副猪嗜血杆菌分子流行病学调查及其HSP70对PRRSV结构蛋白GP3/GP5的免疫协同作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副猪嗜血杆菌(Haemophilus parasuis, H.parasuis)是猪Glasser's病的病原体,猪上呼吸道的一种共栖菌,它可在特定条件下侵入机体而引起以纤维素性多发性浆膜炎、关节炎和脑膜炎为特征的全身性疾病。目前,我国很多省市患病猪群中均可分离获得副猪嗜血杆菌,该菌已成为保育猪死亡的主要原因之一,给我国养猪业带来了巨大的经济损失。但由于不同血清型及同一血清型的不同菌株之间抗原性差异较大,交叉保护性差;同时该菌的毒力因子和保护性抗原尚不清楚,因此,目前尚无有效的预防和控制措施。
     猪繁殖与呼吸综合征是由猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus, PRRSV)引起的猪的一种高度传染病,又称“猪蓝耳病”,本病以妊娠母猪的繁殖障碍(后期流产、死胎、木乃伊胎、弱胎)及各种年龄猪特别是仔猪的呼吸道疾病(间质性肺炎)为特征。本病给世界养猪业造成巨大的经济损失,现已成为危害规模化养猪生产的主要疫病之一。目前,已有商品化的弱毒疫苗和灭活苗用于PRRS的防制,但由于其自身的缺陷而不能提供有效的免疫保护.近年来,我国大范围出现高致病性PRRSV感染,给我国养猪业造成重大经济损失,同时也对该病的防治带来新的挑战。
     本研究对我国6个省市的副猪嗜血杆菌的分子流行病学进行了调查,对其热休克蛋白70 (Heat shock protein 70, HSP70)进行了克隆鉴定,并设计构建了共表达副猪嗜血杆菌HSP70或其羧基端与PRRSV膜相关蛋白GP3和GP5的重组腺病毒,通过小鼠免疫试验证明了副猪嗜血杆菌HSP70及其羧基端的免疫增强作用,并通过攻毒保护试验证实了对高致病性毒株攻毒有一定的免疫保护效果,为PRRSV基因工程疫苗研究提供了新的思路。
     本研究内容分为以下6个部分:
     1.副猪嗜血杆菌tbpA基因PCR-RFLP分析
     利用针对H. parasuis转铁蛋白基因tbpA的PCR-RFLP分型方法,对2003-2008年分离自江苏、上海、广西、浙江、江西和安徽等6省市的57个H. parasuis分离株及15个参考菌株进行了PCR-RFLP分析,15个血清型参考菌株分为9种基因型,57个H. parasuis流行分离株分为15种基因型,其中在我国最为流行的基因型分别为DBN(38%),ABN(18%)与DBP(12%)。该结果证明副猪嗜血杆菌在我国猪群中普遍存在,并至少有15个RFLP基因亚型,从而为我国副猪嗜血杆菌病的防治提供了重要理论依据。
     2.副猪嗜血杆菌热休克蛋白70基因的测序、表达与抗原性鉴定
     利用简并引物首次从副猪嗜血杆菌基因组DNA中克隆获得全长HSP70基因(GenBank登录号为EU693116),DNA测序结果表明,HSP70完整阅读框1908bp,根据编码序列推导出相应635个氨基酸。经BLAST分析表明,其氨基酸序列与溶血性曼氏杆菌、杜克雷嗜血杆菌、胸膜肺炎放线杆菌等同源性最高,达到90%左右。将HSP70部分基因克隆到原核表达载体pET-32a(+)中,经酶切鉴定正确后转化感受态大肠杆菌BL21,以异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达融合蛋白。SDS-PAGE表明表达的融合蛋白约46KDa,用猪抗副猪嗜血杆菌血清进行Western-blotting,结果显示该融合蛋白具有副猪嗜血杆菌抗原性。用镍柱亲和层析法对重组蛋白进行纯化,纯化后的蛋白免疫小鼠,制备抗血清,Western-blot结果显示,小鼠抗血清与该融合蛋白有明显的特异性反应条带,证明该重组蛋白具有良好的抗原性。
     3.共表达H. parasuis HSP70与PRRSV GP3和GP5重组腺病毒的构建与鉴定
     利用PCR扩增出高致病性PRRSV-SY0608分离株的GP3基因,按正确的读码框与GP5基因串联,成功构建穿梭载体pShuttle-CMV-GP3-GP5,经PCR、测序鉴定正确。然后用两个不同linker将副猪嗜血杆菌的HSP70基因按正确的读码框克隆入pShuttle-CMV-GP3-GP5,构建另外两个穿梭载体pShuttle-CMV-HSP-GP3-GP5及pShuttle-CMV-HSP-2A-GP3-GP5.上述三个穿梭载体经PmeⅠ线性化后在BJ5183大肠杆菌内与腺病毒骨架载体pAdEasy-1同源重组,产生重组腺病毒基因组DNA。将重组腺病毒基因组DNA经PacⅠ酶切线性化后脂质体法转染HEK-293A细胞,分别在细胞内包装成完整的腺病毒rAd-GP35、rAd-HS35和rAd-HSA35。上述三个重组腺病毒的TCID50分别为10-10.0/mL、10-10.5/mL和10-10.25/mL。通过RT-PCR、间接免疫荧光试验(IFA)和Western blot可以检测到HSP/GP3/GP5蛋白的表达,证明重组腺病毒可以正确表达目的蛋白,从而为下一步的免疫试验打下基础。
     4.共表达H.parasuis HSP70与PRRSV GP3和GP5重组腺病毒的小鼠免疫特性研究
     取75只BALB/c小鼠随机分为5组,每组15只。第1、2组分别注射PBS或wtAd(野生型腺病毒)作为对照组,第3-5组分别背部皮下免疫重组腺病毒rAd-GP35(融合表达GP3-GP5蛋白)、rAd-HS35(融合表达HSP-GP3-GP5蛋白)和rAd-HSA35(共表达HSP-2A-GP3-GP5融合蛋白),间隔三周用同样方法加强免疫一次。分别在首次免疫后21d、35d及49d采血测定ELISA抗体及中和抗体,分离小鼠脾淋巴细胞经PRRSV抗原刺激后测定其增殖能力及分泌细胞因子的能力。结果为:3-5组小鼠在免疫后均可诱导PRRSV特异的体液和细胞免疫应答。与免疫rAd-GP35的小鼠相比,免疫rAd-HS35和rAd-HSA35的小鼠产生了更高滴度的中和抗体,二免后6周效价为1:64,并可产生较强的淋巴细胞增殖。同时,免疫rAd-HS35与rAd-HSA35的小鼠的脾细胞经体外PRRSV抗原刺激后产生了比rAd-GP35更高水平的IFN-γ(P<0.05)和IL-4。上述实验表明,副猪嗜血杆菌HSP70对所携带的抗原具有免疫增强作用。
     5.共表达H. parasuis HSP70与PRRSV GP3和GP5重组腺病毒对仔猪的攻毒保护研究
     取20头2-3周龄的PRRSV阴性猪,随机分为4组,每组5头,其中三组分别间隔三周免疫两次重组腺病毒rAd-GP35、rAd-HS35及rAd-HSA35,另外一组按同样方法免疫野生型腺病毒wtAd作为对照。在二免后三周用高致病性SY0608株PRRSV进行攻毒,以观察不同重组腺病毒对仔猪攻毒的免疫保护效力。分别在首次免疫后21d、42d、45d、49d和56d采血测定ELISA抗体、中和抗体、血清中细胞因子、病毒血症等。攻毒后每日观察并记录临床症状、测定体温,实验结束时对所有攻读猪进行剖检,观察病理变化。结果为:免疫rAd-GP35, rAd-HS35及rAd-HSA35的猪产生了PRRSV特异性的体液免疫应答,且rAd-HSA35诱导的中和抗体滴度明显高于rAd-GP35免疫组,差异显著(P<0.05).同时,rAd-HS35及rAd-HSA35免疫仔猪血清中的IFN-γ(P<0.05)及IL-4的含量也明显升高。攻毒后,与wtAd和rAd-GP35免疫组相比,rAd-HS35及rAd-HSA35免疫仔猪的临床症状较轻,病毒血症较低,肺部病理变化也较轻。此外,rAd-HSA35诱导的保护效力明显高于rAd-HS35.结果表明HSP70与GP3-GP5共表达可以增强PRRSV抗原的诱导的免疫应答并对同源毒株攻毒提供一定的免疫保护。其中,重组腺病毒rAd-HSA35免疫保护作用较好,从而为高致病性PRRSV基因工程疫苗研究奠定了基础.
     6.共表达H.parasuis HSP70羧基端与PRRSV GP3和GP5重组腺病毒的构建与小鼠免疫特性研究
     本研究利用PCR扩增出副猪嗜血杆菌的HSP70羧基端(384-635aa)基因tHSP70,然后用两个不同linker将副猪嗜血杆菌的tHSP70基因按正确的读码框克隆入重组穿梭载体pShuttle-CMV-GP3-GP5,构建另两个穿梭载体pShuttle-CMV-tHSP-GP3-GP5及pShuttle-CMV-tHSP-2A-GP3-GP5,按上述方法,构建了两个含tHSP70的重组腺病毒rAd-tHS35及rAd-tHSA35。RT-PCR、IFA和Western blot结果证明,该重组腺病毒可以正确表达tHSP/GP3/GP5蛋白,两个重组腺病毒病毒滴度均为10-12.0/mL。为进一步研究其免疫特性,取105只BALB/c小鼠,随机分为7组,每组15只。第1、2组分别注射PBS或wtAd作为对照组,第3-7组分别背部皮下免疫重组腺病毒rAd-GP35(融合表达GP3-GP5蛋白)、rAd-HS35(融合表达HSP-GP3-GP5蛋白)、rAd-HSA35(共表达HSP-2A-GP3-GP5融合蛋白)、rAd-tHS35(融合表达tHSP-GP3-GP5蛋白)和rAd-tHSA35(共表达tHSP-2A-GP3-GP5融合蛋白),间隔三周用同样方法加强免疫一次。结果为:第3-7组免疫后均可产生PRRSV特异的体液和细胞免疫应答。rAd-HS35、rAd-HSA35、rAd-tHS35和rAd-tHSA35免疫组中和抗体水平、淋巴细胞增殖反应、以及IFN-γ水平均显著高于rAd-GP35免疫组(P<0.05),但rAd-HS35、rAd-HSA35、rAd-tHS35、rAd-tHSA35四组之间并无显著差异(P>0.05)。该结果表明,副猪嗜血杆菌HSP70羧基端对所携带的抗原具有免疫增强作用,其佐剂作用与完整的HSP70相似。
     综上所述,副猪嗜血杆菌在我国发病猪群中广泛存在,基因型众多;其热休克蛋白70具有良好的抗原性;副猪嗜血杆菌HSP70或其羧基端(384-635aa)与PRRSV GP3、GP5蛋白共表达后,能明显提高其诱导的中和抗体水平和细胞免疫应答;共表达HSP70/GP3/GP5的腺病毒对同源毒株攻毒具有一定的免疫保护效果,为研究安全有效的PRRSV新型疫苗提供了新的思路和方法。
Haemophilus parasuis (H.parasuis), the causative agent of Glasser's disease, is a member of the family Pasteurellaceae and commensal organism of the upper respiratory tract of conventional pigs.Under appropriate conditions it can invade and cause severe systemic disease, characterized by fibrinous polyserositis, arthritis and meningitis. Currently, H.parasuis infection, which causing significant mortality and morbidity in piglets and great economic losses in pig industry, has been one of the most important swine diseases in China. However, Studies based on serotyping demonstrated that a high antigenic heterogeneity exists among H. parasuis strains; Moreover, virulence factors and protective antigens of H.parasuis are not known, so there is no universal vaccine to prevent and control the outbreaks of this disease.
     Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically significant viral diseases in the swine industry. It is characterized by reproductive problems in sows such as poor farrowing rates, premature farrowings, and increased stillbirths, as well as respiratory problems in piglets such as pneumonia and atrophic rhinitis. Current commercial PRRS vaccines, including both live attenuated and killed vaccines, have been wildly used, but they cannot provide effective protection against PRRS. Recently, the emergence and prevalence of highly pathogenic PRRSV strains across China, which led to great economic losses, bring new challenge to the prevention and control of the disease.
     In this study, H.parasuis field strains isolated from several provinces or municipality of China were genotyped and heat shock protein 70 (HSP70) gene was cloned from one of the strains; The recombinant adenoviruses expressing HSP70 or truncated HSP70 (tHSP70) and structural protein of PRRSV GP3/GP5 were constructed and the immonoenhancing property of HSP70 or tHSP70 was studied in mouse model by inoculation of mice with these recombinant adenoviruses; Protective efficacy of these recombinant adenoviruses against highly pathogenic PRRSV infection was examined in pigs, which provides new strategy for construction of PRRSV genetic engineering vaccine. The contents of the paper contain five parts as following:
     1. Characterization of Haemophilus parasuis field isolates from China by PCR-RFLP analysis of the tbpA gene
     Fifty-seven of Heamophilus parasuis isolates along with 15 reference strains of all known serovars were subjected to PCR-FRLP (restriction fragment length polymorphism) based on tbpA gene. The analysis of the 1.9-kb tbpA amplicon using Taq I, Ava I and Afa I endonucleases produced 9 RFLP patterns for the 15 reference strains and 15 patterns for the 57 field isolates. And the first 3 prevalent genotypes in China were DBN (38%), ABN (18%) and DBP (12%). It is confirmed that Haemophilus parasuis existed widely in China with numerous genotype. It provides significant basis for prevention and control of the disease in China.
     2. Sequencing and expression of the HSP70 gene of Haemophilus parasuis and antigenicity of heat shock protein 70
     The HSP70 (dnaK) gene of Haemophilus parasuis was cloned and sequenced by PCR with designed primers, which having GenBank accession NO. EU693116。Nucleotide sequencing showed that the gene consists of an open reading frame of 1,908 bp and encodes a protein of 635 amino acids with a high degree of homology to that of Mannheimia haemolytica, Haemophilus ducreyi and Actinobacillus pleuropneumoniae, which were calculated to be 91%,91% and 87%, respectively. After cloning of the C terminal fragment of the HSP70 coding region into pET-32a(+), it was expressed in E. coli and confirmed by SDS-PAGE and Western-blotting using experimentally infected pig serum and mice serum immunized with purified recombinant HSP70. It could be used to study on the foundation of this protein in future.
     3. Construction and Identification of recombinant adenovirus expressing HSP70 of Haemophilus parasuis fused with GP3 and GP5 of Porcine reproductive and respiratory syndrome virus
     Genes of GP3 and GP5 were amplified from a highly pathogenic PRRSV isolate SY0608, and cloned into p-shuttle-CMV vetor tandem inframe which resulted in the recombinant pshuttle-CMV-GP3-GP5. Then, HSP70 gene of Haemophilus parasuis was colned into pshuttle-CMV-GP3-GP5 using two different linkers (5×Glycine or 2A gene of FMDV virus) beteen HSP70 and GP3gene, which leads to the production of recombinant pshuttle-CMV-HSP-GP3-GP5 and pshuttle-CMV-HSP-2A-GP3-GP5. Positive clones were identified by restriction enzyme ananlysis and further confirmed by sequencing. Recombinant plasmids were linearized with Pme I and homologously recombined with pAdEasy-1 backbone vector in BJ5183 host bacteria. The recombinant adenovirus DNA produced by recombination were linearized with Pac I and transfected into HEK-293 A cells for packaging of intact adenovirus. The expression of HSP70/GP3/GP5 by recombinant adenovirus in 293A cells were confirmed by RT-PCR, indirect immuno-fluorescence assay (IFA), and western blot. It shows that HSP70/GP3/GP5 could be expressed by recombinant adenovirus constructed in this study as expected, which provides the basis for the further immunogenicity experiment.
     4. Analysis of immunogenicity of recombinant adenovirus co-expressing HSP70 of H.parasuis and GP3-GP5 of PRRSV in mice
     In this study, three replication-defective adenovirus recombinants were developed as potential vaccine against PRRSV in a mouse model. Three groups of BALB/c mice were inoculated subcutaneously twice at 3-week intervals with the recombinants expressing GP3-GP5 (rAd-GP35), HSP-GP3-GP5 (rAd-HS35) and HSP-2A-GP3-GP5 fusion protein (rAd-HSA35). Two additional groups were injected with wild type adenovirus (wtAd) or PBS as control. The results showed that the mice inoculated with recombinant adenoviruses developed PRRSV-specific antibodies, cellular immune response at 2 weeks post second inoculation. However, only mice immunized with recombinant adenovirus rAd-HSA35 developed significantly higher titers of neutralizing antibodies to PRRSV and produced stronger lymphocyte proliferation responses compared to mice immunized with rAd-GP35. It was also found that lymphocytes of mice immunized with rAd-HS35 or rAd-HSA35 were primed for significant higher levels of PRRSV specific IFN-y responses upon stimulation with purified PRRSV antigen in vitro than that of mice immunized with rAd-GP35. It suggested that HSP70 of haemophilus parasuis has the immuno-enhancing effect on the PRRSV antigens chaperoned.
     5. Analysis of protective efficacy of recombinant adenovirus co-expressing HSP70 of H.parasuis and GP3-GP5 of PRRSV against highly pathogenic PRRSV challenge in piglets
     In this study, twenty piglets were divided into 4 groups of five, and immunized twice with wtAd, rAd-GP35, rAd-HS35 and rAd-HSA35 with three weeks intervals, then challenged with SY0608 strain of highly pathogenic PRRSV by 3 weeks post boost. Immune responses of pigs immunized with these recombinant adenoviruses were detected and protective efficacy against homologous challenge were examined. The results showed that all animals vaccinated with rAd-GP35, rAd-HS35 and rAd-HSA35 developed specific anti-PRRSV ELISA antibody, neutralizing antibody. The humoral immune responses of rAd-HS35, especially rAd-HSA35 containing 2A of FMDV between HSP70 and GP3 gene, were significantly higher than that from rAd-GP35. Both IFN-y and IL-4 in serum of pigs were markedly induced by fusing with HSP70. Following challenge with PRRSV, piglets inoculated with recombinant rAd-HS35 and rAd-HSA35 showed lighter clinical signs, lower viremia and less gross lesion of lungs, comparing with those in rAd-GP35 group. Moreover, the protective efficiency induced by rAd-HSA35 was higher than that rAd-HS35. It indicated that HSP70 fused with GP3 and GP5 of PRRSV could markedly increase the immune responses and provide protection against virulent PRRSV challenge in pigs. The recombinant adenovirus rAd-HSA35 might be an attractive candidate vaccine for preventing and control of highly pathogenic PRRSV infections.
     6. Construction and immunogenicity of recombinant adenovirus expressing truncated HSP70 of Haemophilus parasuis fused with GP3 and GP5 of PRRSV in mice
     Gene of tHSP70 (384-635 amino acid)was amplified from a H.parasuis isolate, and cloned into pshuttle-CMV-GP3-GP5 using two different linkers (5×Glycine or 2A gene of FMDV virus) beteen HSP70 and GP3gene, which leads to the production of recombinant pshuttle-CMV-tHSP-GP3-GP5 and pshuttle-CMV-tHSP-2A-GP3-GP5. Positive clones were identified by restriction enzyme ananlysis and further confirmed by sequencing. Recombinant plasmids were linearized with Pme I and homologously recombined with pAdEasy-1 backbone vector in BJ5183 host bacteria. The recombinant adenovirus DNA produced by recombination were linearized with Pac I and transfected into HEK-293 A cells for packaging of intact adenovirus. The expression of HSP70/GP3/GP5 by recombinant adenovirus in 293A cells were confirmed by RT-PCR, indirect immuno-fluorescence assay (IFA), and western blot. It shows that tHSP70/GP3/GP5 could be expressed by recombinant adenovirus constructed in this study as expected, which provides the basis for the further immunogenicity experiment. In order to detect the immunogenicity of the recombinant adenoviruses, five groups of BALB/c mice (15 mice per group) were inoculated subcutaneously twice at 3-week intervals with the recombinants expressing GP3-GP5 (rAd-GP35), HSP-GP3-GP5 (rAd-HS35), HSP-2A-GP3-GP5 (rAd-HSA35), tHSP-GP3-GP5 (rAd-tHS35), tHSP-2A-GP3-GP5 (rAd-tHSA35) fusion protein. Two additional groups were injected with wild type adenovirus (wtAd) or PBS as control. The results showed that the mice inoculated with recombinant adenoviruses developed PRRSV-specific antibodies, cellular immune response at 2 weeks post second inoculation. However, mice immunized with recombinant adenovirus rAd-HS35, rAd-HSA35, rAd-tHS35 and rAd-tHSA35 developed higher titers of neutralizing antibodies to PRRSV and produced stronger lymphocyte proliferation responses compared to mice immunized with rAd-GP35. It was also found that lymphocytes of mice immunized with rAd-HS35, rAd-HSA35, rAd-tHS35 and rAd-tHSA35 were primed for significant higher levels of PRRSV specific IFN-γresponses upon stimulation with purified PRRSV antigen in vitro than that of mice immunized with rAd-GP35. It suggested that truncated HSP70 of haemophilus parasuis has the immuno-enhancing effect on the PRRSV antigens chaperoned.
     In summary, H.parasuis exist widely in diseased pig herds with numerous genotypes; HSP70 of H.parasuis shows strong antigenicity; Fusion proteins HSP-GP3-GP5 and HSP-2A-GP3-GP5 expressed by recombinant adenoviruses could significantly improve both PRRSV-specific neutralizing antibodies and cell-mediated immune responses. Moreover, it is indicated that HSP70 fused with GP3 and GP5 of PRRSV could markedly increase the immune responses and provide protection against virulent PRRSV challenge in pigs. This study provides the foundation for developing the genetic engineering vaccine against PRRSV.
引文
[1]Pathologie GKUudSmbBiAu. Studies on swine fever especially regarding etiology and pathology of the disease[J]. Deutsche Tierarztliche Wochenschrift 1910; (18):729-733
    [2]Lewis PA and Shope RE. Swine influenza Ⅱ. a hemophilic baccillus from the respiratory tract of infected swine[J]. Journal of Experimental Medicine 1931; 54(3):361-371.
    [3]Hjarre A and Wramby G. fiber die fibrinose SerosaGelenkentzundung beim Schwein[J]. Z. Infekttionskr Parasitenkd Krankheit Hyg. Haustiere 1943; 60:37-64.
    [4]Biberstein EL. A proposal for the establishment of two new Haemophilus species. Soc General Microbiol,1969:75-78.
    [5]Garrity GM, Bell JA and Lilburn TG. Taxonomic outline of the prokaryotes. Bergey's manual of systematic bacteriology:Springer-Verlag, New York, NY.,2004.
    [6]Munch S, Grund S and Kruger M. Fimbriae and membranes on Haemophilus parasuis[J]. Zentralbl Veterinarmed B 1992;39(1):59-64.
    [7]Morozumi T and Nicolet J. Morphological variations of Haemophilus parasuis strains[J]. Journal of Clinical Microbiology 1986; 23(1):138-142.
    [8]Nicolet J, Morozumi T and Bloch I. Proposal for a serological classification of Haemophilus parasuis[J]. Proc.9 th Int. Pig Vet. Soc. Congr. Barcelona, Spain 1986:260.
    [9]Jin H, Zhou R, Kang M, et al. Biofilm formation by field isolates and reference strains of Haemophilus parasuis[J]. Vet Microbiol 2006; 118(1-2):117-123.
    [10]Moller K and Kilian M. V factor-dependent members of the family Pasteurellaceae in the porcine upper respiratory tract[J]. J Clin Microbiol 1990; 28(12):2711-2716.
    [11]J. N. Haemophilus parasuis. Diseases of Swine.7th ed ed:Iowa State University,1992:526-528.
    [12]蔡旭旺.副猪嗜血杆菌的分离鉴定及诊断方法与灭活疫苗的研究[D]:武汉:华中农业大学;2006.
    [13]尹秀凤,姜平,邓雨修,et al.副猪嗜血杆菌的分离与鉴定[J].畜牧与兽医2004;36(7):6-8.
    [14]Morikoshi T, Kobayashi K, Kamino T, et al. Characterization of Haemophilus parasuis isolated in Japan[J]. Nippon Juigaku Zasshi 1990; 52(3):667-669.
    [15]Morozumi T, Hiramune T and Kobayashi K. Experimental infections of mice and guinea pigs with Haemophilus parasuis[J]. Natl Inst Anim Health Q (Tokyo) 1982; 22(1):23-31.
    [16]O'Reilly T and Niven DF. Tryptone-yeast extract broth as a culture medium for Haemophilus pleuropneumoniae and Haemophilus parasuis to be used as challenge inocula[J]. Can J Vet Res 1986; 50(3):441-443.
    [17]Kielstein P and Rapp-Gabrielson VJ. Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts[J]. J Clin Microbiol 1992; 30(4):862-865.
    [18]Amano H, Shibata M, Kajio N, et al. Pathologic observations of pigs intranasally inoculated with serovar 1,4 and 5 of Haemophilus parasuis using immunoperoxidase method[J]. J Vet Med Sci 1994; 56(4):639-644.
    [19]Rapp-Gabrielson VJ and Gabrielson DA. Prevalence of Haemophilus parasuis serovars among isolates from swine[J]. Am J Vet Res 1992; 53(5):659-664.
    [20]Blackall PJ, Rapp-Gabrielson VJ and Hampson DJ. Serological characterisation of Haemophilus parasuis isolates from Australian pigs[J]. Aust Vet J 1996; 73(3):93-95.
    [21]Oliveira S, Blackall PJ and Pijoan C. Characterization of the diversity of Haemophilus parasuis field isolates by use of serotyping and genotyping[J]. Am J Vet Res 2003; 64(4):435-442.
    [22]Rapp-Gabrielson VJ, Kocur GJ, Clark JT, et al. Virulence of different serovars of Haemophilus parasuis for cesarean-derived, colostrum-deprived pigs[J]. Haemophilus, Actinobacillus 1995.
    [23]Little TW and Harding JD. The comparative pathogenicity of two porcine haemophilus species[J]. Vet Rec 1971; 88(21):540-545.
    [24]Morozumi T and Nicolet J. Morphological variations of Haemophilus parasuis strains[J]. J Clin Microbiol 1986; 23(1):138-142.
    [25]Zucker BA, Baghian A, Traux R, et al. Detection of strain-specific antigenic epitopes on the lipo-oligosaccharide of Haemophilus parasuis by use of monoclonal and polyclonal antibodies[J]. Am J Vet Res 1996; 57(1):63-67.
    [26]Miniats OP, Smart NL and Ewert E. Vaccination of gnotobiotic primary specific pathogen-free pigs against Haemophilus parasuis[J]. Can J Vet Res 1991; 55(1):33-36.
    [27]Amano H, Shibata M, Takahashi K, et al. Effects on endotoxin pathogenicity in pigs with acute septicemia of Haemophilus parasuis infection[J]. J Vet Med Sci 1997; 59(6):451-455.
    [28]Raetz CRH and Whitfield C. LIPOPOLYSACCHARIDE ENDOTOXINS[J]. Annual Reviews in Biochemistry 2002; 71(1):635-700.
    [29]Rapp-Gabrielson VJ GD, Musser JM. Phenotypic and genotypic diversity of Haemophilus parasuis.12th Int Pig Vet Soc Congr,1992:334.
    [30]Ruiz A, Oliveira S, Torremorell M, et al. Outer membrane proteins and DNA profiles in strains of Haemophilus parasuis recovered from systemic and respiratory sites[J]. J Clin Microbiol 2001; 39(5):1757-1762.
    [31]Oliveira S and Pijoan C. Computer-based analysis of Haemophilus parasuis protein fingerprints[J]. Can J Vet Res 2004; 68(1):71-75.
    [32]Tadjine M, Mittal KR, Bourdon S, et al. Production and characterization of murine monoclonal antibodies against Haemophilus parasuis and study of their protective role in mice[J]. Microbiology 2004;150(Pt12):3935-3945.
    [33]Nicolet J, Paroz P and Krawinkler M. Polyacrylamide Gel Electrophoresis of Whole-Cell Proteins of Porcine Strains of Haemophilus[J]. International Journal of Systematic and Evolutionary Microbiology 1980; 30(1):69.
    [34]Rosner H, Kielstein P, Muller W, et al. Relationship between serotype, virulence and SDS-PAGE protein patterns of Haemophilus parasuis[J]. Dtsch Tierarztl Wochenschr 1991; 98(9):327-330.
    [35]Lichtensteiger CA and Vimr ER. Neuraminidase (sialidase) activity of Haemophilus parasuis[J]. FEMS Microbiol Lett 1997; 152(2):269-274.
    [36]华升梅,曾德芳,徐涤平,李勇.副猪嗜血杆菌病研究进展[J].动物医学进展2006;27(011):7-10.
    [37]Lichtensteiger CA and Vimr ER. Purification and renaturation of membrane neuraminidase from Haemophilus parasuis[J]. Vet Microbiol 2003; 93(1):79-87.
    [38]Hill CE, Metcalf DS and MacInnes JI. A search for virulence genes of Haemophilus parasuis using differential display RT-PCR[J]. Vet Microbiol 2003; 96(2):189-202.
    [39]Jin H, Zhou R, Kang M, et al. Biofilm formation by field isolates and reference strains of Haemophilus parasuis[J]. Veterinary Microbiology 2006; 118(1-2):117-123.
    [40]Metcalf DS and MacInnes JI. Differential expression of Haemophilus parasuis genes in response to iron restriction and cerebrospinal fluid[J]. Canadian Journal of Veterinary Research 2007; 71(3):181.
    [41]Sack M and Baltes N. Identification of novel potential virulence-associated factors in Haemophilus parasuis[J]. Veterinary Microbiology 2008.
    [42]Schaller A, Kuhnert P, de la Puente-Redondo VA, et al. Apx toxins in Pasteurellaceae species from animals[J]. Vet Microbiol 2000; 74(4):365-376.
    [43]Vahle JL, Haynes JS and Andrews JJ. Experimental reproduction of Haemophilus parasuis infection in swine:clinical, bacteriological, and morphologic findings[J]. J Vet Diagn Invest 1995; 7(4):476-480.
    [44]Segales J, Domingo M, Solano GI, et al. Immunohistochemical detection of Haemophilus parasuis serovar 5 in formalin-fixed, paraffin-embedded tissues of experimentally infected swine[J]. J Vet Diagn Invest 1997; 9(3):237-243.
    [45]Kirkwood RN, Rawluk SA, Cegielski AC, et al. Effect of pig age and autogenous sow vaccination on nasal mucosal colonization of pigs by Haemophilus parasuis[J]. JOURNAL OF SWINE HEALTH AND PRODUCTION 2001; 9(2):77-80.
    [46]Brockmeier SL. Prior infection with Bordetella bronchiseptica increases nasal colonization by Haemophilus parasuis in swine[J]. Vet Microbiol 2004; 99(1):75-78.
    [47]Peet RL, Fry J, Lloyd J, et al. Haemophilus parasuis septicaemia in pigs[J]. Aust Vet J 1983; 60(6):187.
    [48]Vahle JL, Haynes JS and Andrews JJ. Interaction of Haemophilus parasuis with nasal and tracheal mucosa following intranasal inoculation of cesarean derived colostrum deprived (CDCD) swine[J]. Can J Vet Res 1997; 61(3):200-206.
    [49]尹秀凤,张书霞,王艳,et al.副猪嗜血杆菌人工感染猪的病理学观察[J].中国兽医学报2007;27(1):91-94.
    [50]Huang SH and Jong AY. Cellular mechanisms of microbial proteins contributing to invasion of the bloodbrain barrier:MicroReview[J]. Cellular Microbiology 2001; 3(5):277-287.
    [51]Townsend GC and Michael Scheld W. In vitro models of the blood-brain barrier to study bacterial meningitis[J]. Trends in Microbiology 1995; 3(11):441-445.
    [52]Vanier G, Szczotka A, Friedl P, et al. Haemophilus parasuis invades porcine brain microvascular endothelial cells[J]. Microbiology 2006; 152(Pt 1):135-142.
    [53]Bouchet B, Vanier G, Jacques M, et al. Studies on the interactions of Haemophilus parasuis with porcine epithelial tracheal cells:Limited role of LOS in apoptosis and pro-inflammatory cytokine release[J]. Microbial Pathogenesis 2008.
    [54]Harris DL, Ross RF and Switzer WP. Incidence of certain microorganisms in nasal cavities of swine in Iowa[J]. American journal of veterinary research 1969; 30(9):1621.
    [55]Smart NL, Miniats OP, Rosendal S, et al. Glasser's disease and prevalence of subclinical infection with Haemophilus parasuis in swine in southern Ontario[J]. Can Vet J 1989; 30(4):339-343.
    [56]Little TW. Haemophilus infection in pigs[J]. Vet Rec.1970; 87(14):399-402.
    [57]Moller K, Andersen LV, Christensen G, et al. Optimalization of the detection of NAD dependent Pasteurellaceae from the respiratory tract of slaughterhouse pigs[J]. Vet Microbiol 1993; 36(3-4):261-271.
    [58]BE k. Chronological studies of respiratory disease in baby pigs [D]:Iowa State Univ; 1983.
    [59]Oliveira S and Pijoan C. Diagnosis of Haemophilus parasuis in affected herds and use of epidemiological data to control disease[J]. JOURNAL OF SWINE HEALTH AND PRODUCTION 2002; 10:221-225.
    [60]Smart NL, Miniats OP and MacInnes JI. Analysis of Haemophilus parasuis isolates from southern Ontario swine by restriction endonuclease fingerprinting[J]. Can J Vet Res 1988; 52(3):319-324.
    [61]Nielsen R and Danielsen V. An outbreak of Glasser's disease. Studies on etiology, serology and the effect of vaccination[J]. Nord Vet Med 1975; 27(1):20-25.
    [62]Menard J MC. Epidemiology and management of Glasser's in SPF herds[C]. Proc Am Assoc Swine Pract 21; 1990; 1990. p.187-200.
    [63]Oliveira S and Pijoan C. Haemophilus parasuis:new trends on diagnosis, epidemiology and control[J]. Vet Microbiol 2004; 99(1):1-12.
    [64]Solano GI, Segales J, Collins JE, et al. Porcine reproductive and respiratory syndrome virus (PRRSv) interaction with Haemophilus parasuis[J]. Vet Microbiol 1997; 55(1-4):247-257.
    [65]Solano GI, Bautista E, Molitor TW, et al. Effect of porcine reproductive and respiratory syndrome virus infection on the clearance of Haemophilus parasuis by porcine alveolar macrophages[J]. Can J Vet Res 1998; 62(4):251-256.
    [66]Segales J, Domingo M, Balasch M, et al. Ultrastructural study of porcine alveolar macrophages infected in vitro with porcine reproductive and respiratory syndrome (PRRS) virus, with and without Haemophilus parasuis[J]. J Comp Pathol 1998; 118(3):231-243.
    [67]Kim J, Chung HK, Jung T, et al. Postweaning multisystemic wasting syndrome of pigs in Korea: prevalence, microscopic lesions and coexisting microorganisms[J]. Journal of Veterinary Medical Science 2002; 64(1):57-62.
    [68]Cai X, Chen H, Blackall PJ, et al. Serological characterization of Haemophilus parasuis isolates from China[J]. Veterinary Microbiology 2005; 111(3-4):231-236.
    [69]Bakos K. NA, Thal E. Untersuchungen fiber Haemophilus suis[J]. Nordic Veterinary Medicine 1952; 4:241-255.
    [70]Rubies X, Kielstein P, Costa L, et al. Prevalence of Haemophilus parasuis serovars isolated in Spain from 1993 to 1997[J], Vet Microbiol 1999; 66(3):245-248.
    [71]Blackall PJ, Trott DJ, Rapp-Gabrielson V, et al. Analysis of Haemophilus parasuis by multilocus enzyme electrophoresis[J]. Vet Microbiol 1997; 56(1-2):125-134.
    [72]Rafiee M and Blackall PJ. Establishment, validation and use of the Kielstein-Rapp-Gabrielson serotyping scheme for Haemophilus parasuis[J]. Aust Vet J 2000; 78(3):172-174.
    [73]Angen O, Svensmark B and Mittal KR. Serological characterization of Danish Haemophilus parasuis isolates[J]. Vet Microbiol 2004; 103(3-4):255-258.
    [74]Del Rio ML, Gutierrez CB and Rodriguez Ferri EF. Value of indirect hemagglutination and coagglutination tests for serotyping Haemophilus parasuis[J]. J Clin Microbiol 2003; 41(2):880-882.
    [75]Smart NL, Hurnik D and Macinnes JI. An investigation of enzootic Glasser's disease in a specific-pathogen-free grower-finisher facility using restriction endonuclease analysis[J]. Can Vet J 1993;34(8):487-490.
    [76]Rafiee M, Bara M, Stephens CP, et al. Application of ERIC-PCR for the comparison of isolates of Haemophilus parasuis[J]. Aust Vet J 2000; 78(12):846-849.
    [77]Olvera A, Segales J and Aragon V. Update on the diagnosis of Haemophilus parasuis infection in pigs and novel genotyping methods[J]. Vet J 2007; 174(3):522-529.
    [78]Foxman B, Zhang L, Koopman JS, et al. Choosing an appropriate bacterial typing technique for epidemiologic studies[J]. Epidemiologic Perspectives & Innovations 2005; 2(1):10.
    [79]Olvera A, Calsamiglia M and Aragon V. Genotypic diversity of Haemophilus parasuis field strains[J]. Appl Environ Microbiol 2006; 72(6):3984-3992.
    [80]de la Puente Redondo VA, Navas Mendez J, Garcia del Blanco N, et al. Typing of Haemophilus parasuis strains by PCR-RFLP analysis of the tbpA gene[J]. Vet Microbiol 2003; 92(3):253-262.
    [81]Lin BC. Identification and differentiation of Haemophilus parasuis sero-nontypeable strains using a species-specific PCR and the digestion of PCR products with Hind III endonuclease[J]. PCR-RFLP analysis of H. parasuis strains isolated from a large hog farm over a one-year period (BC Lin. American Association of Swine Veterinarians 2003.
    [82]del Rio ML, Martin CB, Navas J, et al. aroA gene PCR-RFLP diversity patterns in Haemophilus parasuis and Actinobacillus species[J]. Res Vet Sci 2006; 80(1):55-61.
    [83]Olvera A, Cerda-Cuellar M and Aragon V. Study of the population structure of Haemophilus parasuis by multilocus sequence typing[J]. Microbiology 2006; 152(Pt 12)3683-3690.
    [84]Sacchi CT, Alber D, Dull P, et al. High level of sequence diversity in the 16S rRNA genes of Haemophilus influenzae isolates is useful for molecular subtyping[J]. Journal of Clinical Microbiology 2005; 43(8):3734-3742.
    [85]Hoefling DC. The various forms of Haemophilus parasuis[J]. Swine health and production:the official journal of the American Association of Swine Practitioners (USA) 1994.
    [86]Narita M, Kawashima K, Matsuura S, et al. Pneumonia in pigs infected with pseudorabies virus and Haemophilus parasuis serovar4[J]. J Comp Pathol 1994; 110(4):329-339.
    [87]del Rio ML, Gutierrez B, Gutierrez CB, et al. Evaluation of survival of Actinobacillus pleuropneumoniae and Haemophilus parasuis in four liquid media and two swab specimen transport systems[J]. Am J Vet Res 2003; 64(9):1176-1180.
    [88]Kielstein P, Wuthe H, Angen O, et al. Phenotypic and genetic characterization of NAD-dependent Pasteurellaceae from the respiratory tract of pigs and their possible pathogenetic importance[J]. Vet Microbiol 2001; 81(3):243-255.
    [89]Chiers K, Haesebrouck F, Mateusen B, et al. Pathogenicity of Actinobacillus minor, Actinobacillus indolicus and Actinobacillus porcinus strains for gnotobiotic piglets[J]. Journal of Veterinary Medicine, Series B 2001; 48(2):127-131.
    [90]Oliveira S, Galina L and Pijoan C. Development of a PCR test to diagnose Haemophilus parasuis infections[J]. J Vet Diagn Invest 2001; 13(6):495-501.
    [91]Jung K, Ha Y, Kim SH, et al. Development of polymerase chain reaction and comparison with in situ hybridization for the detection of Haemophilus parasuis in formalin-fixed, paraffin-embedded tissues[J]. J Vet Med Sci 2004; 66(7):841-845.
    [92]Angen O, Oliveira S, Ahrens P, et al. Development of an improved species specific PCR test for detection of Haemophilus parasuis[J]. Vet Microbiol 2007; 119(2-4):266-276.
    [93]Jung K and Chae C. In-situ hybridization for the detection of Haemophilus parasuis in naturally infected pigs[J]. J Comp Pathol 2004; 130(4):294-298.
    [94]Riising HJ. Prevention of Glasser's disease through immunity to Haemophilus parasuis[J]. Zentralbl Veterinarmed B 1981; 28(8):630-638.
    [95]Solano-Aguilar GI, Pijoan C, Rapp-Gabrielson V, et al. Protective role of maternal antibodies against Haemophilus parasuis infection[J]. Am J Vet Res 1999; 60(1):81-87.
    [96]Bak H and Riising HJ. Protection of vaccinated pigs against experimental infections with homologous and heterologous Haemophilus parasuis[J]. Vet Rec 2002; 151(17):502-505.
    [97]Baumann G and Bilkei G. Effect of vaccinating sows and their piglets on the development of Glasser's disease induced by a virulent strain of Haemophilus parasuis serovar 5[J]. Vet Rec 2002; 151(1):18-21.
    [98]Miniats OP, Smart NL and Rosendal S. Cross protection among Haemophilus parasuis strains in immunized gnotobiotic pigs[J]. Can J Vet Res 1991; 55(1):37-41.
    [99]Rapp-Gabrielson V, Kocur GJ, Clark JT, et al. Haemophilus parasuis:immunity in swine after vaccination[J]. Veterinary Medicine 1997; 92(1):83.
    [100]Takahashi K, Naga S, Yagihashi T, et al. A cross-protection experiment in pigs vaccinated with Haemophilus parasuis serovars 2 and 5 bacterins, and evaluation of a bivalent vaccine under laboratory and field conditions[J]. J Vet Med Sci 2001; 63(5):487-491.
    [101]Nielsen R. Pathogenicity and immunity studies of Haemophilus parasuis serotypes[J], Acta Vet Scand1993;34(2):193-198.
    [102]Pijoan C, Torremorell M and Solano G. Colonization patterns by the bacterial flora of young pigs[C]. Proceeding of the American Association of Swine Practitioners; 1997; 1997. p.463-464.
    [103]Oliveira S, Batista L, Torremorell M, et al. Experimental colonization of piglets and gilts with systemic strains of Haemophilus parasuis and Streptococcus suis to prevent disease[J]. Can J Vet Res 2001; 65(3):161-167.
    [104]de la Fuente AJ, Gutierrez-Martin CB, Rodriguez-Barbosa JI, et al. Blood cellular immune response in pigs immunized and challenged with Haemophilus parasuis[J]. Res Vet Sci 2008.
    [105]Martin de la Fuente AJ, Rodriguez-Ferri EF, Frandoloso R, et al. Systemic antibody response in colostrum-deprived pigs experimentally infected with Haemophilus parasuis[J]. Res Vet Sci 2008.
    [106]Martin de la Fuente AJ, Gutierrez Martin CB, Perez Martinez C, et al. Effect of Different Vaccine Formulations on the Development of Glasser's Disease Induced in Pigs by Experimental Haemophilus parasuis Infection[J]. J Comp Pathol 2009.
    [107]Madsen P. Atypical outbreaks of Glasser's disease in Danish pig herds[J].1985.
    [108]Wiseman B, Harris DL, Glock RD, et al. Management of seedstock that is negative for Haemophilus parasuis[J]. Proc 20th Annu Meet Am Assoc Swine Pract, Des Moines 1989:23-25.
    [109]Desrosiers R, Phaneuf JB, Broes A, et al. An outbreak of atypical Glasser's disease in Quebec[C]. 1986; 1986. p.277.
    [110]Trigo E, Mendez-Trigo AV and Simonson R. Antimicrobial susceptibility profiles of Haemophilus parasuis. A retrospective study from clinical cases submitted during 1994 and 1995 to a veterinary diagnostic laboratory[C].1996; 1996. p.313.
    [111]Altrock AV. Occurrence of bacterial agents in lungs of pigs and evaluation of their resistance to antibiotics[J]. Berliner und Munchener Tierarztliche Wochenschrift 1998; 111:164-172.
    [112]Aarestrup FM, Seyfarth AM and Angen O. Antimicrobial susceptibility of Haemophilus parasuis and Histophilus somni from pigs and cattle in Denmark[J]. Vet Microbiol 2004; 101(2):143-146.
    [113]Wissing A, Nicolet J and Boerlin P. The current antimicrobial resistance situation in Swiss veterinary medicine[J]. Schweiz Arch Tierheilkd 2001; 143(10):503-510.
    [114]de la Fuente AJM, Tucker AW, Navas J, et al. Antimicrobial susceptibility patterns of Haemophilus parasuis from pigs in the United Kingdom and Spain[J]. Veterinary Microbiology 2007; 120(1-2):184-191.
    [115]Gupta RS and Singh B. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus[J]. Curr Biol 1994; 4(12):1104-1114.
    [116]Mayer MP and Bukau B. Hsp70 chaperones:cellular functions and molecular mechanism[J]. Cell Mol Life Sci 2005; 62(6):670-684.
    [117]Zhang Y and Zuiderweg ER. The 70-kDa heat shock protein chaperone nucleotide-binding domain in solution unveiled as a molecular machine that can reorient its functional subdomains[J]. Proc Natl Acad Sci U S A 2004; 101(28):10272-10277.
    [118]Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity[J]. Nature Reviews Immunology 2002; 2(3):185-194.
    [119]Manjili MH, Wang XY, MacDonald IJ, et al. Cancer immunotherapy and heat-shock proteins: promises and challenges[J]. ebt 2004; 4(3):363-373.
    [120]Ullrich SJ, Robinson EA, Law LW, et al. A mouse tumor-specific transplantation antigen is a heat shock-related protein[J], Proceedings of the National Academy of Sciences 1986; 83(10):3121-3125.
    [121]Udono H. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70[J]. The Journal of Immunology 1994; 152(11):5398-5403.
    [122]Tamura Y, Peng P, Liu K, et al. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations[J]. Science 1997; 278(5335):117.
    [123]Basu S and Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor-and peptide-specific immunity[J]. Journal of Experimental Medicine 1999; 189(5):797-802.
    [124]Lindquist S and Craig EA. The heat-shock proteins[J]. Annual Review of Genetics 1988; 22(1):631-677.
    [125]Clarke AR. Molecular chaperones in protein folding and translocation[J]. Curr Opin Struct Biol 1996;6(1):43-50.
    [126]Bohen SP, Kralli A and Yamamoto KR. Hold'em and fold'em:chaperones and signal transduction[J]. Science 1995; 268(5215):1303-1304.
    [127]Przepiorka D and Srivastava PK. Heat shock protein-peptide complexes as immunotherapy for human cancer[J]. Molecular Medicine Today 1998; 4(11):478-484.
    [128]Asea A, Kraeft SK, Kurt-Jones EA, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine[J]. Nat Med 2000; 6(4):435-442.
    [129]Bulut Y, Faure E, Thomas L, et al. Chlamydial Heat Shock Protein 60 Activates Macrophages and Endothelial Cells Through Toll-Like Receptor 4 and MD2 in a MyD88-Dependent Pathway 1[J]. The Journal of Immunology 2002; 168(3):1435-1440.
    [130]Vabulas RM, Ahmad-Nejad P, da Costa C, et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells[J]. Journal of Biological Chemistry 2001; 276(33):31332-31339.
    [131]Vabulas RM, Ahmad-Nejad P, Ghose S, et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway[J]. J Biol Chem 2002; 277(17):15107-15112.
    [132]Singh-Jasuja H, Scherer HU, Hilf N, et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor[J]. European Journal of Immunology 2000; 30(8):2211-2215.
    [133]Multhoff G. Heat shock proteins in immunity[J]. Handbook of experimental pharmacology 2006; (172):279.
    [134]Kelly JM, Darcy PK, Markby JL, et al. Induction of tumor-specific T cell memory by NK cell? mediated tumor rejection[J]. Nature Immunology 2001; 3:83-90.
    [135]Chen X, Tao Q, Yu H, et al. Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity[J]. Immunol Lett 2002; 84(2):81-87.
    [136]Gastpar R, Gehrmann M, Bausero MA, et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells[J]. Cancer Res 2005; 65(12):5238-5247.
    [137]Li Z, Qiao Y, Liu B, et al. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. AACR,2005:4460-4468.
    [138]Multhoff G, Mizzen L, Winchester CC, et al. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells[J]. Exp Hematol 1999; 27(11):1627-1636.
    [139]Gastpar R, Gross C, Rossbacher L, et al. The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells[J]. J Immunol 2004; 172(2):972-980.
    [140]Lehner T, Wang Y, Whittall T, et al. Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity[J]. Biochem Soc Trans 2004; 32(Pt4):629-632.
    [141]Wang Y, Kelly CG, Singh M, et al. Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70[J]. J Immunol 2002; 169(5):2422-2429.
    [142]Lehner T, Mitchell E, Bergmeier L, et al. The role of gammadelta T cells in generating antiviral factors and beta-chemokines in protection against mucosal simian immunodeficiency virus infection[J]. Eur J Immunol 2000; 30(8):2245-2256.
    [143]Wallin RPA, Lundqvist A, More SH, et al. Heat-shock proteins as activators of the innate immune system[J]. TRENDS in Immunology 2002; 23(3):130-135.
    [144]Zugel U, Sponaas AM, Neckermann J, et al. gp96-peptide vaccination of mice against intracellular bacteria. Am Soc Microbiol,2001:4164-4167.
    [145]Tobian AA, Canaday DH and Harding CV. Bacterial heat shock proteins enhance class Ⅱ MHC antigen processing and presentation of chaperoned peptides to CD4+T cells[J]. J Immunol 2004; 173(8):5130-5137.
    [146]Tobian AA, Canaday DH, Boom WH, et al. Bacterial heat shock proteins promote CD91-dependent class Ⅰ MHC cross-presentation of chaperoned peptide to CD8+T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages[J]. J Immunol 2004; 172(9):5277-5286.
    [147]Huang Q, Richmond JF, Suzue K, et al. In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat shock protein 70 fusion proteins maps to a discrete domain and is CD4(+) T cell independent[J]. J Exp Med 2000; 191(2):403-408.
    [148]MacAry PA, Javid B, Floto RA, et al. HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation[J]. Immunity 2004; 20(l):95-106.
    [149]Kumaraguru U, Gouffon CA, Jr., Ivey RA,3rd, et al. Antigenic peptides complexed to phylogenically diverse Hsp70s induce differential immune responses[J]. Cell Stress Chaperones 2003; 8(2):134-143.
    [150]Ciupitu AM, Petersson M, O'Donnell CL, et al. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes[J]. J Exp Med 1998; 187(5):685-691.
    [151]Wang Y, Kelly CG, Karttunen JT, et al. CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines[J]. Immunity 2001; 15(6):971-983.
    [152]Becker T, Hartl FU and Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes[J]. J Cell Biol 2002; 158(7):1277-1285.
    [153]Zugel U and Kaufmann SHE. Role of heat shock proteins in protection from and pathogenesis of infectious diseases[J]. Clinical Microbiology Reviews 1999; 12(1):19-39.
    [154]Zugel U and Kaufmann SH. Immune response against heat shock proteins in infectious diseases[J]. Immunobiology 1999; 201(1):22.
    [155]Casadevall A. Antibody-Mediated Immunity against Intracellular Pathogens:Two-Dimensional Thinking Comes Full Circle The views expressed in this Commentary do not necessarily reflect the views of the journal or of ASM. Editor:TR Kozel[J]. Infection and Immunity 2003; 71(8):4225-4228.
    [156]Casadevall A and Pirofski L. Exploiting the Redundancy in the Immune System Vaccines Can Mediate Protection by Eliciting'Unnatural'Immunity. The Rockefeller University Press,2003: 1401-1404.
    [157]Kang HK, Lee HY, Lee YN, et al. Toxoplasma gondii-derived heat shock protein 70 stimulates the maturation of human monocyte-derived dendritic cells[J]. Biochem Biophys Res Commun 2004; 322(3):899-904.
    [158]Heike M. Heat shock protein-peptide complexes for use in vaccines. Soc Leukocyte Biology, 1996:153-158.
    [159]Srivastava PK, DeLeo AB and Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice[J]. Proceedings of the National Academy of Sciences 1986; 83(10):3407-3411.
    [160]Udono H. Heat shock protein 70-associated peptides elicit specific cancer immunity[J]. Journal of Experimental Medicine 1993; 178(4):1391-1396.
    [161]Blachere NE, Udono H, Janetzki S, et al. Heat shock protein vaccines against cancer[J]. Journal of immunotherapy 1993; 14(4):352-356.
    [162]Maki RG, Eddy RL, Byers M, et al. Mapping of the genes for human endoplasmic reticular heat shock protein gp96/grp94[J]. Somatic Cell and Molecular Genetics 1993; 19(1):73-81.
    [163]Maki RG, Old LJ and Srivastava PK. Human homologue of murine tumor rejection antigen gp96: 5'-regulatory and coding regions and relationship to stress-induced proteins[J]. Proceedings of the National Academy of Sciences 1990; 87(15):5658-5662.
    [164]Srivastava PKH, M. Tumor-specific immunogenicity of stress-induced proteins:convergence of two evolutionary pathways of antigen presentation?[C].1991:Semin Immunol; 1991. p.57.
    [165]Welch WJ, Kang HS, Beckmann RP, et al. Response of mammalian cells to metabolic stress; changes in cell physiology and structure/function of stress proteins[J]. Curr Top Microbiol Immunol 1991; 167:31-55.
    [166]Hendrick JP and Hartl F. Molecular chaperone functions of heat-shock proteins [J]. Annual Review of Biochemistry 1993; 62(1):349-384.
    [167]Craig EA, Weissman JS and Horwich AL. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell[J]. Cell 1994; 78(3):365.
    [168]Winau F, Sponaas AM, Weber S, et al. Scant activation of CD8 T cells by antigen loaded on heat shock protein[J]. Eur J Immunol 2005; 35(4):1046-1055.
    [169]Takemoto S, Nishikawa M and Takakura Y. Pharmacokinetic and tissue distribution mechanism of mouse recombinant heat shock protein 70 in mice[J]. Pharm Res 2005; 22(3):419-426.
    [170]Blachere NE and Srivastava PK. Heat shock protein-based cancer vaccines and related thoughts on immunogenicity of human tumors[C].1995:Elsevier; 1995. p.349-355.
    [171]Gullo CA and Teoh G. Heat shock proteins:to present or not, that is the question[J]. Immunology letters 2004; 94(1-2):1-10.
    [172]Srivastava PK. Immunotherapy for human cancer using heat shock protein-peptide complexes[J]. Current Oncology Reports 2005; 7(2):104-108.
    [173]Aalamian M, Fuchs E, Gupta R, et al. Autologous renal cell cancer vaccines using heat shock protein-peptide complexes[C].2006:Elsevier; 2006. p.425-433.
    [174]Binder RJ and Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8 T cells[J]. Nature Immunology 2005; 6:593-599.
    [175]Javid B, MacAry PA, Oehlmann W, et al. Peptides complexed with the protein HSP70 generate efficient human cytolytic T-lymphocyte responses[J]. Biochem Soc Trans 2004; 32(Pt4):622-625.
    [176]Flynn GC, Pohl J, Flocco MT, et al. Peptide-binding specificity of the molecular chaperone BiP[J]. Nature 1991; 353(6346):726-730.
    [177]Moroi Y, Mayhew M, Trcka J, et al. Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70[J]. Proc Natl Acad Sci U S A 2000; 97(7):3485-3490.
    [178]Udono H, Yamano T, Kawabata Y, et al. Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70[J]. Int Immunol 2001; 13(10):1233-1242.
    [179]Shakushiro K, Yamasaki Y, Nishikawa M, et al. Efficient scavenger receptor-mediated uptake and cross-presentation of negatively charged soluble antigens by dendritic cells[J]. Immunology 2004; 112(2):211.
    [180]Ikenaga T, Yamasaki Y, Shakushiro K, et al. Induction of cytotoxic T lymphocytes following immunization with cationized soluble antigen[J]. Vaccine 2004; 22(20):2609-2616.
    [181]Laus R, Graddis TJ, Hakim I, et al. Enhanced major histocompatibility complex class I-dependent presentation of antigens modified with cationic and fusogenic peptides[J]. Nature biotechnology 2000; 18:1269-1272.
    [182]Takemoto S, Nishikawa M, Otsuki T, et al. Enhanced generation of cytotoxic T lymphocytes by increased cytosolic delivery of MHC class I epitope fused to mouse heat shock protein 70 via polyhistidine conjugation[J]. Journal of Controlled Release 2008.
    [183]Brenner BG and Wainberg Z. Heat shock proteins:novel therapeutic tools for HIV-infection?[J]. ebt2001;1(1):67-77.
    [184]Oglesbee MJ, Pratt M and Carsillo T. Role for heat shock proteins in the immune response to measles virus infection[J]. Viral Immunology 2002; 15(3):399-416.
    [185]SenGupta D, Norris PJ, Suscovich TJ, et al. Heat Shock Protein-Mediated Cross-Presentation of Exogenous HIV Antigen on HLA Class Ⅰ and Class Ⅱ 1[J]. The Journal of Immunology 2004; 173(3):1987-1993.
    [186]Bogers W, BergmeierLA, Ma J, et al. Anovel HIV-CCR5 receptor vaccine strategy in the control of mucosal SIV/HIV infection[J]. AIDS 2004; 18(1):25.
    [187]Hoos A and Levey DL. Vaccination with heat shock proteinpeptide complexes:from basic science to clinical applications[J]. Expert Review of Vaccines 2003; 2(3):369-379.
    [188]Meulenberg JJM, Hulst MM, Meijer EJ, et al. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV[J]. Virology 1993.
    [189]Christianson WT, Collins JE, Benfield DA, et al. Experimental reproduction of swine infertility and respiratory syndrome in pregnant sows[J]. American journal of veterinary research 1992; 53(4):485-488.
    [190]Rossow KD, Bautista EM, Goyal SM, et al. Experimental porcine reproductive and respiratory syndrome virus infection in one-, four-, and 10-week-old pigs[J]. Journal of Veterinary Diagnostic Investigation 1994; 6(1):3-12.
    [191]Neumann EJ, Kliebenstein JB, Johnson CD, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States[J]. Journal of the American Veterinary Medical Association 2005; 227(3):385-392.
    [192]Voicu IL, Silim A, Morin M, et al. Interaction of porcine reproductive and respiratory syndrome virus with swine monocytes[J]. The Veterinary Record 1994; 134(16):422-423.
    [193]Thacker EL, Halbur PG, Paul PS, et al. Detection of intracellular porcine reproductive and respiratory syndrome virus nucleocapsid protein in porcine macrophages by flow cytometry[J]. J Vet Diagn Invest 1998; 10(3):308-311.
    [194]Charerntantanakul W, Platt R and Roth JA. Effects of porcine reproductive and respiratory syndrome virus-infected antigen-presenting cells on T cell activation and antiviral cytokine production[J]. Viral Immunol 2006; 19(4):646-661.
    [195]Loving CL, Brockmeier SL and Sacco RE. Differential type I interferon activation and susceptibility of dendritic cell populations to porcine arterivirus[J]. Immunology 2007; 120(2):217-229.
    [196]Albina E, Carrat C and Charley B. Interferon-alpha response to swine arterivirus (PoAV), the porcine reproductive and respiratory syndrome virus[J]. J Interferon Cytokine Res 1998; 18(7):485-490.
    [197]Chiou MT, Jeng CR, Chueh LL, et al. Effects of porcine reproductive and respiratory syndrome virus (isolate tw91) on porcine alveolar macrophages in vitro [J]. Vet Microbiol 2000; 71(1-2):9-25.
    [198]Lopez-Fuertes L, Campos E, Domenech N, et al. Porcine reproductive and respiratory syndrome (PRRS) virus down-modulates TNF-alpha production in infected macrophages[J]. Virus Res 2000; 69(1):41-46.
    [199]Van Reeth K, Labarque G, Nauwynck H, et al. Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections:correlations with pathogenicity[J]. Res Vet Sci 1999; 67(1):47-52.
    [200]Yoon KJ, Zimmerman JJ, Swenson SL, et al. Characterization of the humoral immune response to porcine reproductive and respiratory syndrome (PRRS) virus infection[J]. Journal of Veterinary Diagnostic Investigation 1995; 7(3):305.
    [201]Mulupuri P, Zimmerman JJ, Hermann J, et al. Antigen-specific B-cell responses to porcine reproductive and respiratory syndrome virus infection[J]. J Virol 2008; 82(1):358-370.
    [202]Wills RW, Zimmerman JJ, Yoon KJ, et al. Porcine reproductive and respiratory syndrome virus:a persistent infection[J]. Vet Microbiol 1997; 55:231-240.
    [203]Bautista EM and Molitor TW. Cell-mediated immunity to porcine reproductive and respiratory syndrome virus in swine[J]. Viral Immunol 1997; 10(2):83-94.
    [204]Lopez Fuertes L, Domenech N, Alvarez B, et al. Analysis of cellular immune response in pigs recovered from porcine respiratory and reproductive syndrome infection[J]. Virus Res 1999; 64(1):33-42.
    [205]Meier WA, Galeota J, Osorio FA, et al. Gradual development of the interferon-gamma response of swine to porcine reproductive and respiratory syndrome virus infection or vaccination[J]. Virology 2003;309(1):18-31.
    [206]Royaee AR, Husmann RJ, Dawson HD, et al. Deciphering the involvement of innate immune factors in the development of the host response to PRRSV vaccination[J]. Vet Immunol Immunopathol 2004; 102(3):199-216.
    [207]Bassaganya-Riera J, Thacker BJ, Yu S, et al. Impact of immunizations with porcine reproductive and respiratory syndrome virus on lymphoproliferative recall responses of CD8+T cells[J]. Viral Immunol 2004; 17(1):25-37.
    [208]Charerntantanakul W, Platt R, Johnson W, et al. Immune responses and protection by vaccine and various vaccine adjuvant candidates to virulent porcine reproductive and respiratory syndrome virus[J]. Vet Immunol Immunopathol 2006; 109(1-2):99-115.
    [209]Murtaugh MP, Xiao Z and Zuckermann F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection[J]. Viral Immunol 2002; 15(4):533-547.
    [210]Buddaert W, Van Reeth K and Pensaert M. In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Adv Exp Med Biol 1998; 440:461-467.
    [211]Johnsen CK, Botner A, Kamstrup S, et al. Cytokine mRNA profiles in bronchoalveolar cells of piglets experimentally infected in utero with porcine reproductive and respiratory syndrome virus: association of sustained expression of IFN-gamma and IL-10 after viral clearance[J]. Viral Immunol 2002; 15(4):549-556.
    [212]Lopez OJ and Osorio FA. Role of neutralizing antibodies in PRRSV protective immunity[J]. Vet Immunol Immunopathol 2004; 102(3):155-163.
    [213]Bautista EM and Molitor TW. IFN gamma inhibits porcine reproductive and respiratory syndrome virus replication in macrophages[J]. Arch Virol 1999; 144(6):1191-1200.
    [214]Rowland RR, Robinson B, Stefanick J, et al. Inhibition of porcine reproductive and respiratory syndrome virus by interferon-gamma and recovery of virus replication with 2-aminopurine[J]. Arch Virol 2001; 146(3):539-555.
    [215]Foss DL, Zilliox MJ, Meier W, et al. Adjuvant danger signals increase the immune response to porcine reproductive and respiratory syndrome virus[J]. Viral Immunol 2002; 15(4):557-566.
    [216]Meier WA, Husmann RJ, Schnitzlein WM, et al. Cytokines and synthetic double-stranded RNA augment the T helper 1 immune response of swine to porcine reproductive and respiratory syndrome virus[J]. Vet Immunol Immunopathol 2004; 102(3):299-314.
    [217]Piras F, Bollard S, Laval F, et al. Porcine reproductive and respiratory syndrome (PRRS) virus-specific interferon-gamma(+) T-cell responses after PRRS virus infection or vaccination with an inactivated PRRS vaccine[J]. Viral Immunol 2005; 18(2):381-389.
    [218]Zuckermann FA, Garcia EA, Luque ID, et al. Assessment of the efficacy of commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines based on measurement of serologic response, frequency of gamma-IFN-producing cells and virological parameters of protection upon challenge[J]. Vet Microbiol 2007; 123(1-3):69-85.
    [219]Pirzadeh B and Dea S. Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus[J]. J Gen Virol 1998; 79 (Pt 5):989-999.
    [220]Rompato G, Ling E, Chen Z, et al. Positive inductive effect of IL-2 on virus-specific cellular responses elicited by a PRRSV-ORF7 DNA vaccine in swine[J]. Vet Immunol Immunopathol 2006; 109(1-2):151-160.
    [221]Xue Q, Zhao YG, Zhou YJ, et al. Immune responses of swine following DNA immunization with plasmids encoding porcine reproductive and respiratory syndrome virus ORFs 5 and 7, and porcine IL-2 and IFNgamma[J]. Vet Immunol Immunopathol 2004; 102(3):291-298.
    [222]Mateu E and Diaz I. The challenge of PRRS immunology[J]. Vet J 2008; 177(3):345-351.
    [223]Binns RM, Licence ST, Wooding FBP, et al. Active lymphocyte traffic induced in the periphery by cytokines and phytohemagglutinin:Three different mechanisms?[J]. European journal of immunology 1992; 22(9).
    [224]Emery DW, Sachs DH and LeGuern C. Culture and characterization of hematopoietic progenitor cells from miniature swine[J]. Experimental hematology 1996; 24(8):927-935.
    [225]Knoblock KF and Canning PC. Modulation of in vitro porcine natural killer cell activity by recombinant interleukin-1 alpha, interleukin-2 and interleukin-4[J]. Immunology 1992; 76(2):299.
    [226]Murtaugh MP. Porcine cytokines[J]. Veterinary Immunology and Immunopathology 1994.
    [227]Murtaugh MP, Baarsch MJ, Zhou Y, et al. Inflammatory cytokines in animal health and disease[J]. Veterinary Immunology and Immunopathology 1996; 54(1-4):45-55.
    [228]Dinarello CA. The biological properties of interleukin-1 [J]. European cytokine network; 5(6):517.
    [229]Blecha F, Reddy DN, Chitko-McKown CG, et al. Influence of recombinant bovine interleukin-1β and interleukin-2 in pigs vaccinated and challenged with Streptococcus suis[J]. Veterinary Immunology and Immunopathology 1995; 44(3-4):329-346.
    [230]Hennessy KJ, Blecha F, Fenwick BW, et al. Human recombinant interleukin-2 augments porcine natural killer cell cytotoxicity in vivo[J]. Ann Rech Vet 1990; 21(2):101-109.
    [231]Wong HT, Cheng SCS, Sin FWY, et al. A DNA vaccine against foot-and-mouth disease elicits an immune response in swine which is enhanced by co-administration with interleukin-2[J]. Vaccine 2002; 20(21-22):2641-2647.
    [232]Lin Y, Qigai H, Xiaolan Y, et al. The co-administrating of recombinant porcine IL-2 could enhance protective immune responses to PRV inactivated vaccine in pigs[J]. Vaccine 2005; 23(35):4436-4441.
    [233]Foss DL, Bennaars AM, Pennell CA, et al. Differentiation of porcine dendritic cells by granulocyte-macrophage colony-stimulating factor expressed in Pichia pastoris[J]. Veterinary Immunology and Immunopathology 2003; 91(3-4):205-215.
    [234]Nuntaprasert A, Mori Y, Muneta Y, et al. The effect of recombinant swine interleukin-4 on swine immune cells and on pro-inflammatory cytokine productions in pigs[J]. Comparative immunology, microbiology and infectious diseases 2005; 28(2):83-101.
    [235]Zhou Y. Interleukin-4 suppresses inflammatory cytokine gene transcription in porcine macrophages. Soc Leukocyte Biology,1994:507-513.
    [236]Foss DL, Moody MD, Murphy Jr KP, et al. In Vitro and In Vivo Bioactivity of Single-Chain Interleukin-12[J]. Scandinavian Journal of Immunology 1999; 50(6):596-604.
    [237]Domeika K, Berg M, Eloranta ML, et al. Porcine interleukin-12 fusion protein and interleukin-18 in combination induce interferon-y production in porcine natural killer and T cells[J]. Veterinary Immunology and Immunopathology 2002; 86(1-2):11-21.
    [238]Carter QL and Curiel RE. Interleukin-12 (IL-12) ameliorates the effects of porcine respiratory and reproductive syndrome virus (PRRSV) infection[J]. Veterinary Immunology and Immunopathology 2005; 107(1-2):105-118.
    [239]Zuckermann FA, Husmann RJ, Schwartz R, et al. Interleukin-12 enhances the virus-specific interferon gamma response of pigs to an inactivated pseudorabies virus vaccine[J]. Veterinary Immunology and Immunopathology 1998; 63(1-2):57-67.
    [240]Zhu Y, Ren J, Da'dara A, et al. The protective effect of a Schistosoma japonicum Chinese strain 23kDa plasmid DNA vaccine in pigs is enhanced with IL-12[J]. Vaccine 2004; 23(1):78-83.
    [241]Carter QL and Curiel RE. Interleukin-12 (IL-12) ameliorates the effects of porcine respiratory and reproductive syndrome virus (PRRSV) infection[J]. Vet Immunol Immunopathol 2005; 107(1-2):105-118.
    [242]Donnelly JJ, Ulmer JB, Shiver JW, et al. DNA vaccines[J]. Annual review of immunology 1997; 15(1):617-648.
    [243]Okamura H, Tsutsi H, Komatsu T, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells[J]. Nature 1995; 378(6552):88-91.
    [244]Ushio S. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein[J]. The Journal of Immunology 1996; 156(11):4274-4279.
    [245]Nakanishi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 regulates both Thl and Th2 responses Annu[J]. Rev. Immunol 2001; 19:423-474.
    [246]Shi XJ, Wang B and Wang M. Immune enhancing effects of recombinant bovine IL-18 on foot-and-mouth disease vaccination in mice model[J]. Vaccine 2007; 25(7):1257-1264.
    [247]金宁一,郑敏,秦晓冰,et al. vUTAL3CP1重组载体疫苗与pVIRIL18P1 DNA疫苗在猪体内的免疫原性研究[J].免疫学杂志2006;22(003):260-264.
    [248]Shen G, Jin N, Ma M, et al. Immune responses of pigs inoculated with a recombinant fowlpox virus coexpressing GP5/GP3 of porcine reproductive and respiratory syndrome virus and swine IL-18[J]. Vaccine 2007; 25(21):4193-4202.
    [249]Charley B, Laverne S and Lavenant L. Recombinant porcine interferon-gamma activates in vitro porcine adherent mononuclear cells to produce interleukin 1[J]. Veterinary Immunology and Immunopathology (Netherlands) 1990.
    [250]Moore RN, Foss DL, Zilliox MJ, et al. Differential regulation of macrophage interleukin-1 (IL-1), IL-12, and CD80-CD86 by two bacterial toxins[J]. Infection and Immunity 1999; 67(10):5275-5281.
    [251]Raymond CR, Sidahmed AME and Wilkie BN. Effects of antigen and recombinant porcine cytokines on pig dendritic cell cytokine expression in vitro[J]. Veterinary Immunology and Immunopathology 2006; 111(3-4):175-185.
    [252]Saulnier D, Martinod S and Charley B. Immunomodulatory effects in vivo of recombinant porcine interferon gamma on leukocyte functions of immunosuppressed pigs[J]. Annales de Recherches Veterinaires (France) 1991.
    [253]Horisberger MA. Virus-specific effects of recombinant porcine interferon-gamma and the induction of Mx proteins in pig cells[J]. Journal of interferon research 1992; 12(6):439.
    [254]Charley B, McCullough K and Martinod S. Antiviral and antigenic properties of recombinant porcine interferon gamma[J]. Veterinary Immunology and Immunopathology 1988; 19(2):95.
    [255]Xia C, Dan W, Wen-Xue W, et al. Cloning and expression of interferon-a/y from a domestic porcine breed and its effect on classical swine fever virus[J]. Veterinary Immunology and Immunopathology 2005; 104(1-2):81-89.
    [256]Yao Q, Qian P, Cao Y, et al. Synergistic inhibition of pseudorabies virus replication by porcine alpha/beta interferon and gamma interferon in vitro[J]. European cytokine network 2007; 18(2):71-77.
    [257]Moraes MP, de los Santos T, Koster M, et al. Enhanced Antiviral Activity against Foot-and-Mouth Disease Virus by a Combination of Type I and II Porcine Interferons.[J]. Journal of virology 2007; 81(13):7124-7135.
    [258]Bracci L, La Sorsa V, Belardelli F, et al. Type I interferons as vaccine adjuvants against infectious diseases and cancer[J]. Expert Review of Vaccines 2008; 7(3):373-381.
    [259]Cepica A and Derbyshire JB. The role of interferon in spontaneous cell-mediated cytotoxicity in pigs[J]. Veterinary microbiology 1986; 11(1-2):69-77.
    [260]Chinsangaram J, Koster M and Grubman MJ. Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase[J]. Journal of virology 2001; 75(12):5498-5503.
    [261]Derbyshire JB and Lesnick CE. Hyporeactivity to interferon induction in newborn piglets[J]. J Interferon Res 1990; 10(1):47-53.
    [262]Derbyshire JB and Lesnick CE. The effect of interferon induction in newborn piglets on the humoral immune response to oral vaccination with transmissible gastroenteritis virus[J]. Vet Immunol Immunopathol 1990; 24(3):227-234.
    [263]Jordan LT and Derbyshire JB. Antiviral activity of interferon against transmissible gastroenteritis virus in cell culture and ligated intestinal segments in neonatal pigs[J]. Vet Microbiol 1994; 38(3):263-276.
    [264]Lesnick CE and Derbyshire JB. Activation of natural killer cells in newborn piglets by interferon induction[J]. Veterinary Immunology and Immunopathology 1988; 18:109-117.
    [265]Loewen KG and Derbyshire JB. Interferon induction in piglets with polyinosinic:polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose[J]. Res Vet Sci 1988; 44(1):132-133.
    [266]Loewen KG and Derbyshire JB. The effect of interferon induction in parturient sows and newborn piglets on resistance to transmissible gastroenteritis[J]. Canadian Journal of Veterinary Research 1988; 52(1):149.
    [267]Weingartl HM and Derbyshire JB. The induction and characterization of natural porcine interferons alpha and beta[J]. Canadian Journal of Veterinary Research 1990; 54(3):349.
    [268]Raymond CR and Wilkie BN. Toll-like receptor, MHCⅡ, B7 and cytokine expression by porcine monocytes and monocyte-derived dendritic cells in response to microbial pathogen-associated molecular patterns[J]. Veterinary Immunology and Immunopathology 2005; 107(3-4):235-247.
    [269]Houston WE, Crabbs CL, Stephen EL, et al. Modified polyriboinosinic-polyribocytidylic acid, an immunological adjuvant[J]. Infection and Immunity 1976; 14(1):318-319.
    [270]Knight DJ, Leiper JW, Gough RE, et al. Continued studies on the adjuvancy effect of natural and synthetic double-stranded RNA preparations with inactivated Newcastle disease vaccines in fowls[J]. Res Vet Sci 1977; 23(1)38-42.
    [271]Cunliffe HR, Richmond JY and Campbell CH. Interferon inducers and foot-and-mouth disease vaccines:influence of two synthetic polynucleotides on antibody response and immunity in guinea pigs and swine[J]. Canadian Journal of Comparative Medicine 1977; 41(1):117.
    [272]Maes RF, Vieira A, Gomes I, et al. Potentiation of FMD vaccines with polycationic-nucleic acid complexes[J]. Archives of Virology 1977; 55(4):275-285.
    [273]Kang Y, Jin H, Zheng G, et al. The adjuvant effect of levamisole on killed viral vaccines[J]. Vaccine 2005; 23(48-49):5543-5550.
    [274]Babiuk LA and Misra V. Effect of levamisole in immune responses to bovine herpesvirus-1[J]. American journal of veterinary research 1982; 43(8):1349.
    [275]Sharma LK, Jagadish S and Mulbagal AN. Effects of haemorrhagic septicaemia vaccination and levamisole administration on the humoral response in cross-bred calves[J]. Journal of Veterinary Pharmacology and Therapeutics 1990; 13(1):23-28.
    [276]Hennessy KJ, Blecha F, Pollmann DS, et al. Isoprinosine and levamisole immunomodulation in artificially reared neonatal pigs[J]. American journal of veterinary research 1987; 48(3):477.
    [277]Bozic FB, V, Valpotic, I. Levamisole mucosal adjuvant activity for a live attenuated Escherichia coli oral vaccine in weaned pigs[J]. J. Vet. Pharmacol. Ther. 2003; 26225-231.
    [278]Bozic F, Lackovic G, Kovsca-Janjatovic A, et al. Levamisole synergizes experimental F4ac+ Escherichia coli oral vaccine in stimulating ileal Peyer's patch T cells in weaned pigs[J]. Journal of Veterinary Pharmacology and Therapeutics 2006; 29(3):199-204.
    [279]Kamstrup S, Verthelyi D and Klinman DM. Response of porcine peripheral blood mononuclear cells to CpG-containing oligodeoxynucleotides[J]. Veterinary microbiology 2001; 78(4):353-362.
    [280]Guzylack-Piriou L, Balmelli C, McCullough KC, et al. Type-A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferon-a, tumour necrosis factor-a and interleukin-12[J]. Immunology 2004; 112(1):28-37.
    [281]Van der Stede Y, Verdonck F, Verfaillie T, et al. Porcine-specific CpG-oligodeoxynucleotide activates B-cells and increases the expression of MHC-Ⅱ molecules on lymphocytes[J]. Veterinary Immunology and Immunopathology 2005; 105(1-2):115-124.
    [282]Linghua Z, Xingshan T and Fengzhen Z. In vivo immunostimulatory effects of CpG ODN in newborn piglets[J]. Molecular Immunology 2007; 44(6):1238-1244.
    [283]Zhang L, Tian X and Zhou F. In vivo effects of oligodeoxynucleotides containing synthetic immunostimulatory motifs in weaned piglets[J]. International immunopharmacology 2006; 6(10):1623-1631.
    [284]Davis HL, Suparto I, Weeratna R, et al. CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans[J]. Vaccine 2000; 18(18):1920-1924.
    [285]Wu M, Gao R, Meng M, et al. Regulating effects of porcine interleukin-6 gene and CpG motifs on immune responses to porcine trivalent vaccines in mice[J]. Research in Veterinary Science 2004; 77(1):49-57.
    [286]Ling-Hua Z, Xing-Shan T, Yong G, et al. Effect of transgenic expression of porcine interleukin-6 gene and CpG sequences on immune responses of newborn piglets inoculated with Pseudorabies attenuated vaccine[J]. Research in Veterinary Science 2006; 80(3):281-286.
    [287]Linghua Z, Xingshan T, Yong G, et al. Effects of CpG ODN on CD4+and CD8+ T subpopulations in the immune response to porcine reproductive and respiratory syndrome killed virus vaccine[J]. Vaccine 2006; 24(11):1874-1879.
    [288]Linghua Z, Xingshan T and Fengzhen Z. Vaccination with porcine reproductive and respiratory syndrome killed virus vaccine and immunostimulatory oligodeoxynucleotides induces specific immunity in piglets[J]. Vaccine 2007; 25(10):1735-1742.
    [289]Zhang L, Tian X and Zhou F. Intranasal administration of CpG oligonucleotides induces mucosal and systemic Type 1 immune responses and adjuvant activity to porcine reproductive and respiratory syndrome killed virus vaccine in piglets in vivo[J]. Int Immunopharmacol 2007; 7(13):1732-1740.
    [290]Linghua Z, Xingshan T and Fengzhen Z. Vaccination with porcine reproductive and respiratory syndrome killed virus vaccine and immunostimulatory oligodeoxynucleotides induces specific immunity in piglets[J]. Vaccine 2007; 25(10):1735-1742.
    [291]Dougan G and Hormaeche C. How bacteria and their products provide clues to vaccine and adjuvant development[J]. Vaccine 2006; 24:13-19.
    [292]Lavelle EC, Jarnicki A, McNeela E, et al. Effects of cholera toxin on innate and adaptive immunity and its application as an immunomodulatory agent. Soc Leukocyte Biology,2004:756-763.
    [293]Hyland K, Foss DL, Johnson CR, et al. Oral immunization induces local and distant mucosal immunity in swine[J]. Vet Immunol Immunopathol 2004; 102(3):329-338.
    [294]Kaisho T and Akira S. Toll-like receptors as adjuvant receptors[J]. BBA-Molecular Cell Research 2002; 1589(1):1-13.
    [295]Lin G, Pearson AE, Scamurra RW, et al. Regulation of interleukin-8 expression in porcine alveolar macrophages by bacterial lipopolysaccharide[J]. Journal of Biological Chemistry 1994; 269(1):77-85.
    [296]Sacco RE, Nibbelink SK, Baarsch MJ, et al. Induction of Interleukin (IL)-1 beta and IL-8 mRNA Expression in Porcine Macrophages by Lipopolysaccharide from Serpulina hyodysenteriae[J]. Infection and Immunity 1996; 64:4369-4372.
    [297]蒋文明.以减毒沙门氏菌为载体传递猪繁殖与呼吸综合征病毒DNA疫苗的口服免疫应答[D]:南京农业大学;2004.
    [298]Blanco I, Galina-Pantoja L, Oliveira S, et al. Comparison between Haemophilus parasuis infection in colostrums-deprived and sow-reared piglets[J]. Vet Microbiol 2004; 103(1-2):21-27.
    [299]Bastos RG, Dellagostin OA, Barletta RG, et al. Immune response of pigs inoculated with Mycobacterium bovis BCG expressing a truncated form of GP5 and M protein of porcine reproductive and respiratory syndrome virus[J]. Vaccine 2004; 22(3-4):467-474.
    [300]Qiu HJ, Tian ZJ, Tong GZ, et al. Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets[J]. Vet Immunol Immunopathol 2005; 106(3-4):309-319.
    [301]Jiang Y, Fang L, Xiao S, et al. Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus[J]. Vaccine 2007; 25(3):547-560.
    [302]Wang S, Fang L, Fan H, et al. Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus[J]. Vaccine 2007; 25(49):8220-8227.
    [303]Kheyar A, Jabrane A, Zhu C, et al. Alternative codon usage of PRRS virus ORF5 gene increases eucaryotic expression of GP(5) glycoprotein and improves immune response in challenged pigs[J]. Vaccine 2005; 23(31):4016-4022.
    [304]Jiang W, Jiang P, Li Y, et al. Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice[J]. Vet Immunol Immunopathol 2006; 113(1-2):169-180.
    [305]Nedbalcova K, Satran P, Jaglic Z, et al. Haemophilus parasuis and Glaesser's disease in pigs:a review[J]. Veterinarni Medicina 2006; 51(5):168-179.
    [306]Mager WH and De Kruijff AJ. Stress-induced transcriptional activation[J]. Microbiology and Molecular Biology Reviews 1995; 59(3):506.
    [307]Perraut R, Lussow AR, Gavoille S, et al. Successful primate immunization with pep tides conjugated to purified protein derivative or mycobacterial heat shock proteins in the absence of adjuvants[J]. Clinical & Experimental Immunology 1993; 93(3):382-386.
    [308]Bonorino C, Nardi NB, Zhang X, et al. Characteristics of the strong antibody response to mycobacterial Hsp70:a primary, T cell-dependent IgG response with no evidence of natural priming or gamma delta T cell involvement[J]. J Immunol 1998; 161(10):5210-5216.
    [309]Tsan MF and Gao B. Cytokine function of heat shock proteins[J].2004; 286(4):739-744.
    [310]Ciupitu AMT, Petersson M, O'Donnell CL, et al. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes[J]. Journal of Experimental Medicine 1998; 187(5):685-691.
    [311]Liu DW, Tsao YP, Kung JT, et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer[J]. J Virol 2000; 74(6):2888-2894.
    [312]Koets A, Hoek A, Langelaar M, et al. Mycobacterial 70 kD heat-shock protein is an effective subunit vaccine against bovine paratuberculosis[J]. Vaccine 2006; 24(14):2550-2559.
    [313]Stewart GR and Young DB. Heat-shock proteins and the host-pathogen interaction during bacterial infection[J]. Current opinion in immunology 2004; 16(4):506-510.
    [314]Segal BH, Wang XY, Dennis CG, et al. Heat shock proteins as vaccine adjuvants in infections and cancer[J]. Drug discovery today 2006; 11(11-12):534-540.
    [315]Falah M and Gupta RS. Phylogenetic analysis of mycoplasmas based on Hsp70 sequences: cloning of the dnaK (hsp70) gene region of Mycoplasma capricolum[J]. Int J Syst Bacteriol 1997; 47(1):38-45.
    [316]Falah M and Gupta RS. Cloning of the hsp70 (dnaK) genes from Rhizobium meliloti and Pseudomonas cepacia:phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence[J]. J Bacteriol 1994; 176(24):7748-7753.
    [317]Gupta RS, Mukhtar T and Singh B. Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria):implications regarding the origin of photosynthesis[J]. Mol Microbiol 1999; 32(5):893-906.
    [318]Galley KA, Singh B and Gupta RS. Cloning of HSP 70(dnaK) gene from Clostridium perfringens using a general polymerase chain reaction based approach[J]. Biochimica et biophysica acta, N. Gene structure and expression 1992; 1130(2):203-208.
    [319]Gupta RS and Singh B. Cloning of the HSP70 gene from Halobacterium marismortui:relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene[J]. Journal of bacteriology 1992; 174(14):4594-4605.
    [320]Kaufmann SHE. Heat-shock proteins and pathogenesis of bacterial infections [J]. Semin Immunopathol 1991; 13:25-36.
    [321]Dobbin CA, Smith NC and Johnson AM. Heat shock protein 70 is a potential virulence factor in murine toxoplasma infection via immunomodulation of host NF-kappa B and nitric oxide[J]. J Immunol 2002; 169(2):958-965.
    [322]Wensvoort G, De Kluyver EP, Pol JMA, et al. Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome:a review of mystery swine disease research at Lelystad[J]. Veterinary microbiology 1992; 33(1-4):185-193.
    [323]Bilodeau R, Dea S, Sauvageau RA, et al.'Porcine reproductive and respiratory syndrome'in Quebec[J]. The Veterinary Record 1991; 129(5):102-103.
    [324]Cho JG and Dee SA. Porcine reproductive and respiratory syndrome virus[J]. Theriogenology 2006; 66(3):655-662.
    [325]Conzelmann KK, Visser N, Van Woensel P, et al. Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group[J]. Virology 1993; 193(1):329-339.
    [326]Snijder EJ, van Tol H, Pedersen KW, et al. Identification of a novel structural protein of arteriviruses[J]. Journal of virology 1999; 73(8):6335-6345.
    [327]Wu WH, Fang Y, Farwell R, et al. A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b[J]. Virology 2001; 287(1):183-191.
    [328]Meulenberg JJM, Petersen-Den Besten A, De Kluyver EP, et al. Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus[J]. Virology 1995; 206(1):155-163.
    [329]Murtaugh MP, Elam MR and Kakach LT. Comparison of the structural protein coding sequences of the VR-2332 and Lelystad virus strains of the PRRS virus[J]. Archives of Virology 1995; 140(8):1451-1460.
    [330]Van Nieuwstadt AP, Meulenberg JJ, van Essen-Zanbergen A, et al. Proteins encoded by open reading frames 3 and 4 of the genome of Lelystad virus (Arteriviridae) are structural proteins of the virion[J]. Journal of virology 1996; 70(7):4767-4772.
    [331]Gonin P, Mardassi H, Gagnon CA, et al. A nonstructural and antigenic glycoprotein is encoded by ORF3 of the IAF-Klop strain of porcine reproductive and respiratory syndrome virus[J]. Arch Virol 1998; 143(10):1927-1940.
    [332]Mardassi H, Gonin P, Gagnon CA, et al. A subset of porcine reproductive and respiratory syndrome virus GP3 glycoprotein is released into the culture medium of cells as a non-virion-associated and membrane-free (soluble) form[J]. J Virol 1998; 72(8):6298-6306.
    [333]Meng XJ, Paul PS, Halbur PG, et al. Sequence comparison of open reading frames 2 to 5 of low and high virulence United States isolates of porcine reproductive and respiratory syndrome virus[J]. Journal of General Virology 1995; 76(12):3181-3188.
    [334]Mardassi H, Massie B and Dea S. Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus [J]. Virology 1996; 221(1):98-112.
    [335]Meng XJ. Heterogeneity of porcine reproductive and respiratory syndrome virus:implications for current vaccine efficacy and future vaccine development J]. Vet Microbiol 2000; 74(4):309-329.
    [336]Mengeling WL, Lager KM, Vorwald AC, et al. Strain specificity of the immune response of pigs following, vaccination with various strains of porcine reproductive and respiratory syndrome virus[J]. Vet Microbiol 2003; 93(1):13-24.
    [337]Bastos RG, Dellagostin OA, Barletta RG, et al. Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus[J]. Vaccine 2002; 21(1-2):21-29.
    [338]Plana Duran J, Climent I, Sarraseca J, et al. Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 proteins in protection[J]. Virus Genes 1997; 14(1):19-29.
    [339]Jiang P, Jiang W, Li Y, et al. Humoral immune response induced by oral administration of S. typhimurium containing a DNA vaccine against porcine reproductive and respiratory syndrome virus[J]. Vet Immunol Immunopathol 2004; 102(3):321-328.
    [340]Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5[J]. Journal of General Virology 1977; 36(1):59-74.
    [341]Ambriovic A, Adam M, Monteil M, et al. Efficacy of replication-defective adenovirus-vectored vaccines:protection following intramuscular injection is linked to promoter efficiency in muscle representative cells[J]. Virology 1997; 238(2):327-335.
    [342]Donnelly b MLL, Luke G, Mehrotra A, et al. Analysis of the aphthovirus 2A/2B polyprotein'cleavage'mechanism indicates not a proteolytic reaction, but a novel translational effect:a putative ribosomal'skip'[J].2001; 82(5):1013-1025.
    [343]Szymczak AL, Workman CJ, Wang Y, et al. Correction of multi-gene deficiency in vivo using a single'self-cleaving'2A peptide-based retroviral vector[J]. Nature biotechnology 2004; 22:589-594.
    [344]Precious B, Young DF, Bermingham A, et al. Inducible expression of the P, V, and NP genes c the paramyxovirus simian virus 5 in cell lines and an examination of NP-P and NP-V interactions Journal of virology 1995; 69(12):8001-8010.
    [345]Van der Ryst E, Nakasone T, Habel A, et al. Study of the immunogenicity of dl recombinant Mengo viruses expressing HIV1 and SIV epitopes[J]. Research in Virolog 149(1):5-20.
    [346]Chaplin PJ, Camon EB, Villarreal-Ramos B, et al. Production of interleukin-12 as a self-processing 2A polypeptide[J]. Journal of Interferon & Cytokine Research 1999; 19(3):235-241.
    [347]Kokuho T, Watanabe S, Yokomizo Y, et al. Production of biologically active, heterodimeric porcine interleukin-12 using a monocistronic baculoviral expression system[J]. Veterinary Immunology and Immunopathology 1999; 72(3-4):289-302.
    [348]Varnavski AN, Young PR and Khromykh AA. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors[J]. Journal of virology 2000; 74(9):4394-4403.
    [349]Groot Bramel-Verheije MH, Rottier PJM and Meulenberg JJM. Expression of a foreign epitope by porcine reproductive and respiratory syndrome virus[J]. Virology 2000; 278(2):380-389.
    [350]Lengler J, Holzmuller H, Salmons B, et al. FMDV 2A sequence and protein arrangement contribute to functionality of CYP2B1-reporter fusion protein[J]. Analytical Biochemistry 2005; 343(1):116-124.
    [351]Chinnasamy D, Milsom MD, Shaffer J, et al. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI[J]. Virol J 2006;3(14):1-16.
    [352]Opriessnig T, Halbur PG, Yoon KJ, et al. Comparison of molecular and biological characteristics of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (ingelvac PRRS MLV), the parent strain of the vaccine (ATCC VR2332), ATCC VR2385, and two recent field isolates of PRRS V[J]. J Virol 2002; 76(23):11837-11844.
    [353]Jiang Y, Xiao S, Fang L, et al. DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity[J]. Vaccine 2006; 24(15):2869-2879.
    [354]Cancel-Tirado SM, Evans RB and Yoon KJ. Monoclonal antibody analysis of porcine reproductive and respiratory syndrome virus epitopes associated with antibody-dependent enhancement and neutralization of virus infection[J]. Vet Immunol Immunopathol 2004; 102(3):249-262.
    [355]Weiland E, Wieczorek-Krohmer M, Kohl D, et al. Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4[J]. Vet Microbiol 1999; 66(3):171-186.
    [356]Gonin P, Pirzadeh B, Gagnon CA, et al. Seroneutralization of porcine reproductive and respiratory syndrome virus correlates with antibody response to the GP5 major envelope glycoprotein[J]. Journal of Veterinary Diagnostic Investigation 1999; 11(1):20.
    [357]Jiang W, Jiang P, Wang X, et al. Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus[J]. Virus Res 2008; 136(1-2):50-57.
    [358]Donnelly b MLL, Hughes LE, Luke G, et al. The'cleavage'activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring'2A-like'sequences[J]. Journal of General Virology 2001; 82(5):1027-1041.
    [359]Charerntantanakul W. Adjuvants for porcine reproductive and respiratory syndrome virus vaccines[J]. Veterinary Immunology and Immunopathology 2009; doi:10.1016/j.vetimm.2008.12.018.
    [360]蒋文明.猪繁殖与呼吸综合征重组腺病毒疫苗免疫候选分子研究[D].南京:南京农业大学;2007.
    [361]Yoon IJ, Joo HS, Goyal SM, et al. A modified serum neutralization test for the detection of antibody to porcine reproductive and respiratory syndrome virus in swine sera[J]. Journal of Veterinary Diagnostic Investigation 1994; 6(3):289.
    [362]Diaz I, Darwich L, Pappaterra G, et al. Immune responses of pigs after experimental infection with a European strain of Porcine reproductive and respiratory syndrome virus[J]. J Gen Virol 2005; 86(Pt7):1943-1951.
    [363]Lee SM, Schommer SK and Kleiboeker SB. Porcine reproductive and respiratory syndrome virus field isolates differ in in vitro interferon phenotypes[J]. Vet Immunol Immunopathol 2004; 102(3):217-231.
    [364]Suradhat S and Thanawongnuwech R. Upregulation of interleukin-10 gene expression in the leukocytes of pigs infected with porcine reproductive and respiratory syndrome virus[J]. J Gen Virol 2003; 84(Pt 10):2755-2760.
    [365]Suradhat S, Thanawongnuwech R and Poovorawan Y. Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus[J]. J Gen Virol 2003; 84(Pt 2):453-459.
    [366]Lager KM, Mengeling WL and Brockmeier SL. Evaluation of protective immunity in gilts inoculated with the NADC-8 isolate of porcine reproductive and respiratory syndrome virus (PRRSV) and challenge-exposed with an antigenically distinct PRRSV isolate[J]. Am J Vet Res 1999; 60(8):1022-1027.
    [367]Diaz I, Darwich L, Pappaterra G, et al. Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immunological properties and confer different protection to pigs[J]. Virology 2006; 351(2):249-259.
    [368]Dea S, Gagnon CA, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates[J]. Arch Virol 2000; 145(4):659-688.
    [369]Nielsen J, Botner A, Bille-Hansen V, et al. Experimental inoculation of late term pregnant sows with a field isolate of porcine reproductive and respiratory syndrome vaccine-derived virus[J]. Vet Microbiol 2002; 84(1-2):1-13.
    [370]张治涛.猪繁殖与呼吸综合征病毒GP5和M蛋白重组腺病毒对猪体安全性和免疫效力研究[D].南京:南京农业大学;2006.
    [371]Lewis CRG, Ait-Ali T, Clapperton M, et al. Genetic perspectives on host responses to porcine reproductive and respiratory syndrome (PRRS)[J]. Viral Immunology 2007; 20(3):343-358.
    [372]Li Y, Wang X, Bo K, et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China[J]. Vet J 2007; 174(3):577-584.
    [373]Tong GZ, Zhou YJ, Hao XF, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China[J]. Emerg Infect Dis 2007; 13(9):1434-1436.
    [374]Huang Y, Zhang B, Fu Z, et al. Molecular characterization of a highly pathogenetic porcine reproductive and respiratory syndrome virus variant in Hubei, China[J]. Virologica Sinica 2009; 24(1):9-18.
    [375]Botner A, Nielsen J, Oleksiewicz MB, et al. Heterologous challenge with porcine reproductive and respiratory syndrome (PRRS) vaccine virus:no evidence of reactivation of previous European-type PRRS virus infection[J]. Vet Microbiol 1999; 68(3-4):187-195.
    [376]Nilubol D, Platt KB, Halbur PG, et al. The effect of a killed porcine reproductive and respiratory syndrome virus (PRRSV) vaccine treatment on virus shedding in previously PRRSV infected pigs[J]. Vet Microbiol 2004; 102(1-2):11-18.
    [377]Bastos RG, Dellagostin OA, Barletta RG, et al. Immune response of pigs inoculated with Mycobacterium bovis BCG expressing a truncated form of GP5 and M protein of porcine reproductive and respiratory syndrome virus[J]. Vaccine 2004; 22(3-4):467-474.
    [378]黄娟.shRNA抑制猪繁殖与呼吸综合征病毒在Marc 145细胞中复制的研究[D].南京:南京农业大学;2006.
    [379]Wang Y, Liang Y, Han J, et al. Attenuation of porcine reproductive and respiratory syndrome virus strain MN184 using chimeric construction with vaccine sequence[J]. Virology 2008; 371(2):418-429.
    [380]Halbur PG, Paul PS, Meng XJ, et al. Comparative pathogenicity of nine US porcine reproductive and respiratory syndrome virus (PRRSV) isolates in a five-week-old cesarean-derived, colostrum-deprived pig model[J]. Journal of Veterinary Diagnostic Investigation 1996; 8(1):11.
    [381]Mulupuri P, Zimmerman JJ, Hermann J, et al. Antigen-Specific B-Cell Responses to Porcine Reproductive and Respiratory Syndrome Virus Infection[J]. Journal of virology 2008; 82(1):358-370.
    [382]Liu H, Wu BH, Rowse GJ, et al. Induction of CD4-Independent E7-Specific CD8+ Memory Response by Heat Shock Fusion Protein[J]. Clinical and Vaccine Immunology 2007; 14(8):1013-1023.
    [383]Vincent AL, Thacker BJ, Halbur PG, et al. In vitro susceptibility of macrophages to porcine reproductive and respiratory syndrome virus varies between genetically diverse lines of pigs[J]. Viral Immunol 2005; 18(3):506-512.
    [384]Petry DB, Holl JW, Weber JS, et al. Biological responses to porcine respiratory and reproductive syndrome virus in pigs of two genetic populations[J]. J Anim Sci 2005; 83(7):1494-1502.
    [385]Vincent AL TB, Halbur PG, Rothschild MF, Thacker EL. An investigation of susceptibility to porcine reproductive and respiratory syndrome virus between two genetically diverse commercial lines of pigs[J]. J Anim Sci 2006; 84:49-57.
    [386]Li X, Yang X, Li L, et al. A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 gene enhanced potency of HBV DNA vaccine[J]. Vaccine 2006; 24(16):3321-3331.
    [387]Kolli R, Khanam S, Jain M, et al. A synthetic dengue virus antigen elicits enhanced antibody titers when linked to, but not mixed with, Mycobacterium tuberculosis HSP70 domain Ⅱ[J]. Vaccine 2006;24(22):4716-4726.
    [388]Kimura Y, Yamada K, Sakai T, et al. The regulatory role of heat shock protein 70-reactive CD4+ T cells during rat listeriosis[J]. Int Immunol 1998; 10(2):117-130.
    [389]Wendling U, Paul L, van der Zee R, et al. A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue[J]. J Immunol 2000; 164(5):2711-2717.
    [390]Ge FF, Qiu YF, Gao XF, et al. Fusion expression of major antigenic segment of JEV E protein-hsp70 and the identification of domain acting as adjuvant in hsp70[J]. Vet Immunol Immunopathol 2006; 113(3-4):288-296.
    [391]Li J, Ye ZX, Li KN, et al. HSP70 gene fused with Hantavirus S segment DNA significantly enhances the DNA vaccine potency against hantaviral nucleocapsid protein in vivo[J]. Vaccine 2007; 25(2):239-252.
    [392]Schirmbeck R, Fissolo N, Chaplin P, et al. Enhanced priming of multispecific, murine CD8+ T cell responses by DNA vaccines expressing stress protein-binding polytope peptides[J]. J Immunol 2003; 171(3):1240-1246.
    [393]Nishikawa M, Takemoto S and Takakura Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells[J]. Int J Pharm 2008; 354(1-2):23-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700