a1.Pancreatic tumor growth is regulated by the balance between positive and negative modulators of angiogenesis. Angiogenesis,2002,5(3):181-190.
    8. Folkman J. Tumor angiogenesis:therapeutic implications.N Engl J Med,1971,285(21):1182-1186.
    9. Yancopoulos GD,Davis S,Gale NW,et a1.Vascular-specific growth factors and blood vessel formation. Nature,2000,407(6801):242-248.
    10. Esposito I,Menicagli M,Funel N,et a1. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol,2004,57(6):630-636.
    11. von Marschall Z, Cramer T, H?cker M,et a1. De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop.Gastroenterology,2000,119(5):1358-1372.
    12. Ikeda N,Adachi M,Taki T,et a1.Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer,1999,79(9-10):1553-1563.
    13. Reinblatt M,Pin RH,Bowers WJ,et a1. Herpes simplex virus amplicon delivery of a hypoxia-inducible soluble vascular endothelial growth factor receptor (sFlk-1) inhibits angiogenesis and tumor growth in pancreatic adenocarcinoma . Ann Surg Oncol,2005,12(12):1025-1036.
    14. Weidner N,Semple JP,Welch WR,et a1. Tumor angiogenesis and metastasis -correlation in invasive breast carcinoma. N Engl J Med,1991, 324(1):1-8.
    15. Castro-Rivera E, Ran S, Thorpe P,et al. Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci U S A,2004,101(31):11432-11437.
    16. Fox SB,Braganca J,Turley H,et al. CITED4 inhibits hypoxia-activated transcription in cancer cells, and its cytoplasmic location in breast cancer is associated with elevated expression of tumor cell hypoxia-inducible factor 1alpha. Cancer Res,2004,64(17):6075-6081.
    17. Celinski SA,Fisher WE,Amaya F,et a1. Somatostatin receptor gene transfer inhibits established pancreatic cancer xenografts.J Surg Res,2003,115(1): 41-47.
    18. Kawano K,Iwamura T,Yamanari H,et a1. Establishment and characterization of a novel human pancreatic cancer cell line(SUIT-4) metastasizing to lymphnodes and lungs in nude mice.Oncology,2004,66(6):458-467.
    19. Gao J and Li MM. Establishment and question of Chinese malignant tumor in immunodeficiency animals. Chin J Oncol,1999,21(1):69-72.
    20. Hotz HG,Hines OJ,Masood R,et a1. VEGF antisense therapy inhibits tumor growth and improves survival in experimental pancreatic cancer.Surgery,2005,137(2):192-199.
    21. Nishimori H,Yasoshima T,Denno R,et a1. A new peritoneal dissemination model established from the human pancreatic cancer cell line. Pancreas,2001,22(4):348-356.
    22. Mori T,Fujiwara Y,Yano M,et a1. Prevention of peritoneal metastasis of human gastric cancer cells in nude mice by S-1, a novel oral derivative of 5-Fluorouracil. Oncology,2003,64(2):176-182.
    23. Nishimori H,Yasoshima T,Denno R,et a1. A novel experimental mouse model of peritoneal dissemination of human gastric cancer cells:different mechanisms in perltoneal dissemination and hematogenous metastasis. Jpn J Cancer Res,2O00,91(7):715-722.
    24. Mikami M,Sadahira Y,Haga A,et al. Hypoxia-inducible factor-1 drives the motility of the erythroid progenitor cell line, UT-7/Epo,via autocrine motility factor.Exp Hematol,2005,33(5):531-541.
    25. Bloomstom M,Zervos EE,Rosemurgy AS 2nd.Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Ann Surg Oncol,2002,9(7):668-674.
    26. Gao Y,Wang JJ,Wang GF,et al. Effect of hypoxia on production and secretion of matrix metalloproteinases in tumor cells. Ai Zheng,2005,24 (2):180-183.
    27. Che G,Chen J,Liu L,et a1. Transfection of nm23-H1 increased expression of beta-Catenin, E-Cadherin and TIMP-1 and decreased the expression of MMP-2, CD44v6 and VEGF and inhibited the metastatic potential of human non-small cell lung cancer cell line L9981. Neoplasma,2006,53(6):530-537.
    28. Zheng H,Takahashi H,Murai Y,et a1. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res,2006,26(5A):3579-3583.
    1. Gleadle JM, Ratcliffe PJ .Hypoxia and the regulation of gene expression . Mol Med Today,1998,4(3):122-129.
    2. Tian H,Mcknight SL,Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells.Genes Dev,1997, 11 (1):72-82.
    3. Ema M, Taya S, Yokotani N, et al.A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor-1αregulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A,1997,94(9):4273-4278.
    4. O'Rourke JF,Tian YM,Rateliffe PJ,et al. Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor- 1alpha.J Biol Chem,1999,274(4):2060-2071.
    5. Hosford GE and Olson DM. Effects of hyperoxia on VEGF, its receptors, and HIF-2alpha in the newborn rat lung.Am J Physiol Lung Cell Mol Physiol, 2003,285(1):L161 -L168.
    6. Heidbreder M, Fr?hlich F, J?hren O,et a1.Hypoxia rapidly activates HIF-3 alpha mRNA expression.FASEB J,2003,17(11):1541-1543.
    7. Roux JC, Brismar H, Aperia A,et al. Developmental changes in HIFtranscription factor in carotid body: relevance for O2 sensing by chemoreceptors. Pediatr Res,2005,58(1):53-57.
    8.Li QF,Dai AG. Differential expression of three hypoxia-inducible factor-alpha subunits in pulmonary arteries of rat with hypoxia-induced hypertension. Acta Biochim Biophys Sin (Shanghai), 2005,37(10):665-672.
    9. Favier J,Kempf H,Corvol P,et a1.Coexpression of endothelial PAS protein
    1 with essential angiogenic factors suggests its involvement in human vascular development. Dev Dyn,2001,222(3):377-388.
    10. Hu CJ, Wang LY, Chodosh LA, et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol, 2003,23(24):9361-9374.
    11. Wiesener MS,Turley H,Allen WE, et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha.Blood,1998,92(7):2260-2268.
    12. Elvert G,Lanz S, Kappel A, et al. mRNA cloning and expression studies of the quail homologue of HIF-2alpha. Mech Dev,1999,87(1-2):193-197.
    13. Heidbreder M, Fr?hlich F, J?hren O,et al. Hypoxia rapidly activates HIF-3alpha mRNA expression. FASEB J,2003,17(11):1541-1543.
    14. Elvert G,Kappel A,Heidenreich R,et al. Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1).J Biol Chem,2003, 278(9):7520-7530.
    15.Sivridis E,Giatromanolaki A,Gatter KC,et al.Association of hypoxia -inducible factors 1 alpha and 2 alpha with activated angiogenic pathways and prognosis in patients with endometrial carcinoma.Cancer, 2002,95(5): 1055-1063.
    16.Giatromanolaki A,Sivridis E,Maltezos E,et al. Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J Clin Pathol, 2003,56(3):209-213.
    17.Hopfl G, Ogunshola O and Gassmann M.HIFs and tumors-causes and consequences. Am J Physiol Regul Integr Comp Physiol, 2004, 286(4):R608-623.
    18. Sato M, Tanaka T, Maeno T, et al. Inducible expression of endothelial PAS domain protein-1 by hypoxia in human lung adenocarcinoma A549 cells. Role of Src family kinases-dependent pathway. Am J Respir Cell Mol Biol, 2002,26(1):127-134.
    19. Hui EP, Chan AT, Pezzella F,et al. Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival.Clin Cancer Res, 2002, 8(8):2595-2604.
    20. Lando D,Peet DJ,Whelan DA,et a1.Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch.Science,2002,295(5556):858-861.
    21. Yuan Y, Hilliard G, Ferguson T, et al. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha.J Biol Chem, 2003, 278(18): 15911-15916.
    22. Zimmer M,Doucette D, Siddiqui N,et al. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. Mol Cancer Res, 2004,2(2):89-95.
    23.Raval RR,Lau KW,Tran MG,et al. Contrasting properties of hypoxia- inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol , 2005, 25 (13) :5675-5686.
    24. Egidy G,Eberl LP, Valdenaire O, et al. The endothelin system in human glioblastoma.Lab Invest,2000,80(11):1681-1689.
    25. Naranjo-Suárez S, Castellanos MC, Alvarez-Tejado M, et a1.Down- regulation of hypoxia-inducible factor-2 in PC12 cells by nerve growth factor stimulation.J Biol Chem,2003,278(34):31895-31901.
    26. Asikainen TM, Schneider BK, Waleh NS,et al.Activation of hypoxia- inducible factors in hyperoxia through prolyl 4-hydroxylase blockade incells and explants of primate lung. Proc Natl Acad Sci U S A,2005, 102(29):10212- 10217.
    27. Wada T, Shimba S and Tezuka M. Transcriptional regulation of the hypoxia inducible factor-2alpha (HIF-2alpha) gene during adipose differentiation in 3T3-L1 cells. Biol Pharm Bull,2006,29(1):49-54.
    28.Fath DM, Kong X,Liang D,et a1.Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chem, 2006, 281(19): 13612-13619.
    29. Tanaka T, Akiyama H, Kanai H,et a1.Endothelial PAS domain protein 1 (EPAS1) induces adrenomedullin gene expression in cardiac myocytes: role of EPAS1 in an inflammatory response in cardiac myocytes.J Mol Cell Cardiol,2002,34(7):739-748.
    30. Akeno N,Czyzyk-Krzeska MF,Gross TS,et a1.Hypoxia induces vascular endothelial growth factor gene transcription in human osteoblast-like cells through the hypoxia-inducible factor-2alpha.Endocrinology,2001,142(2): 959 -962.
    31. Takeda N, Maemura K, Imai Y,et al. Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ Res,2004,95(2): 146-153.
    32. Wagner KF, Hellberg AK, Balenger S, et al. Hypoxia-induced mitogenic factor has antiapoptotic action and is upregulated in the developing lung: coexpression with hypoxia-inducible factor-2alpha.Am J Respir Cell Mol Biol, 2004,31(3):276-282.
    33. Eisenhofer G, Huynh TT, Pacak K,et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer, 2004,11(4):897-911.
    34. Liang Y, Li XY, Rebar EJ, et al. Activation of vascular endothelial growthfactor A transcription in tumorigenic glioblastoma cell lines by an enhancer with cell type-specific DNase I accessibility.J Biol Chem, 2002, 227(22): 20087-20094.
    35. Covello KL, Kehler J,Yu H, et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev, 2006, 20(5):557-570.
    36.Peng J,Zhang L,Drysdale L,et al. The transcription factor EPAS-1/hypoxia -inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A, 2000,97(15):8386-8391.
    37. Srisuma S, Biswal SS, Mitzner WA,et al. Identification of genes promoting angiogenesis in mouse lung by transcriptional profiling.Am J Respir Cell Mol Biol, 2003,29(2):172-179.
    38. Giatromanolaki A, Koukourakis MI, Sivridis E,et a1.Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival.Br J Cancer,2001,85(6):881-890.
    39. Shibata T, Giaccia AJ and Brown JM.Development of a hypoxia-responsive vector for tumor-specific gene therapy.Gene Ther,2000,7(6):493-498.
    40. Koukourakis MI, Bentzen SM, Giatromanolaki A,et al. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol, 2006,24(5):727-735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700