靶向PRRSV及其PAM细胞病毒受体基因shRNA重组腺病毒的构建与抑制PRRSV复制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus, PRRSV)为有囊膜的单链正股RNA病毒,属于尼多病毒目动脉炎病毒科,主要引起母猪早产、流产等繁殖障碍,仔猪、育肥猪呼吸困难及育成猪类流感疾病,并可持续性感染,引起免疫抑制,已经成为危害世界养猪业安全的重要病原之一。近年来,高致病性PRRSV的出现,对中国养猪业造成了巨大的损失。然而,目前使用的PRRSV疫苗只能够提供部分的保护力,阻止临床症状的出现,却不能防治PRRSV感染,另外不同毒株间的交叉保护力也较低,研究新型防控策略是分有必要。
     RNA干扰(RNAi)是由小干扰RNA (small interference RNA, siRNA)引发的信使RNA (mRNA)序列特异性消减现象,在真核生物细胞具有基因表达调控的作用,同时又是一种保守的抗病毒机制。siRNA是19-27nt的小分子双链RNA片段,可以由体外转录或载体DNA转录的发夹RNA (short hairpin RNAs, shRNAs)得到。siRNA可以抑制同源的内源或病原mRNA的表达。近年RNAi技术已被用于干扰抑制多种人或畜类病毒的复制和感染研究,提示RNAi作为一个有效的抗病毒策略,具有很大应用前景。本实验室利用pSUPER质粒介导PRRSV特异性shRNA可以有效抑制病毒在MARC-145中的复制增殖。
     本研究构建了表达靶向PRRSV不同基因和不同病毒受体基因shRNA的表达质粒及重组腺病毒,并在体外和体内对表达的shRNA抑制病毒复制和目的基因表达的效果进行了评价。本研究内容分为以下6个部分:
     1.PRRSV基因SYBR Green real-time PCR检测方法的建立
     针对PRRSV S1株和SY0608株的ORF1b基因设计了real-time PCR引物,通过优化反应条件,建立了real-time PCR检测ORF1b基因表达水平的方法。结果表明,建立的real-time PCR方法具有很好的敏感性、特异性和重复性,对PRRSV细胞培养物的检测下限为10~100TCID50。
     2.靶向ORF1b shRNA重组质粒在MARC-145细胞对PRRSV复制的抑制作用
     将靶向PRRSV ORF1b shRNA的重组质粒pSUPER-P2和pSUPER-P3分别转染MARC-145田胞,24h后再感染相同剂量PRRSV,感染PRRSV 48h或72h,采用TCID50, real-time PCR和IFA方法分别检测shRNA重组质粒对PRRSV复制的抑制效果,探明抑制机制。结果为,MARC-145细胞转染pSUPER-P2或pSUPER-P3后,接种PRRSV细胞病变(CPE)明显减轻,病毒TCIDso滴度比PRRSV对照组细胞中的病毒量降低了约100倍;PRRSV ORF1b mRNA和ORF1b蛋白水平比对照明显降低(p<0.05)。证明靶向ORF1基因的shRNA表达质粒能够在MARC-145细胞中有效抑制PRRSV的复制。
     3.靶向PRRSV不同基因的shRNA重组腺病毒的构建与鉴定
     将重组pSUPER (pSUPER-N3, pSUPER-G1, pSUPER-P2和pSUPER-P3)质粒中的PH1-shRNA表达框经PCR扩增后,隆入腺病毒穿梭载体pAdTrack-CMVPCMV启动子下游,重组穿梭载体测序鉴定后,与腺病毒骨架载体共转化BJ5183感受态细胞,获得shRNA腺病毒重组载体。再将重组腺病毒载体经PacI线性化后转染HEK-293A细胞,获得表达针对PRRSV不同阅读框shRNA的重组腺病毒rAd-N3 (ORF7), rAd-G1 (ORF5), rAd-P2 (ORF1b)和rAd-P3 (ORFlb)。同时构建了表达突变shRNA的重组腺病毒rAd-mN3和rAd-mP2,作为腺病毒对照。重组腺病毒接种HEK-293A细胞后72h出现CPE,荧光显微镜检查有GFP。重组病毒滴度均为1010~1011efu/mL。PCR检测重组腺病毒基因组内PH1-shRNA表达框均为阳性。
     4.靶向PRRSV不同基因的shRNA重组腺病毒在体外抑制PRRSV复制的效果的比较
     为验证上述构建的表达shRNA的重组腺病毒(rAd-shRNA)是否能够有效抑制PRRSV的复制,在MARC-145细胞上先别接种500MOI的rAd-shRNA,24小时后感染10MOI的PRRSV S1株;感染PRRSV 48小时后,观察PRRSV引起的CPE程度,并测定PRRSV的滴度;利用PRRSV N蛋白和ORF1b蛋白单克隆抗体及GP5蛋白多抗,采用间接免疫荧光(IFA)的方法检测蛋白含量,用real-time PCR的方法检测与shRNA对应的基因水平。结果表明:(1) shRNA重组腺病毒组CPE明显减轻,TCIDso滴度明显低于rAd-mN3对照组(p<0.05);(2)与对照组相比PRRSV ORF7和ORFlb基因均被其特异性的shRNA抑制了至少100倍;(3)PRRSV N蛋白,GP5蛋白以及ORF1b蛋白的表达量与接种rAd-mN3及只感染PRRSV的对照组相比显著下降。该结果证明本研究构建的rAd-shRNA可以有效抑制PRRSV在MARC-145细胞中的复制。
     为了进一步研究rAd-shRNA是否能在PAM原代细胞中抑制PRRSV复制,在PAM细胞上,按照上述方法接种同样剂量的rAd-shRNA和PRRSV,感染PRRSV 48小时,先观察CPE,用N蛋白单抗检测病毒含量的同时采用real-timePCR的方法分别检测细胞中N蛋白基因的水平,并测定病毒滴度。结果证明:(1)与对照组比,4个靶向PRRSV不同基因shRNA的重组腺病毒,均可以在PAM中有效抑制PRRSV S1株的复制,抑制效力为100~1000倍左右;(2) shRNAs对PRRSV的复制抑制作用随着时间的延长而逐渐减弱;(3) shRNAs对PRRSV的复制抑制作用具有明显的剂量依赖性,即抑制效力随着rAd-shRNA接种剂量的增加而增强;(4)PAM感染PRRSV后再接种rAd-shRNA或同时感染两种病毒时,rAd-N3、rAd-G1、rAd-P2和rAd-P3仍然能够有效地抑制病毒复制。
     5.靶向PRRSV ORFlb的shRNA重组腺病毒在体内外抑制高致病性PRRSV复制抑制效果研究
     选取靶向PRRSV ORFlb的2个重组腺病毒,按上述同样方法在MARC-145细胞上观察其抑制PRRSV传统毒株S1和高致病性毒株SY0608复制效果。结果表明,与表达突变shRNA的rAd-mP2对照组以及PRRSV接毒对照组相比,rAd-P2对S1株和SY0608株的复制均具有明显的抑制作用;而rAd-P3只能有效抑制S1株复制,对SY0608株的抑制作用不明显。
     选取PRRSV阴性猪,制备PAM细胞,用上述同样方法进一步观察rAd-P2抑制SY0608株复制效果。结果显示,rAd-P2可以有效抑制PRRSV细胞病变的产生;与对照相比,PRRSV N蛋白以及细胞内ORFlb mRNA水平均明显降低(p<0.05),且该抑制作用具有剂量依赖性,并随时间的延长逐渐减弱。
     选取20头6周龄PRRSV阴性仔猪,分成4组,每组5头。第1和2组分别肌肉注射rAd-P2和rAd-mP2,4×109TCID50/头,24小时后第1~3组分别肌肉注射PRRSV SY0608株(2×104.0TCID50/头),第4组作为正常对照;接种后隔离饲养观察,每日测量体温和采血。接种PRRSV后第9天,将所有猪只宰杀,进行病理学观察和PRRSV real-time PCR检测。结果为,(1)临床症状:rAd-mP2组和攻毒对照动物,攻毒后第3天起出现体温升高(40.0~42℃),并出现食欲不振,嗜睡,呼吸困难,皮肤发红,眼睑水肿,轻微腹泻和背毛杂乱等临床症状,而rAd-P2组的动物攻毒后第6天才出现体温升高,症状轻于对照组(40.0~41℃),在攻毒后第8天,3头动物出现轻微的临床症状;(2)病理学观察:]Ad-P2组动物的肺部病变明显轻于对照组动物,其中只有3头猪的肺有轻微的间质性肺炎,其余两头猪肺外观无明显病理损伤。肺组织病理切片观察显示,rAd-mP2组和攻毒对照组动物的肺组织出现明显的间质性肺炎,如肺泡壁增厚,单核巨噬淋巴细胞浸润和支气管渗出物增多,而rAd-P2组仅3头动物肺组织出现了轻微的微观病理损伤;(3)病毒血症:对攻毒后第1天和第5天的血清中病毒含量检测,结果显示,攻毒后第5天时rAd-P2组动物的病毒血症与对照组相比,被明显抑制(p<0.05);(4)肺组织中PRRSV检测:rAd-P2组动物肺组织中病毒的平均含量同样明显低于对照组(p<0.05)。该结果表明,rAd-P2表达的shRNA可以在猪体内外有效抑制PRRSV的复制,并推迟动物发病至少3天时间。证明腺病毒载体介导的shRNA在体外和体内均能有效抑制PRRSV的复制,为控制PRRSV感染提供了一种可能的新策略。
     6.表达靶向PRRSV受体基因shRNA重组质粒和重组腺病毒的构建与鉴定
     根据CD151、CD163和CD169(唾液酸黏附素)的基因序列分别设计引物,将扩增的基因片断克隆于pEGFP-N1载体,获得3个EGFP融合表达质粒。并以CD151、CD163和CD169基因为靶基因,设计合成具有小发夹结构的寡核酸序列,经退火成互补双链后,克隆于pSUPER质粒中;利用PCR技术扩增PH1-shRNA表达框,再克隆入重组腺病毒载体,获得表达shRNA的重组腺病毒rAd-151-1和rAd-151-2, rAd-163-1和rAd-163-2、rAd-169-1和rAd-169-2.将shRNA重组质粒与构建的融合表达质粒两两共转染HEK-293A细胞,分别在转染后72小时观察荧光表达情况。结果shRNA质粒共转染细胞中的荧光表达与对照细胞相比均有不同程度的减弱,或表达荧光细胞数的减少。将表达shRNA的重组腺病毒接种PAM细胞,利用CD163和CD169的单克隆抗体检测PAM细胞中相应受体蛋白水平,结果显示实验组荧光细胞数和银光强度低于对照组;将重组腺病毒分别接种PAM后24h,再感染PRRSV S1毒株,24h后检测PRRSV TCID50滴度,结果与对照组无明显差异,针对PRRSV多细胞受体shRNA重组腺病毒联合作用,有待进一步研究。
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped, single-stranded positive-sense RNA virus of the family Arteriviridae in the order Nidovirales. PRRSV is the causative agent of porcine reproductive and respiratory syndrome (PRRS) which characterized by reproductive problems in sows such as premature farrowings, poor farrowing rates, and increased stillbirths, as well as respiratory problems in piglets such as pneumonia and atrophic rhinitis. PRRSV can persist in pigs for a long period of time after initial infection and it may result in immunosuppression. Thus, PRRSV is one of the most economically significant viral diseases in the swine industry. Recently, a highly pathogenic PRRSV spread wildly in many swine herds in China and caused serious economic losses (Li et al.,2007b; Tian et al.,2007). The current commercial PRRSV vaccines are not sufficiently to protect pigs from PRRSV infection. Therefore, it is imperative to develop new antiviral strategies to prevent and control this viral infection.
     RNA interference (RNAi) is a sequence-specific mRNA degradation phenomenon that induced by small interference RNA (siRNA). RNAi is involved in the regulation of genetic functions and provides defense against virus at the posttranscriptional level in mammalian cells. siRNA is a 19 to 27 nucleotide (nt) RNA molecules homologous to the target genes. siRNA could be achieved by in vitro transcription or from short-hairpin RNA (shRNA) expressed by DNA vector. RNAi has been used to suppress a variety of viruses originated from human or animals, which implicated the potential of RNAi as an antiviral strategy.
     shRNAs expressd by pSUPER have been demonstrated could specifically inhibit he replication of PRRSV in MARC-145 cells. However, plasmid shRNA-expressing system is not suitable for in vivo application. In this study, recombinant adenoviruses and plasmids expressing shRNA target to PRRSV genes and viral receptor genes were constructed and the suppression effect on target genes induced by shRNA was examined both in vitro and in vivo The content of this thesis consists of seven parts as the following:
     1. Development of SYBR Green real-time PCR method for detection of PRRSV genes
     Primers specific to the ORFlb of PRRSV S1 and SY0608 isolates were designed, respectively. And a rapid and sensitive method of real-time PCR detection of ORF1b gene was developed after a serial modification of reaction system. The results showed that the real-time PCR detection methods developed in this study were sensitive, specific and repetitive, and the lowest range of the sensitivity of the primers both were 10~100TCID50
     2. Inhibition of PRRSV replication induced by shRNA plasmids targeting ORF1b
     Two shRNA expression vectors, pSUPER-P2 and pSUPER-P3, targeting ORF1b gene of PRRSV were transfected into MARC-145 cells, and infected with identical amount of PRRSV 24h later. At 48h or 72h post-infection, the inhibition effect on PRRSV replication induced by shRNA plasmids and the mechanism were investigated TCID50, real-time PCR and IFA test. The results showed that PRRSV induced cytopathic effect (CPE) could be inhibited in the cells transfected with pSUPER-P2 and pSUPER-P3, and the virus titers were reduced by approximately 100-fold compared to those control cells. The expression of PRRSV ORFlb gene was significantly decreased both at RNA and protein levels in the cells comparing to the controls. It indicated that vector based shRNA targeting ORF1 region could effectively inhibit PRRSV replication in MARC-145 cells.
     3. Construction of recombinant adenoviruses expressing shRNA targeting different PRRSV genes
     RNA-expression cassettes in recombinant pSUPER (pSUPER-N3, pSUPER-G1, pSUPER-P2 and pSUPER-P3) were amplified by PCR and coloned into adenovirus shuttle vector pAdTrack-CMV, under the control of Pcmv promotor. The recombinant shuttle vectors were identified by sequencing and cotransformed with the pAdEasy-1 into E.coli BJ5183 by electroporation and the recombinant adenoviral vectors were generated by homologous recombination. The resultant adenoviral plasmids were linearized by Pac I, and were transfected into HEK-293A cells. The production of recombinant adenoviruses rAd-N3 (ORF7), rAd-G1 (ORF5), rAd-P2 (ORFlb) and rAd-P3 (ORF1b) were obtained. The mutant shRNA expressing adenoviruses rAd-mN3 and rAd-mP2 were constructed as controls. All the recombinant adenoviruses could express GFP and induce CPE 72h after infecton in HEK-293A cells, and all the adenoviruses could reach a titer of 1010~1011efu/mL. Detection of PH1-shRNA in the genome of the recombinant adenoviruses was all positive.
     4. Comparison of inhibition effect on PRRSV replication induced by rAd-shRNA targeting different viral genes in vitro
     To examine whether the shRNA expressing adenovirus could suppress PRRSV replication effectively, MARC-145 cells were first inoculated with 500MOI rAd-shRNAs individually; 24h later, the cells were challenged withlOMOI PRRSV; At 48h after infection with PRRSV, the cells were examined for GFP expression and CPE, and the culture supernatants were collected and virus yields were detected by TCID50. PRRSV N, ORFlb and GP5 protein were investigated by indirect immunofluorescence (IFA) using specific antibody accordingly, and the shRNA targeting genes were detected by real-time PCR using specific primers. It showed that (1) PRRSV induced CPE and viral titers were decreased in the four rAd-shRNA incoculated cells as compared to rAd-mN3 control (p<0.05); (2) PRRSV ORF7 and ORF1b genes were suppressed by 100-fold relative to control; (3) The level of N, GP5 and ORF1b protein were significantly reduced compared to rAd-mN3 and PRRSV challenge control groups. It indicated that adenoviruses expressing shRNA could inhibit PRRSV replication in MARC-145 cells.
     To determine whether rAd-shRNAs could inhibit PRRSV replication in primary PAM cells, PAM cells were submitted to the same treatment as in MARC-145 cells; At 48h after PRR.SV infection, the cells were examined for CPE, and PRRSV ORF7 gene expression in the cells was investigated by IFA using N protein monoclonal antibody and real-time PCR. The results demonstrated that (1) the four shRNAs targeting different PRRSV genes could all suppress viral replication in PAM cells by 100~1000 fold;(2)The suppression effect induced by shRNA was reduced over time; (3) The suppression effect was dose-dependent on shRNA quantity as inoculation of more rAd-shRNA could induce stronger antiviral effect; (4)rAd-N3、rAd-G1、rAd-P2 and rAd-P3 could inhibit PRRSV replication in PAM previously or simultaneously infected with PRRSV
     5. The inhibition of high pathogenic PRRSV replication induced by rAd-shRNA targeting ORF lb gene both in vitro and in vivo
     The inhibition effect induced by rAd-P2 and rAd-P3 on the replication of PRRSV traditional S1 strain and high pathogenic SY0608 strain was investigated first in MARC-145 cells. It showed that PRRSV S1 and SY0608 could be both suppressed by rAd-P2, whereas rAd-P3 could not inhibit SY0608 strain as effective as S1 strain.
     PAM cells were isolated from PRRSV negative pig, and the antiviral effect induced by rAd-P2 was further examined on PAM cells. The results showed that rAd-P2 was competent to inhibit PRRSV CPE in PAM and the level of N protein and ORF1b mRNA were significantly reduced as compared to control groups. And the inhibition effect was dose-dependent on shRNA and reduced over time.
     Twenty 6-week old PRRSV negative pigs were devided into four groups,5 for each. Group 1 and 2 were intramuscularly inoculated with 4×109TCID50 of rAd-P2 each pig,24h later, pigs in group 1~3 were challenged with 2×1040 TCID50 of PRRSV SY0608, and group 4 was treated as a control. Pigs were observed separately, and body temperature data and blood were collected everyday. At 9d post-challenge, all the pigs were euthanized and necropsied, and submitted to pathological examination and real-time PCR detection. The results showed that (1) clinical signs: The rAd-mP2 inoculated group and virus control group developed high fever (40.0~42℃) from 3 dpc, and displayed a range of clinical signs, including inappetence, lethargy, dyspnoea, red skin, eyelid oedema, lightly diarrhea and rough hair coats. However, piglets inoculated with rAd-P2 showed fever which only started from 6 dpc and clinical sighs were milder (40.0~41℃). At 8 dpc, three pigs in rAd-P2 group also showed light inappetence and lethargy. (2) pathological examination:the extent of lung lesions in rAd-P2 group was significant low than controls, three pigs developed milder interstitial pneumonia and the other two have no clear pathological lesions. Lung tissue chips observation showed that pigs in rAd-mP2 and virus control group developed clear interstitial pneumonia as thickened alveolar walls, infiltration with intensive macrophage lymphomononuclear cells, and increased amounts of bronchiole exudates. But only three piglets in rAd-P2 group showed minor microscopic lesions of lung. (3) viremia:PRRSV in serum samples collected on 1d and 5d post-chanllenge were detected and it demonstrated that the level of viremia in rAd-P2 pigs was much lower than control groups on 5d post-chanllenge (p<0.05); (4) PRRSV quantity in lung:the average amount of PRRSV in lung from rAd-P2 inoculated pigs was significantly lower than control group (p<0.05). The results proved that shRNA expressed by rAd-P2 could suppress PRRSV replication in vivo, and delay the onset of disease for at least 3 days. It demonstrated that shRNA directed by adenovirus could inhibit PRRSV replication both in vitra and in vivo and provide a novel potential anti-PRRSV strategy.
     6. Construction and identification of plasmids and recombinant adenoviruses expressing shRNA targeting PRRSV receptor genes
     Primers were designed according to the sequences of CD151、CD 163 and CD 169 (sialoadhesin) genes. The genes were cloned into pEGFP-N1. Three EGFP-fusion expression plasmids were constructed. siRNAs were designed according to the genes of CD151、CD 163 and CD 169, respectively. Short-hairpin oligos were synthesized and coloned into pSUPER after annealing. PH1-shRNA cassettes were amplified from positive recombinant plasmids by PCR and coloned into recombinant adenovirus vector. The recombinant adenoviruses expressing shRNA (rAd-151-1、rAd-151-2、rAd-163-1、rAd-163-2、rAd-169-1 and rAd-169-2) were obtained
     EGFP fusion-expression plasmids were cotransfected with shRNA-expressing plasmid accordingly into HEK-293A cells. The EGFP expression was observed at 72h post-transfection. The results showed that EGFP in cells transfected with shRNA-expressing plasmids was decreased as compared to control cells. CD 163 and CD 169 on PAM inoculated with rAd-shRNA were detected by monoclonal antibody accordingly, and it showed that the amount and intensity of fluorescences were relatively lower than control cells. Furtherly, PAM cells were inoculated with rAd-shRNAs individually before PRRSV infection. At 24h after PRRSV challenge, viral titers showed that there was no significant difference between rAd-shRNA inoculated cells and control cells. The cooperation of shRNA targeting to multiple PRRSV receptor genes is needed to be investigated.
引文
[1]Collins JE, Benfield DA, Christianson WT, et al. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs [J]. J Vet Diagn Invest 1992,4(2):117-126.
    [2]Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus [J]. Vet Q 1991,13(3):121-130.
    [3]Keffaber K. Reproductive failure of unknown etiology [J]. Am Assoc Swine Pract News 1989,2:1-10.
    [4]Baron T. Albina E.Leforban Y ea. Report on the first outbreaks of the porcine reproductive and respiratory syndrome (PRRS) in France.Diagnosis and viral isolation [J]. Ann Rech Vet 1992,23(2):161-166.
    [5]Dea S, Bilodeau R, Athanaseous R, et al. PRRS syndrome in Quebec:isolation of a virus serologically related to Lelystad virus[J]. Vet Rec 1992,130(8):167.
    [6]郭宝清,陈章水,刘文兴等.从疑似PRRS流产胎儿分离PRRSV的研究[J].中国畜禽传染病1996,2:1-4.
    [7]Meng XJ, Paul PS, Halbur PG, et al. Phylogenetic analyses of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV):implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe [J]. Arch Virol 1995,140(4):745-755.
    [8]Nelsen CJ, Murtaugh MP, Faaberg KS. Porcine reproductive and respiratory syndrome virus comparison:divergent evolution on two continents[J]. J Virol 1999,73(1):270-280.
    [9]Li Y, Wang X, Bo K, et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China [J]. Vet J 2007,174(3):577-584.
    [10]Tong GZ, Zhou YJ, Hao XF, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China[J]. Emerg Infect Dis 2007,13(9):1434-1436.
    [11]Zhou YJ, Hao XF, Tian ZJ, et al. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China [J]. Transbound Emerg Dis 2008,55(3-4):152-164.
    [12]Dea S, Gagnon CA, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates[J]. Arch Virol 2000,145(4):659-688.
    [13]Meulenberg JJ, Petersen-den Besten A, De Kluyver EP, et al. Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus[J]. Virology 1995,206(1):155-163.
    [14]Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses [J]. J Gen Virol 1998,79 (Pt 5):961-979.
    [15]Mardassi H, Massie B, Dea S. Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus [J]. Virology 1996,221(1):98-112.
    [16]Mardassi H, Mounir S, Dea S. Molecular analysis of the ORFs 3 to 7 of porcine reproductive and respiratory syndrome virus, Quebec reference strain [J]. Arch Virol 1995,140(8):1405-1418.
    [17]Meulenberg JJ, Petersen-den Besten A. Identification and characterization of a sixth structural protein of Lelystad virus:the glycoprotein GP2 encoded by ORF2 is incorporated in virus particles [J]. Virology 1996,225(1):44-51.
    [18]Meulenberg JJ, Petersen-den Besten A, de Kluyver EP, et al. Characterization of structural proteins of Lelystad virus [J]. Adv Exp Med Biol 1995,380:271-276.
    [19]Pol JM, van Dijk JE, Wensvoort G, et al. Pathological, ultrastructural, and immunohistochemical changes caused by Lelystad virus in experimentally induced infections of mystery swine disease (synonym:porcine epidemic abortion and respiratory syndrome (PEARS)) [J]. Vet Q 1991,13(3):137-143.
    [20]Suarez P. Ultrastructural pathogenesis of the PRRS virus [J]. Vet Res 2000,31(1):47-55.
    [21]Allende R, Laegreid WW, Kutish GF, et al. Porcine reproductive and respiratory syndrome virus: description of persistence in individual pigs upon experimental infection [J]. J Virol 2000,74(22):10834-10837.
    [22]Allende R, Lewis TL, Lu Z, et al. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions [J]. J Gen Virol 1999,80(Pt 2):307-315.
    [23]den Boon JA, Faaberg KS, Meulenberg JJ, et al. Processing and evolution of the N-terminal region of the arterivirus replicase ORFla protein:identification of two papainlike cysteine proteases [J]. J Virol 1995,69(7):4500-4505.
    [24]Grebennikova TV, Zaberezhnyi AD, Musienko MI, et al. [Analysis of genome determinants of virulence and setting-up of a library of full-size genome copies of the attenuated virus strain of the porcine reproductive and respiratory syndrome virus North American type] [J]. Vopr Virusol 2004,49(3):56-63.
    [25]Halbur PG, Paul PS, Frey ML, et al. Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus [J]. Vet Pathol 1995,32(6):648-660.
    [26]Shen S, Kwang J, Liu W, et al. Determination of the complete nucleotide sequence of a vaccine strain of porcine reproductive and respiratory syndrome virus and identification of the Nsp2 gene with a unique insertion [J]. Arch Virol 2000,145(5):871-883.
    [27]Snijder EJ, van Tol H, Pedersen KW, et al. Identification of a novel structural protein of arteriviruses [J]. J Virol 1999,73(8):6335-6345.
    [28]Meng XJ, Paul PS, Halbur PG, et al. Sequence comparison of open reading frames 2 to 5 of low and high virulence United States isolates of porcine reproductive and respiratory syndrome virus [J]. J Gen Virol 1995,76 (Pt 12):3181-3188.
    [29]Morozov I, Meng XJ, Paul PS. Sequence analysis of open reading frames (ORFs) 2 to 4 of a U.S. isolate of porcine reproductive and respiratory syndrome virus [J]. Arch Virol 1995,140(7):1313-1319.
    [30]Wieringa R, de Vries AA, Rottier PJ. Formation of disulfide-linked complexes between the three minor envelope glycoproteins (GP2b, GP3, and GP4) of equine arteritis virus [J]. J Virol 2003,77(11):6216-6226.
    [31]Wieringa R, De Vries AA, Post SM, et al. Intra-and intermolecular disulfide bonds of the GP2b glycoprotein of equine arteritis virus:relevance for virus assembly and infectivity [J]. J Virol 2003,77(24):12996-13004.
    [32]Mardassi H, Gonin P, Gagnon CA, et al. A subset of porcine reproductive and respiratory syndrome virus GP3 glycoprotein is released into the culture medium of cells as a non-virion-associated and membrane-free (soluble) form [J]. J Virol 1998,72(8):6298-6306.
    [33]Meulenberg JJ, Hulst MM, de Meijer EJ, et al. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV [J]. Virology 1993,192(1):62-72.
    [34]Murtaugh MP, Elam MR, Kakach LT. Comparison of the structural protein coding sequences of the VR-2332 and Lelystad virus strains of the PRRS virus [J]. Arch Virol 1995,140(8):1451-1460.
    [35]Yoon KJ, Wu LL, Zimmerman JJ, et al. Field isolates of porcine reproductive and respiratory syndrome virus (PRRSV) vary in their susceptibility to antibody dependent enhancement (ADE) of infection [J]. Vet Microbiol 1997,55(1-4):277-287.
    [36]Wissink EH, Kroese MV, van Wijk HA, et al. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus [J]. J Virol 2005,79(19):12495-12506.
    [37]Pirzadeh B, Gagnon CA, Dea S. Genomic and antigenic variations of porcine reproductive and respiratory syndrome virus major envelope GP5 glycoprotein [J]. Can J Vet Res 1998,62(3):170-177.
    [38]Nodelijk G, Nielen M, De Jong MC, et al. A review of porcine reproductive and respiratory syndrome virus in Dutch breeding herds:population dynamics and clinical relevance [J]. Prev Vet Med 2003,60(1):37-52.
    [39]Suarez P, Zardoya R, Martin MJ, et al. Phylogenetic relationships of european strains of porcine reproductive and respiratory syndrome virus (PRRSV) inferred from DNA sequences of putative ORF-5 and ORF-7 genes [J]. Virus Res 1996,42(1-2):159-165.
    [40]Faaberg KS, Palmer GA, Even C, et al. Differential glycosylation of the ectodomain of the primary envelope glycoprotein of two strains of lactate dehydrogenase-elevating virus that differ in neuropathogenicity [J]. Virus Res 1995,39(2-3):331-340.
    [41]Li K, Chen Z, Plagemann P. The neutralization epitope of lactate dehydrogenase-elevating virus is located on the short ectodomain of the primary envelope glycoprotein [J]. Virology 1998,242(2):239-245.
    [42]Pirzadeh B, Dea S. Monoclonal antibodies to the ORF5 product of porcine reproductive and respiratory syndrome virus define linear neutralizing determinants [J]. J Gen Virol 1997,78 (Pt 8):1867-1873.
    [43]Faaberg KS, Hocker JD, Erdman MM, et al. Neutralizing antibody responses of pigs infected with natural GP5 N-glycan mutants of porcine reproductive and respiratory syndrome virus [J]. Viral Immunol 2006,19(2):294-304.
    [44]Plagemann PG. The primary GP5 neutralization epitope of North American isolates of porcine reproductive and respiratory syndrome virus [J]. Vet Immunol Immunopathol 2004,102(3):263-275.
    [45]Plagemann PG. GP5 ectodomain epitope of porcine reproductive and respiratory syndrome virus, strain Lelystad virus [J]. Virus Res 2004,102(2):225-230.
    [46]Batista L, Pijoan C, Dee S, et al. Virological and immunological responses to porcine reproductive and respiratory syndrome virus in a large population of gilts [J]. Can J Vet Res 2004,68(4):267-273.
    [47]Vashisht K, Goldberg TL, Husmann RJ, et al. Identification of immunodominant T-cell epitopes present in glycoprotein 5 of the North American genotype of porcine reproductive and respiratory syndrome virus [J]. Vaccine 2008,26(36):4747-4753.
    [48]Rossow KD. Porcine reproductive and respiratory syndrome [J]. Vet Pathol 1998,35(1):1-20.
    [49]Fernandez A, Suarez P, Castro JM, et al. Characterization of regions in the GP5 protein of porcine reproductive and respiratory syndrome virus required to induce apoptotic cell death [J]. Virus Res 2002,83(1-2):103-118.
    [50]Kapur V, Elam MR, Pawlovich TM, et al. Genetic variation in porcine reproductive and respiratory syndrome virus isolates in the midwestern United States [J]. J Gen Virol 1996,77 (Pt 6):1271-1276.
    [51]Gagnon CA, Dea S. Differentiation between porcine reproductive and respiratory syndrome virus
    isolates by restriction fragment length polymorphism of their ORFs 6 and 7 genes [J]. Can J Vet Res 1998,62(2):110-116.
    [52]Delputte PL, Vanderheijden N, Nauwynck HJ, et al. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages [J]. J Virol 2002,76(9):4312-4320.
    [53]Bautista EM, Meulenberg JJ, Choi CS, et al. Structural polypeptides of the American (VR-2332) strain of porcine reproductive and respiratory syndrome virus [J]. Arch Virol 1996,141(7):1357-1365.
    [54]Mardassi H, Athanassious R, Mounir S, et al. Porcine reproductive and respiratory syndrome virus: morphological, biochemical and serological characteristics of Quebec isolates associated with acute and chronic outbreaks of porcine reproductive and respiratory syndrome [J]. Can J Vet Res 1994,58(1):55-64.
    [55]Nelson EA, Christopher-Hennings J, Drew T, et al. Differentiation of U.S. and European isolates of porcine reproductive and respiratory syndrome virus by monoclonal antibodies [J]. J Clin Microbiol 1993,31(12):3184-3189.
    [56]Magar R, Larochelle R, Dea S, et al. Antigenic comparison of Canadian and US isolates of porcine reproductive and respiratory syndrome virus using monoclonal antibodies to the nucleocapsid protein [J]. Can J Vet Res 1995,59(3):232-234.
    [57]Mardassi H, Mounir S, Dea S. Identification of major differences in the nucleocapsid protein genes of a Quebec strain and European strains of porcine reproductive and respiratory syndrome virus [J]. J Gen Virol 1994,75 (Pt 3):681-685.
    [58]Rowland RR, Yoo D. Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein:a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences [J]. Virus Res 2003,95(1-2):23-33.
    [59]Nauwynck HJ, Duan X, Favoreel HW, et al. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis [J]. J Gen Virol 1999,80 (Pt 2):297-305.
    [60]Doan DN, Dokland T. Structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus [J]. Structure 2003,11(11):1445-1451.
    [61]Le Gall A, Legeay O, Bourhy H, et al. Molecular variation in the nucleoprotein gene (ORF7) of the porcine reproductive and respiratory syndrome virus (PRRSV) [J]. Virus Res 1998,54(1):9-21.
    [62]Vanderheijden N, Delputte P, Nauwynck H, et al. Effects of heparin on the entry of porcine reproductive and respiratory syndrome virus into alveolar macrophages [J]. Adv Exp Med Biol 2001,494:683-689.
    [63]Duan X, Nauwynck HJ, Favoreel HW, et al. Identification of a putative receptor for porcine reproductive and respiratory syndrome virus on porcine alveolar macrophages [J]. J Virol 1998,72(5):4520-4523.
    [64]Vanderheijden N, Delputte PL, Favoreel HW, et al. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages [J]. J Virol 2003,77(15):8207-8215.
    [65]Delputte PL, Costers S, Nauwynck HJ. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization:distinctive roles for heparan sulphate and sialoadhesin [J]. J Gen Virol 2005,86(Pt 5):1441-1445.
    [66]Calvert JG, Slade DE, Shields SL, et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses [J]. J Virol 2007,81(14):7371-7379.
    [67]Sarrias MR, Gronlund J, Padilla O, et al. The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system [J]. Crit Rev Immunol 2004,24(1):1-37.
    [68]Van Gorp H, Van Breedam W, Delputte PL, et al. Sialoadhesin and CD 163 join forces during entry of the porcine reproductive and respiratory syndrome virus [J]. J Gen Virol 2008,89(Pt 12):2943-2953.
    [69]Kim JK, Fahad AM, Shanmukhappa K, et al. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10 [J]. J Virol 2006,80(2):689-696.
    [70]Shanmukhappa K, Kim JK, Kapil S. Role of CD151, A tetraspanin, in porcine reproductive and respiratory syndrome virus infection[J]. Virol J 2007,4:62.
    [71]Hasegawa H, Nomura T, Kishimoto K, et al. SFA-1/PETA-3 (CD151), a member of the transmembrane 4 superfamily, associates preferentially with alpha 5 beta 1 integrin and regulates adhesion of human T cell leukemia virus type 1-infected T cells to fibronectin [J]. J Immunol 1998,161(6):3087-3095.
    [72]Fitter S, Sincock PM, Jolliffe CN, et al. Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha Ⅱb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion [J]. Biochem J 1999,338 (Pt 1):61-70.
    [73]Roberts JJ, Rodgers SE, Drury J, et al. Platelet activation induced by a murine monoclonal antibody directed against a novel tetra-span antigen [J]. Br J Haematol 1995,89(4):853-860.
    [74]Sincock PM, Fitter S, Parton RG, et al. PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function [J]. J Cell Sci 1999,112 (Pt
    6):833-844.
    [75]张平英,程安春,汪铭书,等.间接免疫酶组织化学检测猪繁殖与呼吸综合征病毒在人工感染仔猪体内的分布规律[J].黑龙江畜牧兽医2007,7:3-5.
    [76]颜其贵,郭万柱.猪繁殖与呼吸综合征病毒SCQ株的仔猪回归试验及病毒在体内的分布研究[J].中国兽医杂志2007,43(3):21-22.
    [77]Halbur PG, Miller LD, Paul PS, et al. Immunohistochemical identification of porcine reproductive and respiratory syndrome virus (PRRSV) antigen in the heart and lymphoid system of three-week-old colostrum-deprived pigs [J]. Vet Pathol 1995,32(2):200-204.
    [78]Thanawongnuwech R, Thacker EL, Halbur PG Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs):in vitro comparisons with pulmonary alveolar macrophages (PAM) [J]. Vet Immunol Immunopathol 1997,59(3-4):323-335.
    [79]Rovira A, Balasch M, Segales J, et al. Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2 [J]. J Virol 2002,76(7):3232-3239.
    [80]Sur JH, Doster AR, Osorio FA. Apoptosis induced in vivo during acute infection by porcine reproductive and respiratory syndrome virus [J]. Vet Pathol 1998,35(6):506-514.
    [81]Suarez P, Diaz-Guerra M, Prieto C, et al. Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis [J]. J Virol 1996,70(5):2876-2882.
    [82]Cancel-Tirado SM, Evans RB, Yoon KJ. Monoclonal antibody analysis of porcine reproductive and respiratory syndrome virus epitopes associated with antibody-dependent enhancement and neutralization of virus infection [J]. Vet Immunol Immunopathol 2004,102(3):249-262.
    [83]Yoon KJ, Wu LL, Zimmerman JJ, et al. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs [J]. Viral Immunol 1996,9(1):51-63.
    [84]Plana Duran J, Climent I, Sarraseca J, et al. Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 proteins in protection [J]. Virus Genes 1997,14(1):19-29.
    [85]van Woensel PA, Liefkens K, Demaret S. Effect on viraemia of an American and a European serotype PRRSV vaccine after challenge with European wild-type strains of the virus [J]. Vet Rec 1998,142(19):510-512.
    [86]Bastos RG, Dellagostin OA, Barletta RG, et al. Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus [J]. Vaccine 2002,21(1-2):21-29.
    [87]杨润生.猪繁殖呼吸综合征免疫接种[J].国外畜牧兽医学:猪与禽2000,5:58-59.
    [88]郭宝清,蔡雪晖,刘文兴,等.猪繁殖与呼吸综合征灭活苗的研制[J].中国预防兽医学报2000,22(4):259-262.
    [89]Charerntantanakul W, Platt R, Johnson W, et al. Immune responses and protection by vaccine and various vaccine adjuvant candidates to virulent porcine reproductive and respiratory syndrome virus [J]. Vet Immunol Immunopathol 2006,109(1-2):99-115.
    [90]Nielsen TL, Nielsen J, Have P, et al. Examination of virus shedding in semen from vaccinated and from previously infected boars after experimental challenge with porcine reproductive and respiratory syndrome virus [J]. Vet Microbiol 1997,54(2):101-112.
    [91]Mengeling WL, Lager KM, Vorwald AC, et al. Comparative safety and efficacy of attenuated single-strain and multi-strain vaccines for porcine reproductive and respiratory syndrome [J]. Vet Microbiol 2003,93(1):25-38.
    [92]Mortensen S, Stryhn H, Sogaard R, et al. Risk factors for infection of sow herds with porcine reproductive and respiratory syndrome (PRRS) virus [J]. Prev Vet Med 2002,53(1-2):83-101.
    [93]Hou YH, Chen J, Tong GZ, et al. A recombinant plasmid co-expressing swine ubiquitin and the GP5 encoding-gene of porcine reproductive and respiratory syndrome virus induces protective immunity in piglets [J]. Vaccine 2008,26(11):1438-1449.
    [94]Jiang Y, Fang L, Xiao S, et al. A suicidal DNA vaccine co-expressing two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus antigens induce protective responses [J]. Biotechnol Lett 2009,31(4):509-518.
    [95]Pirzadeh B, Dea S. Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus [J]. J Gen Virol 1998,79 (Pt 5):989-999.
    [96]Xue Q, Zhao YG, Zhou YJ, et al. Immune responses of swine following DNA immunization with plasmids encoding porcine reproductive and respiratory syndrome virus ORFs 5 and 7, and porcine IL-2 and IFNgamma [J]. Vet Immunol Immunopathol 2004,102(3):291-298.
    [97]Li J, Jiang P, Li Y, et al. HSP70 fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus enhanced the immune responses and protective efficacy against virulent PRRSV challenge in pigs [J]. Vaccine 2009,27(6):825-832.
    [98]Jiang W, Jiang P, Wang X, et al. Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus [J]. Virus Res 2008,136(1-2):50-57.
    [99]Qiu HJ, Tian ZJ, Tong GZ, et al. Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets [J]. Vet Immunol Immunopathol 2005,106(3-4):309-319.
    [100]Jiang Y, Fang L, Xiao S, et al. Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus [J]. Vaccine 2007,25(3):547-560.
    [101]Wang S, Fang L, Fan H, et al. Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus [J]. Vaccine 2007,25(49):8220-8227.
    [102]智海东,王云峰,张晶,等.表达猪繁殖与呼吸综合征病毒CH-1a株核衣壳蛋白重组鸡痘病毒的构建[J].中国预防兽医学报2007,29(1):1-4.
    [1]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature 1998,391(6669):806-811.
    [2]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature 2001,411(6836):494-498.
    [3]Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs [J]. Genes Dev 2001,15(2):188-200.
    [4]Raab RM, Stephanopoulos G. Dynamics of gene silencing by RNA interference [J]. Biotechnol Bioeng 2004,88(1):121-132.
    [5]Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells [J]. Proc Natl Acad Sci U S A 2002,99(9):6047-6052.
    [6]Yang D, Buchholz F, Huang Z, et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells [J]. Proc Natl Acad Sci U S A 2002,99(15):9942-9947.
    [7]Castanotto D, Rossi JJ. Construction and transfection of PCR products expressing siRNAs or shRNAs in mammalian cells[J]. Methods Mol Biol 2004,252:509-514.
    [8]Sui G, Soohoo C, Affar el B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells [J]. Proc Natl Acad Sci U S A 2002,99(8):5515-5520.
    [9]Ong ST, Li F, Du J, et al. Hybrid cytomegalovirus enhancer-hl promoter-based plasmid and baculovirus vectors mediate effective RNA interference [J]. Hum Gene Ther 2005,16(12):1404-1412.
    [10]Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference[J]. Cancer Cell 2002,2(3):243-247.
    [11]Kohn DB, Sadelain M, Dunbar C, et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells [J]. Mol Ther 2003,8(2):180-187.
    [12]Xia H, Mao Q, Paulson HL, et al. siRNA-mediated gene silencing in vitro and in vivo [J]. Nat Biotechnol 2002,20(10):1006-1010.
    [13]Dittgen T, Nimmerjahn A, Komai S, et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo [J]. Proc Natl Acad Sci U S A 2004,101(52):18206-18211.
    [14]Bahi A, Boyer F, Kolira M, et al. In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour [J]. J Neurochem 2005,92(5):1243-1255.
    [15]MacKenzie TC, Kobinger GP, Kootstra NA, et al. Efficient transduction of liver and muscle after
    in utero injection of lentiviral vectors with different pseudotypes [J]. Mol Ther 2002,6(3):349-358.
    [16]Relph KL, Harrington KJ, Pandha H. Adenoviral strategies for the gene therapy of cancer [J]. Semin Oncol 2005,32(6):573-582.
    [17]Xia H, Mao Q, Eliason SL, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia [J]. Nat Med 2004,10(8):816-820.
    [18]Moore MD, McGarvey MJ, Russell RA, et al. Stable inhibition of hepatitis B virus proteins by small interfering RNA expressed from viral vectors [J]. J Gene Med 2005,7(7):918-925.
    [19]Tomar RS, Matta H, Chaudhary PM. Use of adeno-associated viral vector for delivery of small interfering RNA [J]. Oncogene 2003,22(36):5712-5715.
    [20]Babcock AM, Standing D, Bullshields K, et al. In vivo inhibition of hippocampal Ca2+/calmodulin-dependent protein kinase Ⅱ by RNA interference [J]. Mol Ther 2005,11(6):899-905.
    [21]Oliveira S, Fretz MM, Hogset A, et al. Photochemical internalization enhances silencing of epidermal growth factor receptor through improved endosomal escape of siRNA [J]. Biochim Biophys Acta 2007,1768(5):1211-1217.
    [22]Oliveira S, van Rooy I, Kranenburg O, et al. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes [J]. Int J Pharm 2007,331(2):211-214.
    [23]Bartlett DW, Davis ME. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles [J]. Biotechnol Bioeng 2008,99(4):975-985.
    [24]Bergstrom CT, McKittrick E, Antia R. Mathematical models of RNA silencing:unidirectional amplification limits accidental self-directed reactions [J]. Proc Natl Acad Sci U S A 2003,100(20):11511-11516.
    [25]Groenenboom MA, Maree AF, Hogeweg P. The RNA silencing pathway:the bits and pieces that matter [J]. PLoS Comput Biol 2005,1(2):155-165.
    [26]Takahashi Y, Yamaoka K, Nishikawa M, et al. Moment analysis for kinetics of gene silencing by RNA interference [J]. Biotechnol Bioeng 2006,93(4):816-819.
    [27]Arciero JC. A mathematical model of tumor-immune evasion and siRNA treatment [J]. Discrete Cont Dyn-B 2004,4:39-58.
    [28]Bartlett DW, Davis ME. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging [J]. Nucleic Acids Res 2006,34(1):322-333.
    [29]Bartlett DW, Su H, Hildebrandt IJ, et al. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging [J]. Proc Natl Acad Sci U S A 2007,104(39):15549-15554.
    [30]Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study [J]. Science 1996,273(5283):1856-1862.
    [31]Qin XF, An DS, Chen IS, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5 [J]. Proc Natl Acad Sci U S A 2003,100(1):183-188.
    [32]Novina CD, Murray MF, Dykxhoorn DM, et al. siRNA-directed inhibition of HIV-1 infection [J]. Nat Med 2002,8(7):681-686.
    [33]Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference [J]. Nature 2002,418(6896):435-438.
    [34]Yamamoto T, Omoto S, Mizuguchi M, et al. Double-stranded nef RNA interferes with human immunodeficiency virus type 1 replication [J]. Microbiol Immunol 2002,46(11):809-817.
    [35]Lau TS, Li Y, Kameoka M, et al. Suppression of HIV replication using RNA interference against HIV-1 integrase [J]. FEBS Lett 2007,581(17):3253-3259.
    [36]Park WS, Miyano-Kurosaki N, Hayafune M, et al. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference [J]. Nucleic Acids Res 2002,30(22):4830-4835.
    [37]Surabhi RM, Gaynor RB. RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication [J]. J Virol 2002,76(24):12963-12973.
    [38]Hayafune M, Miyano-Kurosaki N, Takaku H, et al. Silencing of HIV-1 gene expression by siRNAs in transduced cells [J]. Nucleosides Nucleotides Nucleic Acids 2006,25(7):795-799.
    [39]Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi) [J]. Oncogene 2002,21(37):5716-5724.
    [40]Tuschl T. Expanding small RNA interference [J]. Nat Biotechnol 2002,20(5):446-448.
    [41]Martinez MA, Gutierrez A, Armand-Ugon M, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication [J]. AIDS 2002,16(18):2385-2390.
    [42]Castagna A, Biswas P, Beretta A, et al. The appealing story of HIV entry inhibitors:from discovery of biological mechanisms to drug development [J]. Drugs 2005,65(7):879-904.
    [43]Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference [J]. Hepatology 2003,37(4):764-770.
    [44]Konishi M, Wu CH, Wu GY. Inhibition of HBV replication by siRNA in a stable HBV-producing cell line [J]. Hepatology 2003,38(4):842-850.
    [45]Chan DW, Ng IO. Knock-down of hepatitis B virus X protein reduces the tumorigenicity of
    hepatocellular carcinoma cells [J]. J Pathol 2006,208(3):372-380.
    [46]潘修成,陈智,倪勤,等.tRNA val-shRNA表达框在筛选HBVC基因小干扰RNA靶位中的应用[J].浙江大学学报:医学版2006,35(2):154-160.
    [47]McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference [J]. Nat Biotechnol 2003,21(6):639-644.
    [48]Giladi H, Ketzinel-Gilad M, Rivkin L, et al. Small interfering RNA inhibits hepatitis B virus replication in mice[J]. Mol Ther 2003,8(5):769-776.
    [49]应若素.范学工.朱才等.RNA干扰在动物体内抗乙型肝炎病毒的效果[J].中华肝病杂志2006,14(1):15-18.
    [50]Chen W, Yan W, Du Q, et al. RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice [J]. J Virol 2004,78(13):6900-6907.
    [51]Liu M, Chen W, Ni Z, et al. Cross-inhibition to heterologous foot-and-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome [J]. Virology 2005,336(1):51-59.
    [52]de los Santos T, Wu Q, de Avila Botton S, et al. Short hairpin RNA targeted to the highly conserved 2B nonstructural protein coding region inhibits replication of multiple serotypes of foot-and-mouth disease virus [J]. Virology 2005,335(2):222-231.
    [53]Kahana R, Kuznetzova L, Rogel A, et al. Inhibition of foot-and-mouth disease virus replication by small interfering RNA [J]. J Gen Virol 2004,85(Pt 11):3213-3217.
    [54]Mohapatra JK, Sanyal A, Hemadri D, et al. Evaluation of in vitro inhibitory potential of small interfering RNAs directed against various regions of foot-and-mouth disease virus genome [J]. Biochem Biophys Res Commun 2005,329(3):1133-1138.
    [55]Chen W, Liu M, Jiao Y, et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo [J]. J Virol 2006,80(7):3559-3566.
    [56]Lu L, Ho Y, Kwang J. Suppression of porcine arterivirus replication by baculovirus-delivered shRNA targeting nucleoprotein [J]. Biochem Biophys Res Commun 2006,340(4):1178-1183.
    [57]He YX, Hua RH, Zhou YJ, et al. Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs [J]. Antiviral Res 2007,74(2):83-91.
    [58]Huang J, Jiang P, Li Y, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells [J]. Vet Microbiol 2006,115(4):302-310.
    [59]高晓飞,包晶晶,陈勇军,等.利用RNA干扰机制抑制猪繁殖与呼吸综合征病毒的增殖[J].中国病毒学2006,21(3):226-230.
    [60]He YX, Hua RH, Zhou YJ, et al. [Selection and inhibitory effect analysis of siRNAs specific to ORF2-4 of porcine reproductive and respiratory syndrome virus] [J]. Sheng Wu Gong Cheng Xue Bao 2007,23(5):794-800.
    [61]Liu J, Chen I, Chua H, et al. Inhibition of porcine circovirus type 2 replication in mice by RNA interference [J]. Virology 2006,347(2):422-433.
    [62]Feng Z, Jiang P, Wang X, et al. Adenovirus-mediated shRNA interference against porcine circovirus type 2 replication both in vitro and in vivo [J]. Antiviral Res 2008,77(3):186-194.
    [63]康洁,李淑萍.RNAi对猪瘟病毒Ns5B基因表达的抑制作用[J].2004,40(9):23-25.
    [64]章金钢,涂长春,金扩世等.体外培养细胞中特异反义RNA表达对猪瘟病毒增殖的抑制作用[J].中国兽医学报1995,15(1):4-9.
    [65]于晓龙,张海峰,李一经.猪传染性胃肠炎病毒聚合酶基因反义RNA对病毒的抑制作用[J].中国兽医科学2006,36(2):85-88.
    [66]Zhou JF, Hua XG, Cui L, et al. Effective inhibition of porcine transmissible gastroenteritis virus replication in ST cells by shRNAs targeting RNA-dependent RNA polymerase gene [J]. Antiviral Res 2007,74(1):36-42.
    [67]Wang S, Shi Z, Liu W, et al. Development and validation of vectors containing multiple siRNA expression cassettes for maximizing the efficiency of gene silencing [J]. BMC Biotechnol 2006,6:50.
    [68]Unwalla HJ, Li HT, Bahner I, et al. Novel Pol II fusion promoter directs human immunodeficiency virus type 1-inducible coexpression of a short hairpin RNA and protein [J]. J Virol 2006,80(4):1863-1873.
    [69]Henry SD, van der Wegen P, Metselaar HJ, et al. Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes [J]. Mol Ther 2006,14(4):485-493.
    [70]Gou D, Narasaraju T, Chintagari NR, et al. Gene silencing in alveolar type II cells using cell-specific promoter in vitro and in vivo [J]. Nucleic Acids Res 2004,32(17):e134.
    [71]Gu J, Zhang L, Huang X, et al. A novel single tetracycline-regulative adenoviral vector for tumor-specific Bax gene expression and cell killing in vitro and in vivo [J]. Oncogene 2002,21(31):4757-4764.
    [72]He W, Qiang M, Ma W, et al. Development of a synthetic promoter for macrophage gene therapy [J]. Hum Gene Ther 2006,17(9):949-959.
    [73]Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi [J]. Nat Biotechnol 2003,21(6):635-637.
    [74]Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells [J]. Proc Natl Acad
    Sci U S A 2004,101(7):1892-1897.
    [75]Snove O, Jr., Holen T. Many commonly used siRNAs risk off-target activity [J]. Biochem Biophys Res Commun 2004,319(1):256-263.
    [76]Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs [J]. Nat Biotechnol 2005,23(11):1399-1405.
    [77]Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization [J]. J Mol Biol 2005,348(5):1079-1090.
    [78]Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference [J]. Nat Biotechnol 2004,22(3):326-330.
    [79]Kim DH, Behlke MA, Rose SD, et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy [J]. Nat Biotechnol 2005,23(2):222-226.
    [80]Chiu YL, Rana TM. RNAi in human cells:basic structural and functional features of small interfering RNA [J]. Mol Cell 2002,10(3):549-561.
    [81]Elmen J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality [J]. Nucleic Acids Res 2005,33(1):439-447.
    [82]Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells [J]. Nucleic Acids Res 2003,31(11):2705-2716.
    [83]Allerson CR, Sioufi N, Jarres R, et al. Fully 2'-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA [J]. J Med Chem 2005,48(4):901-904.
    [84]Jackson AL, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing [J]. RNA 2006,12(7):1197-1205.
    [85]Braasch DA, Jensen S, Liu Y, et al. RNA interference in mammalian cells by chemically-modified RNA [J]. Biochemistry 2003,42(26):7967-7975.
    [86]Hall AH, Wan J, Shaughnessy EE, et al. RNA interference using boranophosphate siRNAs: structure-activity relationships [J]. Nucleic Acids Res 2004,32(20):5991-6000.
    [87]Parrish S, Fleenor J, Xu S, et al. Functional anatomy of a dsRNA trigger:differential requirement for the two trigger strands in RNA interference [J]. Mol Cell 2000,6(5):1077-1087.
    [88]Chiu YL, Rana TM. siRNA function in RNAi:a chemical modification analysis [J]. RNA 2003,9(9):1034-1048.
    [89]Lorenz C, Hadwiger P, John M, et al. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells [J]. Bioorg Med Chem Lett 2004,14(19):4975-4977.
    [90]Cheng K, Ye Z, Guntaka RV, et al. Enhanced hepatic uptake and bioactivity of type alphal(Ⅰ) collagen gene promoter-specific triplex-forming oligonucleotides after conjugation with cholesterol [J]. J Pharmacol Exp Ther 2006,317(2):797-805.
    [91]Simeoni F, Morris MC, Heitz F, et al. Insight into the mechanism of the peptide-based gene delivery system MPG:implications for delivery of siRNA into mammalian cells [J]. Nucleic Acids Res 2003,31(11):2717-2724.
    [92]Muratovska A, Eccles MR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells [J]. FEBS Lett 2004,558(1-3):63-68.
    [93]Mahato RI, Rolland A, TomLinson E. Cationic lipid-based gene delivery systems:pharmaceutical perspectives [J]. Pharm Res 1997,14(7):853-859.
    [94]Zhang C, Tang N, Liu X, et al. siRNA-containing liposomes modified with poly(A)rginine effectively silence the targeted gene [J]. J Control Release 2006,112(2):229-239.
    [95]Santel A, Aleku M, Keil O, et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium [J]. Gene Ther 2006,13(16):1222-1234.
    [96]Han S, Mahato RI, Sung YK, et al. Development of biomaterials for gene therapy [J]. Mol Ther 2000,2(4):302-317.
    [97]Choi Y, Thomas T, Kotlyar A, et al. Synthesis and functional evaluation of DNA-assembled poly(A)midoamine dendrimer clusters for cancer cell-specific targeting [J]. Chem Biol 2005,12(1):35-43.
    [98]Urban-Klein B, Werth S, Abuharbeid S, et al. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo [J]. Gene Ther 2005,12(5):461-466.
    [99]Grzelinski M, Urban-Klein B, Martens T, et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts [J]. Hum Gene Ther 2006,17(7):751-766.
    [100]Geisbert TW, Hensley LE, Kagan E, et al. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference [J]. J Infect Dis 2006,193(12):1650-1657.
    [101]Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs [J]. Nat Biotechnol 2005,23(8):1002-1007.
    [102]Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates [J]. Nature 2006,441(7089):111-114.
    [103]Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors [J]. Nat Biotechnol 2005,23(6):709-717.
    [104]Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways [J]. Nature 2006,441(7092):537-541.
    [1]Collins JE, Benfield DA, Christianson WT, et al. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs[J]. J Vet Diagn Invest 1992,4(2):117-126.
    [2]Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus[J]. Vet Q 1991,13(3):121-130.
    [3]郭宝清,陈章水,刘文兴,等.从疑似PRRS流产胎儿分离PRRSV的研究[J].中国畜禽传染病1996,2:1-4.
    [4]Albina E, Leforban Y, Baron T, et al. An enzyme linked immunosorbent assay (ELISA) for the detection of antibodies to the porcine reproductive and respiratory syndrome (PRRS) virus[J]. Ann Rech Vet 1992,23(2):167-176.
    [5]Houben S, Callebaut P, Pensaert MB. Comparative study of a blocking enzyme-linked immunosorbent assay and the immunoperoxidase monolayer assay for the detection of antibodies to the porcine reproductive and respiratory syndrome virus in pigs[J]. J Virol Methods 1995,51(1):125-128.
    [6]Takikawa N, Kobayashi S, Ide S, et al. Detection of antibodies against porcine reproductive and respiratory syndrome (PRRS) virus in swine sera by enzyme-linked immunosorbent assay [J]. J Vet Med Sci 1996,58(4):355-357.
    [7]吴延功,王志亮,王君玮,等.PRRSV ELISA试剂盒检测猪繁殖与呼吸综合征病毒抗体的应用[J].中国动物检疫2004,21(6):23-25.
    [8]彭长凌,高崧,刘秀梵,等.PRRSV间接免疫荧光检测法的建立和应用[J].中国兽医科技2005,35(4)(256-260).
    [9]吴东来,郭宝清,李桂芝,等.猪生殖-呼吸道综合征病毒抗原在死胎及新生仔猪体内的分布[J].动物医学进展1999,20(3):174.
    [10]王刚,张鹤晓,甘孟侯,等.IPMA检测猪生殖与呼吸综合征病毒抗体的研究[J].中国兽医杂志1996,22(12):3-5.
    [11]Chen HT, Zhang J, Sun DH, et al. Reverse transcription loop-mediated isothermal amplification for the detection of highly pathogenic porcine reproductive and respiratory syndrome virus[J]. J Virol Methods 2008,153(2):266-268.
    [12]Cheng D, Zhao JJ, Li N, et al. Simultaneous detection of Classical swine fever virus and North American genotype Porcine reproductive and respiratory syndrome virus using a duplex real-time RT-PCR[J]. J Virol Methods 2008,151(2):194-199.
    [13]Xiao XL, Wu H, Yu YG, et al. Rapid detection of a highly virulent Chinese-type isolate of Porcine Reproductive and Respiratory Syndrome Virus by real-time reverse transcriptase PCR[J]. J Virol Methods 2008,149(1):49-55.
    [14]Lurchachaiwong W, Payungporn S, Srisatidnarakul U, et al. Rapid detection and strain identification of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR[J]. Lett Appl Microbiol 2008,46(1):55-60.
    [15]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods 2001,25(4):402-408.
    [16]蔡家利,姜平,蔡宝祥.应用RT-PCR检测流产胎儿组织中猪繁殖与呼吸综合征病毒[J].中国病毒学2000,15(3):272-275.
    [17]Yoon KJ, Wu LL, Zimmerman JJ, et al. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs[J]. Viral Immunol 1996,9(1):51-63.
    [18]任慧英,杨汉春,高云.猪繁殖与呼吸综合征病毒核酸在仔猪呼吸及繁殖系统动态分布的研究[J].中国兽医杂志2002,38(2):3-4.
    [19]Christopher-Hennings J, Nelson EA, Nelson JK, et al. Detection of porcine reproductive and respiratory syndrome virus in boar semen by PCR[J]. J Clin Microbiol 1995,33(7):1730-1734.
    [20]Kono Y, Kanno T, Shimizu M, et al. Nested PCR for detection and typing of porcine reproductive and respiratory syndrome (PRRS) virus in pigs[J]. J Vet Med Sci 1996,58(10):941-946.
    [21]Mardassi H, Wilson L, Mounir S, et al. Detection of porcine reproductive and respiratory syndrome virus and efficient differentiation between Canadian and European strains by reverse transcription and PCR amplification[J]. J Clin Microbiol 1994,32(9):2197-2203.
    [22]Chung HK, Choi C, Kim J, et al. Detection and differentiation of North American and European genotypes of porcine reproductive and respiratory syndrome virus in formalin-fixed, paraffin-embedded tissues by multiplex reverse transcription-nested polymerase chain reaction[J]. J Vet Diagn Invest 2002,14(1):56-60.
    [23]Yue F, Cui S, Zhang C, et al. A multiplex PCR for rapid and simultaneous detection of porcine circovirus type 2, porcine parvovirus, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus in clinical specimens[J]. Virus Genes 2009,38(3):392-397.
    [24]Gilbert SA, Larochelle R, Magar R, et al. Typing of porcine reproductive and respiratory syndrome viruses by a multiplex PCR assay[J]. J Clin Microbiol 1997,35(1):264-267.
    [25]Jiang Y, Shang H, Xu H, et al. Simultaneous detection of porcine circovirus type 2, classical swine fever virus, porcine parvovirus and porcine reproductive and respiratory syndrome virus in pigs by multiplex polymerase chain reaction[J]. Vet J 2009.
    [26]Giammarioli M, Pellegrini C, Casciari C, et al. Development of a novel hot-start multiplex PCR for simultaneous detection of classical swine fever virus, African swine fever virus, porcine circovirus type 2, porcine reproductive and respiratory syndrome virus and porcine parvovirus[J]. Vet Res Commun 2008,32(3):255-262.
    [27]Sami L, Ursu K, McKillen J, et al. Simultaneous detection of three porcine viruses by multiplex PCR[J]. Acta Vet Hung 2007,55(2):267-276.
    [28]Kleiboeker SB, Schommer SK, Lee SM, et al. Simultaneous detection of North American and European porcine reproductive and respiratory syndrome virus using real-time quantitative reverse transcriptase-PCR[J]. J Vet Diagn Invest 2005,17(2):165-170.
    [29]van Rijn PA, Wellenberg GJ, Hakze-van der Honing R, et al. Detection of economically important viruses in boar semen by quantitative Real-time PCR technology[J]. J Virol Methods 2004,120(2):151-160.
    [30]Balka G, Hornyak A, Balint A, et al. Development of a one-step real-time quantitative PCR assay based on primer-probe energy transfer for the detection of porcine reproductive and respiratory syndrome virus[J]. J Virol Methods 2009.
    [31]Xiao XL, Wu H, Yu YG, et al. Rapid detection of a highly virulent Chinese-type isolate of Porcine Reproductive and Respiratory Syndrome virus by real-time reverse transcriptase PCR[J]. J Virol Methods 2008.
    [32]Martinez E, Riera P, Sitja M, et al. Simultaneous detection and genotyping of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR and amplicon melting curve analysis using SYBR Green[J]. Res Vet Sci 2007.
    [33]Chung WB, Chan WH, Chaung HC, et al. Real-time PCR for quantitation of porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 in naturally-infected and challenged pigs[J]. J Virol Methods 2005,124(1-2):11-19.
    [34]Li Q, Zhou QF, Xue CY, et al. Rapid detection of porcine reproductive and respiratory syndrome virus by reverse transcription loop-mediated isothermal amplification assay[J]. J Virol Methods 2009,155(1):55-60.
    [1]Rossow KD. Porcine reproductive and respiratory syndrome[J]. Vet Pathol 1998,35(1):1-20.
    [2]Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses[J]. J Gen Virol 1998,79 (Pt 5):961-979.
    [3]Gao ZQ, Guo X, Yang HC. Genomic characterization of two Chinese isolates of porcine respiratory and reproductive syndrome virus[J]. Arch Virol 2004,149(7):1341-1351.
    [4]Ropp SL, Wees CE, Fang Y, et al. Characterization of emerging European-like porcine reproductive and respiratory syndrome virus isolates in the United States[J]. J Virol 2004,78(7):3684-3703.
    [5]Thanawongnuwech R, Amonsin A, Tatsanakit A, et al. Genetics and geographical variation of porcine reproductive and respiratory syndrome virus (PRRSV) in Thailand[J]. Vet Microbiol 2004,101(1):9-21.
    [6]Meng XJ. Heterogeneity of porcine reproductive and respiratory syndrome virus:implications for current vaccine efficacy and future vaccine development[J]. Vet Microbiol 2000,74(4):309-329.
    [7]Mortensen S, Stryhn H, Sogaard R, et al. Risk factors for infection of sow herds with porcine reproductive and respiratory syndrome (PRRS) virus[J]. Prev Vet Med 2002,53(1-2):83-101.
    [8]Bierk MD, Dee SA, Rossow KD, et al. Transmission of porcine reproductive and respiratory syndrome virus from persistently infected sows to contact controls[J]. Can J Vet Res 2001,65(4):261-266.
    [9]Batista L, Dee SA, Rossow KD, et al. Assessing the duration of persistence and shedding of porcine reproductive and respiratory syndrome virus in a large population of breeding-age gilts[J]. Can J Vet Res 2002,66(3):196-200.
    [10]Heinrich A, Riethmuller D, Gloger M, et al. RNA interference protects horse cells in vitro from infection with Equine Arteritis Virus[J]. Antiviral Res 2009,81(3):209-216.
    [11]Hinton TM, Doran TJ. Inhibition of chicken anaemia virus replication using multiple short-hairpin RNAs[J]. Antiviral Res 2008,80(2):143-149.
    [12]Kim SM, Lee KN, Park JY, et al. Therapeutic application of RNA interference against foot-and-mouth disease virus in vitro and in vivo[J]. Antiviral Res 2008,80(2):178-184.
    [13]Snyder LL, Esser JM, Pachuk CJ, et al. Vector design for liver-specific expression of multiple interfering RNAs that target hepatitis B virus transcripts[J]. Antiviral Res 2008,80(1):36-44.
    [14]Gao Y, Liu W, Gao H, et al. Effective inhibition of infectious bursal disease virus replication in vitro by DNA vector-based RNA interference[J]. Antiviral Res 2008,79(2):87-94.
    [15]Tompkins SM, Lo CY, Tumpey TM, et al. Protection against lethal influenza virus challenge by RNA interference in vivo[J]. Proc Natl Acad Sci U S A 2004,101(23):8682-8686.
    [16]Qin XF, An DS, Chen IS, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5[J]. Proc Natl Acad Sci U S A 2003,100(1):183-188.
    [17]Cavanagh D. Nidovirales:a new order comprising Coronaviridae and Arteriviridae[J]. Arch Virol 1997,142(3):629-633.
    [18]Allende R, Laegreid WW, Kutish GF, et al. Porcine reproductive and respiratory syndrome virus: description of persistence in individual pigs upon experimental infection[J]. J Virol 2000,74(22):10834-10837.
    [19]Shen S, Kwang J, Liu W, et al. Determination of the complete nucleotide sequence of a vaccine strain of porcine reproductive and respiratory syndrome virus and identification of the Nsp2 gene with a unique insertion[J]. Arch Virol 2000,145(5):871-883.
    [20]Molenkamp R, van Tol H, Rozier BC, et al. The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription[J]. J Gen Virol 2000,81(Pt 10):2491-2496.
    [21]Huang J, Jiang P, Li Y, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells[J]. Vet Microbiol 2006,115(4):302-310.
    [22]Reed LJ, and H.A.Muench. A simple method of estimating fifty percent end points[J]. AmJHyg 1938,27:493-497.
    [23]Ge Q, McManus MT, Nguyen T, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription[J]. Proc Natl Acad Sci U S A 2003,100(5):2718-2723.
    [24]Kanda T, Kusov Y, Yokosuka O, et al. Interference of hepatitis A virus replication by small interfering RNAs[J]. Biochem Biophys Res Commun 2004,318(2):341-345.
    [25]He YX, Hua RH, Zhou YJ, et al. Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs[J]. Antiviral Res 2007,74(2):83-91.
    [26]He YX, Hua RH, Zhou YJ, et al. [Selection and inhibitory effect analysis of siRNAs specific to ORF2-4 of porcine reproductive and respiratory syndrome virus][J]. Sheng Wu Gong Cheng Xue Bao 2007,23(5):794-800.
    [27]de Vries AA, Chirnside ED, Horzinek MC, et al. Structural proteins of equine arteritis virus[J]. J Virol 1992,66(11):6294-6303.
    [28]Bautista EM, Faaberg KS, Mickelson D, et al. Functional properties of the predicted helicase of porcine reproductive and respiratory syndrome virus[J]. Virology 2002,298(2):258-270.
    [29]Snijder EJ. The arterivirus replicase. The road from RNA to protein(s), and back again[J]. Adv Exp Med Biol 1998,440:97-108.
    [30]van Dinten LC, Rensen S, Gorbalenya AE, et al. Proteolytic processing of the open reading frame lb-encoded part of arterivirus replicase is mediated by nsp4 serine protease and Is essential for virus replication[J]. J Virol 1999,73(3):2027-2037.
    [31]Scherer LJ, Rossi JJ. Approaches for the sequence-specific knockdown of mRNA[J]. Nat Biotechnol 2003,21(12):1457-1465.
    [32]Scherer L, Rossi JJ. Therapeutic applications of RNA interference:recent advances in siRNA design[J]. Adv Genet 2004,52:1-21.
    [33]Holen T, Amarzguioui M, Wiiger MT, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor[J]. Nucleic Acids Res 2002,30(8):1757-1766.
    [34]Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference[J]. Nucleic Acids Res 2004,32(3):936-948.
    [35]Christopher-Hennings J, Nelson EA, Hines RJ, et al. Persistence of porcine reproductive and respiratory syndrome virus in serum and semen of adult boars[J]. J Vet Diagn Invest 1995,7(4):456-464.
    [36]Mengeling WL, Lager KM, Vorwald AC, et al. Comparative safety and efficacy of attenuated single-strain and multi-strain vaccines for porcine reproductive and respiratory syndrome[J]. Vet Microbiol 2003,93(1):25-38.
    [37]Opriessnig T, Halbur PG, Yoon KJ, et al. Comparison of molecular and biological characteristics of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (ingelvac PRRS MLV), the parent strain of the vaccine (ATCC VR2332), ATCC VR2385, and two recent field isolates of PRRSV[J]. J Virol 2002,76(23):11837-11844.
    [1]Dea S, Gagnon CA, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates[J]. Arch Virol 2000,145(4):659-688.
    [2]Wu WH, Fang Y, Farwell R, et al. A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b[J]. Virology 2001,287(1):183-191.
    [3]Wissink EH, Kroese MV, van Wijk HA, et al. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus[J]. J Virol 2005,79(19):12495-12506.
    [4]Mounir S, Mardassi H, Dea S. Identification and characterization of the porcine reproductive and respiratory virus ORFs 7,5 and 4 products[J]. Adv Exp Med Biol 1995,380:317-320.
    [5]Nelson EA, Christopher-Hennings J, Benfield DA. Structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Adv Exp Med Biol 1995,380:321-323.
    [6]Collins JE, Benfield DA, Christianson WT, et al. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs[J]. J Vet Diagn Invest 1992,4(2):117-126.
    [7]Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus[J]. Vet Q 1991,13(3):121-130.
    [8]Christopher-Hennings J, Nelson EA, Hines RJ, et al. Persistence of porcine reproductive and respiratory syndrome virus in serum and semen of adult boars[J]. J Vet Diagn Invest 1995,7(4):456-464.
    [9]Mateu E, Diaz I. The challenge of PRRS immunology[J]. Vet J 2007.
    [10]Thacker EL, Thacker BJ, Young TF, et al. Effect of vaccination on the potentiation of porcine reproductive and respiratory syndrome virus (PRRSV)-induced pneumonia by Mycoplasma hyopneumoniae[J]. Vaccine 2000,18(13):1244-1252.
    [11]Verheije MH, Kroese MV, van der Linden IF, et al. Safety and protective efficacy of porcine reproductive and respiratory syndrome recombinant virus vaccines in young pigs[J]. Vaccine 2003,21(19-20):2556-2563.
    [12]Silva JM, Hammond SM, Hannon GJ. RNA interference:a promising approach to antiviral therapy?[J]. Trends Mol Med 2002,8(11):505-508.
    [13]Martinez MA, Clotet B, Este JA. RNA interference of HIV replication[J]. Trends Immunol 2002,23(12):559-561.
    [14]Lee MT, Coburn GA, McClure MO, et al. Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat-or CCR5-specific small interfering RNAs
    expressed from a lentivirus vector[J]. J Virol 2003,77(22):11964-11972.
    [15]Kapadia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs[J]. Proc Natl Acad Sci U S A 2003,100(4):2014-2018.
    [16]Wilson JA, Jayasena S, Khvorova A, et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells[J]. Proc Natl Acad Sci U S A 2003,100(5):2783-2788.
    [17]Hamasaki K, Nakao K, Matsumoto K, et al. Short interfering RNA-directed inhibition of hepatitis B virus replication[J]. FEBS Lett 2003,543(1-3):51-54.
    [18]Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells[J]. Nature 2002,418(6896):430-434.
    [19]Ge Q, McManus MT, Nguyen T, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription[J]. Proc Natl Acad Sci U S A 2003,100(5):2718-2723.
    [20]Ge Q, Filip L, Bai A, et al. Inhibition of influenza virus production in virus-infected mice by RNA interference[J]. Proc Natl Acad Sci U S A 2004,101(23):8676-8681.
    [21]Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference[J]. Oncogene 2002,21(39):6041-6048.
    [22]Chen W, Liu M, Jiao Y, et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo[J]. J Virol 2006,80(7):3559-3566.
    [23]Zhou K, He H, Wu Y, et al. RNA interference of avian influenza virus H5N1 by inhibiting viral mRNA with siRNA expression plasmids[J]. J Biotechnol 2008,135(2):140-144.
    [24]Lu L, Ho Y, Kwang J. Suppression of porcine arterivirus replication by baculovirus-delivered shRNA targeting nucleoprotein[J]. Biochem Biophys Res Commun 2006,340(4):1178-1183.
    [25]Huang J, Jiang P, Li Y, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells[J]. Vet Microbiol 2006,115(4):302-310.
    [26]He YX, Hua RH, Zhou YJ, et al. Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs[J]. Antiviral Res 2007,74(2):83-91.
    [27]He YX, Hua RH, Zhou YJ, et al. [Selection and inhibitory effect analysis of siRNAs specific to ORF2-4 of porcine reproductive and respiratory syndrome virus][J]. Sheng Wu Gong Cheng Xue Bao 2007,23(5):794-800.
    [28]Li G, Huang J, Jiang P, et al. Suppression of porcine reproductive and respiratory syndrome virus replication in MARC-145 cells by shRNA targeting ORF1 region[J]. Virus Genes 2007,35(3):673-679.
    [29]Li CX, Parker A, Menocal E, et al. Delivery of RNA interference[J]. Cell Cycle 2006,5(18):2103-2109.
    [30]Schiedner G, Morral N, Parks RJ, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity[J]. Nat Genet 1998,18(2):180-183.
    [31]Kumar-Singh R, Chamberlain JS. Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells[J]. Hum Mol Genet 1996,5(7):913-921.
    [32]Kumar-Singh R, Farber DB. Encapsidated adenovirus mini-chromosome-mediated delivery of genes to the retina:application to the rescue of photoreceptor degeneration[J]. Hum Mol Genet 1998,7(12):1893-1900.
    [33]Uprichard SL, Boyd B, Althage A, et al. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs[J]. Proc Natl Acad Sci U S A 2005,102(3):773-778.
    [34]Sanchez AB, Perez M, Cornu T, et al. RNA interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus[J].J Virol 2005,79(17):11071-11081.
    [35]Feng Z, Jiang P, Wang X, et al. Adenovirus-mediated shRNA interference against porcine circovirus type 2 replication both in vitro and in vivo[J]. Antiviral Res 2008,77(3):186-194.
    [1]Cavanagh D. Nidovirales:a new order comprising Coronaviridae and Arteriviridae[J]. Arch Virol 1997,142(3):629-633.
    [2]Conzelmann KK, Visser N, Van Woensel P, et al. Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group[J]. Virology 1993,193(1):329-339.
    [3]Meulenberg JJ, Hulst MM, de Meijer EJ, et al. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV[J]. Virology 1993,192(1):62-72.
    [4]Duan X, Nauwynck HJ, Pensaert MB. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Arch Virol 1997,142(12):2483-2497.
    [5]Bautista EM, Goyal SM, Yoon IJ, et al. Comparison of porcine alveolar macrophages and CL 2621 for the detection of porcine reproductive and respiratory syndrome (PRRS) virus and anti-PRRS antibody[J]. J Vet Diagn Invest 1993,5(2):163-165.
    [6]Keffaber K. Reproductive failure of unknown etiology[J]. Am Assoc Swine Pract News 1989,2:1-10.
    [7]Benfield DA, Nelson E, Collins JE, et al. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332)[J]. J Vet Diagn Invest 1992,4(2):127-133.
    [8]Plagemann PG, Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus:a new group of positive-strand RNA viruses[J]. Adv Virus Res 1992,41:99-192.
    [9]Duan X, Nauwynck HJ, Pensaert MB. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Vet Microbiol 1997,56(1-2):9-19.
    [10]Mengeling WL, Lager KM, Vorwald AC. Diagnosis of porcine reproductive and respiratory syndrome[J]. J Vet Diagn Invest 1995,7(1):3-16.
    [11]Reed LJ, and H.A.Muench. A simple method of estimating fifty percent end points[J]. AmJHyg 1938,27:493-497.
    [12]Allende R, Laegreid WW, Kutish GF, et al. Porcine reproductive and respiratory syndrome virus: description of persistence in individual pigs upon experimental infection[J]. J Virol 2000,74(22):10834-10837.
    [13]Dea S, Gagnon CA, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and
    European isolates[J]. Arch Virol 2000,145(4):659-688.
    [14]den Boon JA, Faaberg KS, Meulenberg JJ, et al. Processing and evolution of the N-terminal region of the arterivirus replicase ORFla protein:identification of two papainlike cysteine proteases[J]. J Virol 1995,69(7):4500-4505.
    [15]Delputte PL, Costers S, Nauwynck HJ. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization:distinctive roles for heparan sulphate and sialoadhesin[J]. J Gen Virol 2005,86(Pt 5):1441-1445.
    [16]Grebennikova TV, Clouser DF, Vorwald AC, et al. Genomic characterization of virulent, attenuated, and revertant passages of a North American porcine reproductive and respiratory syndrome virus strain[J]. Virology 2004,321(2):383-390.
    [17]Halbur PG, Paul PS, Frey ML, et al. Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus[J]. Vet Pathol 1995,32(6):648-660.
    [18]Wissink EH, Kroese MV, van Wijk HA, et al. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus[J]. J Virol 2005,79(19):12495-12506.
    [19]Fernandez A, Suarez P, Castro JM, et al. Characterization of regions in the GP5 protein of porcine reproductive and respiratory syndrome virus required to induce apoptotic cell death[J]. Virus Res 2002,83(1-2):103-118.
    [20]Mardassi H, Mounir S, Dea S. Identification of major differences in the nucleocapsid protein genes of a Quebec strain and European strains of porcine reproductive and respiratory syndrome virus[J]. J Gen Virol 1994,75 (Pt 3):681-685.
    [21]Meulenberg JJ, Petersen-den Besten A, De Kluyver EP, et al. Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus[J]. Virology 1995,206(1):155-163.
    [22]Huang J, Jiang P, Li Y, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells[J]. Vet Microbiol 2006,115(4):302-310.
    [1]Pirzadeh B, Gagnon CA, Dea S. Genomic and antigenic variations of porcine reproductive and respiratory syndrome virus major envelope GP5 glycoprotein[J]. Can J Vet Res 1998,62(3):170-177.
    [2]Keffaber K. Reproductive failure of unknown etiology[J]. Am Assoc Swine Pract News 1989,2:1-10.
    [3]Li Y, Wang X, Bo K, et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China[J]. Vet J 2007,174(3):577-584.
    [4]Tong GZ, Zhou YJ, Hao XF, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China[J]. Emerg Infect Dis 2007,13(9):1434-1436.
    [5]Zhou YJ, Hao XF, Tian ZJ, et al. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China[J]. Transbound Emerg Dis 2008,55(3-4):152-164.
    [6]Meng XJ. Heterogeneity of porcine reproductive and respiratory syndrome virus:implications for current vaccine efficacy and future vaccine development[J]. Vet Microbiol 2000,74(4):309-329.
    [7]Nilubol D, Platt KB, Halbur PG, et al. The effect of a killed porcine reproductive and respiratory syndrome virus (PRRSV) vaccine treatment on virus shedding in previously PRRSV infected pigs[J]. Vet Microbiol 2004,102(1-2):11-18.
    [8]Madsen KG, Hansen CM, Madsen ES, et al. Sequence analysis of porcine reproductive and respiratory syndrome virus of the American type collected from Danish swine herds[J]. Arch Virol 1998,143(9):1683-1700.
    [9]Mengeling WL, Lager KM, Vorwald AC. Safety and efficacy of vaccination of pregnant gilts against porcine reproductive and respiratory syndrome[J]. Am J Vet Res 1999,60(7):796-801.
    [10]Mateu E, Diaz I. The challenge of PRRS immunology[J]. Vet J 2007.
    [11]Bernstein E, Denli AM, Hannon GJ. The rest is silence[J]. RNA 2001,7(11):1509-1521.
    [12]Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA[J]. Nat Rev Genet 2001,2(2):110-119.
    [13]Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation[J]. Dev Biol 1999,216(2):671-680.
    [14]Hammond SM. Dicing and slicing:the core machinery of the RNA interference pathway[J]. FEBS Lett 2005,579(26):5822-5829.
    [15]Tan FL, Yin JQ. RNAi, a new therapeutic strategy against viral infection[J]. Cell Res 2004,14(6):460-466.
    [16]Chen M, Payne WS, Hunt H, et al. Inhibition of Marek's disease virus replication by retroviral
    vector-based RNA interference[J]. Virology 2008,377(2):265-272.
    [17]Chen W, Liu M, Jiao Y, et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo[J]. J Virol 2006,80(7):3559-3566.
    [18]Uprichard SL, Boyd B, Althage A, et al. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs[J]. Proc Natl Acad Sci U S A 2005,102(3):773-778.
    [19]Tompkins SM, Lo CY, Tumpey TM, et al. Protection against lethal influenza virus challenge by RNA interference in vivo[J]. Proc Natl Acad Sci U S A 2004,101(23):8682-8686.
    [20]Feng Z, Jiang P, Wang X, et al. Adenovirus-mediated shRNA interference against porcine circovirus type 2 replication both in vitro and in vivo[J]. Antiviral Res 2008,77(3):186-194.
    [21]Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference[J]. Nature 2002,418(6896):435-438.
    [22]Huang J, Jiang P, Li Y, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells[J]. Vet Microbiol 2006,115(4):302-310.
    [23]Li G, Huang J, Jiang P, et al. Suppression of porcine reproductive and respiratory syndrome virus replication in MARC-145 cells by shRNA targeting ORF1 region[J]. Virus Genes 2007,35(3):673-679.
    [24]Reed LJ, and H.A.Muench. A simple method of estimating fifty percent end points[J]. AmJHyg 1938,27:493-497.
    [25]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem 1976,72:248-254.
    [26]Halbur PG, Paul PS, Frey ML, et al. Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus[J]. Vet Pathol 1995,32(6):648-660.
    [27]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature 2001,411(6836):494-498.
    [28]Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate[J]. EMBO J 2001,20(23):6877-6888.
    [29]Huelsmann PM, Rauch P, Allers K, et al. Inhibition of drug-resistant HIV-1 by RNA interference[J]. Antiviral Res 2006,69(1):1-8.
    [30]Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells[J]. Nature 2002,418(6896):430-434.
    [31]Kanda T, Kusov Y, Yokosuka O, et al. Interference of hepatitis A virus replication by small interfering RNAs[J]. Biochem Biophys Res Commun 2004,318(2):341-345.
    [32]McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice[J]. Nature 2002,418(6893):38-39.
    [33]Zhang W, Singam R, Hellermann G, et al. Attenuation of dengue virus infection by adeno-associated virus-mediated siRNA delivery[J]. Genet Vaccines Ther 2004,2(1):8.
    [34]Wang Z, Ren L, Zhao X, et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells[J]. J Virol 2004,78(14):7523-7527.
    [35]He YX, Hua RH, Zhou YJ, et al. [Selection and inhibitory effect analysis of siRNAs specific to ORF2-4 of porcine reproductive and respiratory syndrome virus][J]. Sheng Wu Gong Cheng Xue Bao 2007,23(5):794-800.
    [36]He YX, Hua RH, Zhou YJ, et al. Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs[J]. Antiviral Res 2007,74(2):83-91.
    [37]Mayne GC, Borowicz RA, Greeneklee KV, et al. Centrifugation facilitates transduction of green fluorescent protein in human monocytes and macrophages by adenovirus at low multiplicity of infection[J]. J Immunol Methods 2003,278(1-2):45-56.
    [38]Shinozuka N, Kamisasa N, Akaishi T, et al. Effect of M-CSF, GM-CSF in adenovirus-mediated gene transfer into macrophages[J]. Transplant Proc 2000,32(5):963.
    [39]Yang Y, Li Q, Ertl HC, et al. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses[J]. J Virol 1995,69(4):2004-2015.
    [40]Andersson MG, Haasnoot PC, Xu N, et al. Suppression of RNA interference by adenovirus virus-associated RNA[J]. J Virol 2005,79(15):9556-9565.
    [41]Lu S, Cullen BR. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis[J]. J Virol 2004,78(23):12868-12876.
    [42]Sanchez AB, Perez M, Cornu T, et al. RNA interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus[J]. J Virol 2005,79(17):11071-11081.
    [43]Galiana-Arnoux D, Dostert C, Schneemann A, et al. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila[J]. Nat Immunol 2006,7(6):590-597.
    [44]Li WX, Li H, Lu R, et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing[J]. Proc Natl Acad Sci U S A 2004,101(5):1350-1355.
    [45]den Boon JA, Faaberg KS, Meulenberg JJ, et al. Processing and evolution of the N-terminal region of the arterivirus replicase ORFla protein:identification of two papainlike cysteine proteases[J]. J Virol 1995,69(7):4500-4505.
    [46]Grebennikova TV, Clouser DF, Vorwald AC, et al. Genomic characterization of virulent, attenuated, and revertant passages of a North American porcine reproductive and respiratory syndrome virus strain[J]. Virology 2004,321(2):383-390.
    [47]Nielsen HS, Oleksiewicz MB, Forsberg R, et al. Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations[J]. J Gen Virol 2001,82(Pt 6):1263-1272.
    [48]Snijder EJ, Wassenaar AL, Spaan WJ. Proteolytic processing of the replicase ORFla protein of equine arteritis virus[J]. J Virol 1994,68(9):5755-5764.
    [49]van Dinten LC, Wassenaar AL, Gorbalenya AE, et al. Processing of the equine arteritis virus replicase ORFlb protein:identification of cleavage products containing the putative viral polymerase and helicase domains[J]. J Virol 1996,70(10):6625-6633.
    [50]Wassenaar AL, Spaan WJ, Gorbalenya AE, et al. Alternative proteolytic processing of the arterivirus replicase ORFla polyprotein:evidence that NSP2 acts as a cofactor for the NSP4 serine protease[J]. J Virol 1997,71(12):9313-9322.
    [51]Cavanaugh VJ, Guidotti LG, Chisari FV. Inhibition of hepatitis B virus replication during adenovirus and cytomegalovirus infections in transgenic mice[J]. J Virol 1998,72(4):2630-2637.
    [52]Huarte E, Larrea E, Hernandez-Alcoceba R, et al. Recombinant adenoviral vectors turn on the type I interferon system without inhibition of transgene expression and viral replication[J]. Mol Ther 2006,14(1):129-138.
    [53]Zhu J, Huang X, Yang Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and-independent pathways[J]. J Virol 2007,81(7):3170-3180.
    [1]Delputte PL, Vanderheijden N, Nauwynck HJ, et al. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages[J]. J Virol 2002,76(9):4312-4320.
    [2]Vanderheijden N, Delputte P, Nauwynck H, et al. Effects of heparin on the entry of porcine reproductive and respiratory syndrome virus into alveolar macrophages[J]. Adv Exp Med Biol 2001,494:683-689.
    [3]Delputte PL, Costers S, Nauwynck HJ. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization:distinctive roles for heparan sulphate and sialoadhesin[J]. J Gen Virol 2005,86(Pt 5):1441-1445.
    [4]Duan X, Nauwynck HJ, Favoreel HW, et al. Identification of a putative receptor for porcine reproductive and respiratory syndrome virus on porcine alveolar macrophages[J]. J Virol 1998,72(5):4520-4523.
    [5]Vanderheijden N, Delputte PL, Favoreel HW, et al. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages[J]. J Virol 2003,77(15):8207-8215.
    [6]Van Gorp H, Van Breedam W, Delputte PL, et al. Sialoadhesin and CD 163 join forces during entry of the porcine reproductive and respiratory syndrome virus[J]. J Gen Virol 2008,89(Pt 12):2943-2953.
    [7]Calvert JG, Slade DE, Shields SL, et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses[J]. J Virol 2007,81(14):7371-7379.
    [8]Kim JK, Fahad AM, Shanmukhappa K, et al. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10[J]. J Virol 2006,80(2):689-696.
    [9]Shanmukhappa K, Kim JK, Kapil S. Role of CD151, A tetraspanin, in porcine reproductive and respiratory syndrome virus infection[J]. Virol J 2007,4:62.
    [10]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature 2001,411(6836):494-498.
    [11]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature 1998,391(6669):806-811.
    [12]Holen T, Amarzguioui M, Wiiger MT, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor[J]. Nucleic Acids Res 2002,30(8):1757-1766.
    [13]Korf M, Jarczak D, Beger C, et al. Inhibition of hepatitis C virus translation and subgenomic replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors[J]. J Hepatol 2005,43(2):225-234.
    [14]Zhou D, Zhang J, Wang C, et al. A method for detecting and preventing negative RNA interference in preparation of lentiviral vectors for siRNA delivery[J]. RNA 2009,15(4):732-740.
    [15]Anesti AM, Peeters PJ, Royaux I, et al. Efficient delivery of RNA Interference to peripheral neurons in vivo using herpes simplex virus[J]. Nucleic Acids Res 2008,36(14):e86.
    [16]Aigner A. Delivery Systems for the Direct Application of siRNAs to Induce RNA Interference (RNAi) In Vivo[J]. J Biomed Biotechnol 2006,2006(4):71659.
    [17]Putnam D, Doody A. RNA-interference effectors and their delivery[J]. Crit Rev Ther Drug Carrier Syst 2006,23(2):137-164.
    [18]Li CX, Parker A, Menocal E, et al. Delivery of RNA interference[J]. Cell Cycle 2006,5(18):2103-2109.
    [19]Huang J, Jiang P, Li Y, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells[J]. Vet Microbiol 2006,115(4):302-310.
    [20]Li G, Huang J, Jiang P, et al. Suppression of porcine reproductive and respiratory syndrome virus replication in MARC-145 cells by shRNA targeting ORF1 region[J]. Virus Genes 2007,35(3):673-679.
    [21]Li G, Jiang P, Li Y, et al. Effective suppression of replication of porcine reproductive and respiratory syndrome virus by adenovirus-mediated small interfering RNAs targeting ORFlb,5 and 7 genes[J]. J Virol Methods 2009,157(1):40-46.
    [22]Li Guangming JP, Li Yufeng, Wang Xianwei, Huang Juan, Bai Juan, Cao Jun, Wu Biyue,Chen Nianqu, Basit Zeshan. Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine[J]. Antiviral Research 2009.
    [23]Wu Y, Navarro F, Lal A, et al. Durable protection from Herpes Simplex Virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene[J]. Cell Host Microbe 2009,5(1):84-94.
    [24]An DS, Donahue RE, Kamata M, et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates[J]. Proc Natl Acad Sci U S A 2007,104(32):13110-13115.
    [25]Lee MT, Coburn GA, McClure MO, et al. Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat-or CCR5-specific small interfering RNAs expressed from a lentivirus vector[J]. J Virol 2003,77(22):11964-11972.
    [26]Qin XF, An DS, Chen IS, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5[J]. Proc Natl Acad Sci U S A 2003,100(1):183-188.
    [27]Tamhane M, Akkina R. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance[J]. AIDS Res Ther 2008,5:16.
    [28]Delputte PL, Van Breedam W, Barbe F, et al. IFN-alpha treatment enhances porcine Arterivirus infection of monocytes via upregulation of the porcine Arterivirus receptor sialoadhesin[J]. J Interferon Cytokine Res 2007,27(9):757-766.
    [29]Patton JB, Rowland RR, Yoo D, et al. Modulation of CD 163 receptor expression and replication of porcine reproductive and respiratory syndrome virus in porcine macrophages[J]. Virus Res 2009,140(1-2):161-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700