人骨髓间充质干细胞分化为脂肪细胞过程中的基本特征及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肥胖的产生不仅是由于脂肪细胞增大引起的,还有另外一个重要因素是脂肪细胞数目的增加。脂肪细胞数目的增多来源于存在于脂肪组织内多潜能干细胞的成脂分化,甚至在某些因素的刺激下,其它器官的干细胞如骨髓间充质干细胞也可能会募集到脂肪组织分化为脂肪细胞。目前对于脂肪细胞分化的研究主要集中于小鼠前脂肪细胞到成熟脂肪细胞这个阶段,但是对于间充质干细胞特别是人来源的间充质干细胞如何分化为脂肪细胞这一过程了解甚少。因此,本课题研究的主要目的是观察人骨髓间充质干细胞分化为脂肪细胞过程中的基本特征,包括增殖特性和参与调控的转录因子的作用。
     本课题中,我们利用密度梯度离心和贴壁培养的方法从人骨髓中成功分离了间充质干细胞。从形态上观察,体外培养的人骨髓间充质干细胞成梭形,生长比较缓慢,细胞缺乏接触抑制的特性,生长致密的克隆中心细胞成多层生长。流式细胞检测90%以上的细胞处以G0/G1期。人骨髓间充质在体外只能进行有限传代,多次传代后细胞出现复制性老化,大概能传至第12代。
     进一步我们用含10%胎牛血清,0.5mM 3-异丁基-1-甲基黄嘌呤(3-isobutyl-l-methylxanthine, Mix), 1μM地塞米松(Dexamethasone, Dex),10μg/ml胰岛素(Insulin), 100μM吲哚美辛(Indo, Indomethacin)的培养液诱导细胞。按照MDI+Indo处理3天,接着胰岛素维持1天,如此反复处理细胞至12天,最后用仅含胰岛素的培养液维持至21天。细胞经诱导后绝大多数细胞分化为成熟的脂肪细胞,表现为细胞胞体由原来的梭形变为圆形,细胞内有甘油三酯聚积。同时用Real-time PCR的方法检测脂肪细胞特异性蛋白质脂肪酸结合蛋白(422/aP2)随分化的过程表达增加。另外,脂肪细胞分化密切相关的转录因子C/EBPβ在激素诱导过程中并没有显著变化,至分化后期有所下降。C/EBPα和PPARγ激素处理后表达增加。
     以往的研究表明接触抑制的小鼠3T3-L1细胞分化时会重新进入细胞周期(MCE, mitotic clonal expansion有丝分裂克隆扩增),我们的研究发现人脂肪组织干细胞成脂分化时没有经历MCE。在我们的研究中,人骨髓间充质干细胞因为其生长特性,细胞在分化之前不能接触抑制和同步化,分化前后细胞计数结果表明,细胞分化处理结束后,未处理的对照组细胞数量相对诱导分化前还有一定量增加,而分化处理组的细胞数量少于对照组,并且刺激次数越多,分化细胞的比例越高,最终细胞数量与未诱导组相比增加越少。提示细胞分化时没有经过分裂。进一步我们在人骨髓间充质干细胞诱导分化24小时后加入BrdU孵育48小时,到细胞分化成熟后检测BrdU掺入和分化脂肪细胞的关系,结果显示有部分细胞掺入BrdU,说明这些细胞还在增殖,但这些细胞均没有分化为脂肪细胞,胞浆内没有脂滴出现;而有脂滴积聚的脂肪细胞其核内均没有BrdU掺入。对照的3T3-L1可见绝大多数分化的细胞有BrdU掺入。这些结果提示,人骨髓间充质干细胞与小鼠前脂肪细胞3T3-L1不同,分化时并不需要经过有丝分裂克隆扩增的调节过程。
     人骨髓间充质干细胞中C/EBPβ的表达量在激素处理的过程中并没有显著的变化。但是当我们用RNA干扰的方法敲低C/EBPβ的表达后,细胞成脂分化能力显著降低,提示C/EBPp在人骨髓间充质干细胞分化为脂肪细胞的过程中是必须的。进一步我们利用腺病毒过表达系统在细胞内过表达C/EBPβ,观察到C/EBPβ联合PPARγ的激动剂吲哚美辛使脂肪细胞的分化增加,说明C/EBPβ可以促进人骨髓间充质干细胞向脂肪细胞分化,但必须依赖PPARγ的激活。过表达C/EBPα对细胞分化的影响类似于C/EBPβ的作用,可以促进细胞向脂肪细胞分化,但必须同时激活PPARγ。但是在相同MOI情况下,C/EBPα促进细胞成脂分化的作用小于C/EBPβ的作用。另外随着MOI的升高,C/EBPβ和C/EBPα均表现出抗细胞增殖和促进凋亡的作用。骨髓间充质干细胞过表达PPARγ能够促使细胞分化,并且不需要激素MDI的作用,加入PPARγ的激动剂能够增强这种效果。但是PPARγ的过表达和激活后分化细胞内的脂滴明显小于用MDI+Indo诱导分化的细胞,提示PPARγ可能起始了脂肪细胞的分化但是脂质代谢还需要其它基因激活参与。另外过表达PPARγ使微丝蛋白β-actin的表达降低,但不影响β-tubulin的表达,提示PPARγ可能通过调节细胞骨架蛋白调节脂肪细胞的分化。
     我们对于人骨髓间充质干细胞分化为脂肪细胞过程中的基本特征和参与调节脂肪分化的三个转录因子C/EBPβ、C/EBPα和PPARγ的作用进行了初步探讨,至于它们通过何种方式调节脂肪细胞的分化还需要进一步实验和研究。这对于阐明人脂肪细胞分化机制,指导肥胖以及其相关疾病的治疗具有积极的意义。
The increase of adipose tissue mass associated with obesity is due to both hypertrophy and hyperplasia of adipocytes. This hyperplasia results from the differentiation of in situ multipotent stem cells present in the vascular stroma of adipose tissue. The recruitment and then differentiation of mesenchymal stem cells in bone marrow to adipose tissue contributes in part to the hyperplasia. The adipocyte differentiation from mesenchyma stem cells is usually described as two phase. The first phase is the commitment of stem cells to preadipocyte, which cannot be distinguished morphologically from its precursor cell but has lost the potential to differentiate into other cell types. In the second phase known as terminal differentiation, the pre-adipocyte will obtain the characteristics of the mature adipocyte. The terminal differentiation has been extensively characterized using preadipocyte cell lines (for example, the mouse cell lines 3T3-L1,3T3-F442A). But what happens to the earlier stage cells-mesenchymal stem cells during adipocyte differentiation is rarely known, especially for the human derived mesenchymal stem cells. The objective of our research is to charaterize the adipocyte differentiation of human mesenchymal stem cells(hMSCs) from bone marrow, including the relationship between proliferation and differentiation and the role of three key transcription factors C/EBPβ, C/EBPα, and PPARγ.
     In our study, we first isolated mesenchymal stem cells from human bone marrow with Ficoll density gradient centrifugation and in vitro adherent culture method. The cultured hMSC showed typical spindle-shape phenotype. hMSC proliferated slowly, contact inhibition was not obvious, since the dense cells grows into multilayers in the central of clones. More than 90% cells were at G1/G0 phase indicated by PI staining and flowcytometry. hMSC had a limited lifespan in culture, and serial subcultivation resulted in senescence and grandually die. The cells could be subcultured to passage 12.
     In order to induce hMSCs to differentiate into adipocytes, PPARy agonist (indomethacin) was added to classic adipocyte differentiation protocol (DMEM containing 10%FBS,0.5mM isobutyl methylxanthine, 1μM dexamethasone and 10μg/ml insulin:MDI), and treated repeatedly. Most cells differentiated after repeated treatment for three times. The expression of adipose-specific gene aP2 by real-time PCR increased along hormone induction. Multiple treatments resulted in increasing numbers of adipocytes. Significant increase of human C/EBP beta expression was not observed during differentiation. C/EBP alpha and PPAR gamma increased upon induction, and decreased in the terminal stage.
     To examine whether MCE occures during adipocytes differentiation of hMSCs. We compared the cell number of hMSCs pre- and after differentiation. The more cells differentiate into adipocyte, the less cells would be there eventually. BrdU incorporation upon induction and detected when fully differentiation showed that the differentated hMSC were BrdU negative, while differentiated 3T3-L1 were BrdU positive. Together, hMSC did not undergo mitosis clone expansion upon adipocyte differentiation in culture condition, which was different from 3T3-L1 model.
     To define the role of the three transcription factors in hMSCs. We performed gain-or loss-of function experiments. C/EBPβknockdown in hMSCs with RNAi impared the adipogenic potential, while overexpression of C/EBP(3 stimulated cells to differentiate in response to indomethacin treatment. Overexpression of C/EBPa also potentiated the adipocyte differentiation along with PPARy angonist. Overexpression of PPARy alone was enough to initiate adipocytes differentiation of hMSCs, but not stimulate fully differentiated adipocytes.
引文
1. Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. Jama,2001, 286:1195-1200.
    2. Kopelman PG. Obesity as a medical problem. Nature,2000,404(6778):635-643.
    3. Faust IM, Johnson PR, Stern JS, Hirsch J. Diet-induced adipocyte number increase in adult rats:a new model of obesity. Am J Physiol,1978,235(3):E279-286.
    4. Hirsch J and Batchelor B. Adipose tissue cellularity in human obesity. Clin Endocrinol Metab,1976,5(2):299-311.
    5. Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem,1993,268(30):22243-22246.
    6. Yu ZK, Wright JT and Hausman GJ. Preadipocyte recruitment in stromal vascular cultures after depletion of committed preadipocytes by immunocytotoxicity. Obesity Res,1997,5(1):9-15
    7. Konieczny S.F.,& C.P. Emerson J.R.,5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells:evidence for regulatory genes controlling determination. Cell,1984,38:791-800.
    8. Taylor S.M.,& JONES P.A., Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell,1979,17:771-243.
    9. Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem.,1997, 272(9):5367-5370.
    10. Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell,1974,3:127-133.
    11. Tang QQ. Otto TC, Lane MD. Mitotic clonal expansion:a synchronous process required for adipogenesis. Proc Natl Acad Sci USA,2003,100:44-49.
    12. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem.,1995,64:345-373.
    13. Christy RJ, Yang VW, Ntambi JM, Geiman DE, Landschulz WH, Friedman AD, Nakabeppu Y, Kelly TJ, Lane MD. Differentiation-induced gene expression in 3T3-L1 preadipocytes:CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev.,1989,3(9):1323-1335.
    14. Lekstrom-Himes, J. and K.G. Xanthopoulos.Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J. Biol. Chem., 1998.273:28545-28548.
    15. Zhang, D.E., P. Zhang, N.D. Wang, C.J. Hetherington, G.J. Darlington, and D.G. Tenen. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc. Natl. Acad. Sci,1997.94:569-574.
    16.Wang, N.D., M.J. Finegold, A. Bradley, C.N. Ou, S.V. Abdelsayed, M.D. Wilde, L.R. Taylor, D.R. Wilson, and G.J. Darlington. Impaired energy homeostasis in C/EBP alpha knockout mice. Science,1995.269:1108-1112.
    17. Cornelius, P., MacDougald, O. A.& Lane, M. D.. Regulation of adipocyte development. Annu. Rev. Nutr.,1994,14:99-129.
    18. Tang QQ, Lane MD. Activation and centromeric localization of CCAAT/ehnancer binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev 1999.13:2231-2241.
    19. Christy, R. J., Kaestner, K. H., Geiman, D. E.& Lane, M. D.. CCAAT/enhancer binding protein gene promoter:binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. U.S.A.,1991,88:2593-2597.
    20. Clarke S. L., Robinson, C. E.& Gimble, J. M. CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferatoractivated receptor gamma 2 promoter. Biochem. Biophys. Res. Commun.1997,240:99-103.
    21. Yeh, W.C., Z. Cao, M. Classon, and S.L. McKnight. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes & Dev.1995.15:168-181.
    22. L R Hendricks-Taylor and G J Darlington. Inhibition of cell proliferation by C/EBP alpha occurs in many cell types, does not require the presence of p53 or Rb, and is not affected by large T-antigen. Nucleic Acids Res.1995,25; 23(22): 4726-4733.
    23. Umek, R. M., Friedman, A. D.& McKnight, S. L. CCAAT-enhancer binding protein:a component of a differentiation switch. Science,1991,251:288-292.
    24. Hwang CS, Mandrup S, MacDougald OA, Geiman DE, Lane MD. Transcriptional activation of the mouse obese(ob) gene by CCAAT/enhancer binding protein alpha. Proc. Natl. Acad. Sci. USA 1996,93:873-877.
    25. Kaestner KH, Christy RJ, Lane MD. Mouse insulin-responsive glucose transporter gene:characterization of the geneand trans-activation by the CCAAT/enhancer binding protein. Proc. Natl. Acad. Sci. USA.1990,87:251-255,.
    26. McKeon C, Pham T. Transactivation of the human insulin receptor gene by the CAAT/enhancer binding protein. Biochem. Biophys. Res. Commun.1991,174: 721-728.
    27 Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev.1994,8(10):1224-1234.
    28. Tontonoz P, Graves RA, Budavari AI, Erdjument-Bromage H, Lui M, Hu E, Tempst P, Spiegelman BM. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res.1994,22(25):5628-34.
    29. Schoonjans K, Watanabe M, Suzuki H, Mahfoudi A, Krey G, Wahli W, Grimaldi P, Staels B, Yamamoto T, Auwerx J. Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem.1995,270(33):19269-19276.
    30. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J.1996,15(19):5336-5348.
    31. Rosen, E.D., P. Sarraf, A.E. Troy, G. Bradwin, K. Moore, D.S. Milstone, B.M. Spiegelman, and R.M. Mortensen. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell.,1999,4:611-617.
    32 Tontonoz, P., Hu, E.& Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARy2, a lipidactivated transcription factor. Cell,1994,79,1147-1156.
    33 Kletzien, R.F., S.D. Clarke, and R.G. Ulrich. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol. Pharmacol.,1992,41:393-398.
    34 Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, Kawahara R, Hauner H, Jain MK. The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem. 2003;278:2581-2584
    35 Wu J, Srinivasan SV, Neumann JC, Lingrel JB. The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry.2005;44:11098-11105.
    36 Qiang Tong, Gokhan Dalgin, Haiyan Xu, Chao-Nan Ting, Jeffrey M. Leiden, Gokhan S. Hotamisligil Function of GATA Transcription Factors in Preadipocyte-Adipocyte Transition Science,2000,290(5489),134-138.
    37 Friedenstein A.J., Gorskaja U., Kulagina N.N., Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol.1976,4,261-274.
    38. Mihaela Crisan, Solomon Yap, Louis Casteilla, Chien-Wen Chen, Mirko Corselli, Tea Soon Park, Gabriella Andriolo, Bin Sun, Bo Zheng, Li Zhang, Cyrille Norotte, Pang-Ning Teng, Jeremy Traas, Rebecca Schugar, Bridget M. Deasy, Stephen Badylak, Hans-Jo" rg B}uhring, Jean-Paul Giacobino, Lorenza Lazzari, Johnny Huard, and Bruno Pe'ault, A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs, Cell Stem Cell,2008,3,301-313.
    39. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284(5411):143-7.
    40. Mimeault M, Batra SK. Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev.,2008 Spring;4(1):27-49.
    41. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell.,2002,13(12):4279-95.
    42. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science,1998,16;279(5349):349-52.
    43. Rodriguez AM, Elabd C, Delteil F, Astier J, Vernochet C, Saint-Marc P, Guesnet J, Guezennec A, Amri EZ, Dani C, Ailhaud G. Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys Res Commun.,2004, 5;315(2):255-63.
    44. Crossno JT Jr, Majka SM, Grazia T, Gill RG, Klemm DJ. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J Clin Invest.,2006,116(12):3220-8.
    45. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem.,1997,64(2):278-94.
    46. Otto TC, Lane MD. Adipose development:from stem cell to adipocyte. Crit Rev Biochem Mol Biol.,2005,40(4):229-42.
    47. James M. Ntambi and Young-CheulKim. Adipocyte Differentiation and Gene Expression. Journal of Nutrition.2000;130:3122S-3126S.
    48. Hahn WC. Immortalization and transformation of human cells. Mol Cells.,2002, 13(3):351-61.
    49. Entenmann G, Hauner H. Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am J Physiol.,1996,270(4 Pt 1):C1011-6.
    50. Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, Pagano M. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev.,1999,13(9):1181-9.
    51. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol.2006,7(12):885-96.
    52. Cao Z, Umek RM, McKnight SL. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev.1991,5(9):1538-52.
    53. Qi-Qun Tang, Man-Shiow Jiang, and M. Daniel Lane. Repressive Effect of Spl on the C/EBPα Gene Promoter:Role in Adipocyte Differentiation. Mol. Cell Biol.,1999, 19:4855-4865.
    54. Lin FT, MacDougald OA, Diehl AM, Lane MD. A 30-kDa alternative translation product of the CCAAT/enhancer binding protein alpha message:transcriptional activator lacking antimitotic activity. Proc Natl Acad Sci U S A.,1993, 90(20):9606-10.
    55. Tang QQ, Grφnborg M, Huang H, Kim JW, Otto TC, Pandey A, Lane MD. Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci U S A.,2005,102(28):9766-71.
    56. Tontonoz P, Hu E, Devine J, Beale EG, Spiegelman BM. PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol.,1995,15(1):351-7.
    57. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem.,1995, 270(22):12953-6.
    58. Shao D, Lazar MA. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem.,1997,272(34):21473-8.
    59. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev.1998,78(3):783-809.
    60. Stephen R. Farmer Transcriptional control of adipocyte formation. Cell Metab. 2006,4(4):263-273.
    61. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Kadowaki T, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell.1999 4(4):597-609.
    62. Li X, Kim JW, Grφnborg M, Urlaub H, Lane MD, Tang QQ. Role of cdk2 in the sequential phosphorylation/activation of C/EBPbeta during adipocyte differentiation. Proc Natl Acad Sci U S A.2007,104(28):11597-602. Epub 2007 Jun 29.
    63. Wu Z, Xie Y, Bucher NL, Farmer SR. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 1995,9(19):2350-63.
    64. Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci U S A.2003, 100(3):850-5
    65. Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 1997, 16(24):7432-43.
    66. Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ. Impaired energy homeostasis in C/EBP alpha knockout mice. Science.1995,269(5227):1108-12.
    67. Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD, Brun RP, Mueller E, Altiok S, Oppenheim H, Evans RM, Spiegelman BM. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci U S A.1997,94(1):237-41.
    68. Ramirez SH, Heilman D, Morsey B, Potula R, Haorah J, Persidsky Y. Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) suppresses Rho GTPases in human brain microvascular endothelial cells and inhibits adhesion and transendothelial migration of HIV-1 infected monocytes. J Immunol.2008, 180(3):1854-65.
    69. Sebastian T, Malik R, Thomas S, Sage J, Johnson PF. C/EBPbeta cooperates with RB:E2F to implement Ras(V12)-induced cellular senescence. EMBO J.2005 Sep 21;24(18):3301-12.Epub 2005 Aug 18.
    70. Park BH, Qiang L, Farmer SR. Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol.2004,24(19):8671-80.
    1. Hirsch, J.& Batchelor, B. Adipose tissue cellularity in human obesity. (1976) Clin. Endocrinol. Metab.5,299-311.
    2. Shepherd, P. R., Gnudi, L., Tozzo, E., Yang, H., Leach, F.& Kahn, B. B. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. (1993) J. Biol. Chem.268,22243-22246.
    3. Yu, Z. K., Wright, J. T.& Hausman, G. J. Preadipocyte recruitment in stromal vascular cultures after depletion of committed preadipocytes by immunocytotoxicity. (1997) Obes. Res.5,9-15.
    4. Caplan, A. Mesenchymal stem cells. J. Orthop. Res. (1991) 9,641-650.
    5. Caplan, A. The mesengenic process. (1994) Clin. Plastic Surg.21,429-435.
    6. Young, H. E, Mancini, M. L., Wright, R. P., Smith, J. C., Black, A. C., Jr., Reagan, C. R.& Lucas, P. A. Mesenchymal stem cells reside within the connective tissues of many organs. (1995) Dev. Dyn.202,137-144.
    7. Poissonnet C.M., BURDI, A.R.,& BOOKSTEIN F.L., Growth and development of human adipose tissue during early gestation. (1983) Early Hum. Dev.8:1-11.
    8. Poissonnet C. M., LAVELLE M.,& BURDI A.R., Growth and development of adipose tissue. (1988) J. Pediatr.113:1-9.
    9. Slavin B.G., Fine structural studies on white adipocyte differentiation. (1979) Anat. Rec.195:63-72.
    10. Konieczny S.F.,& C.P. EMERSON, J.R.,5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells:evidence for regulatory genes controlling determination. (1984) Cell 38:791-800.
    11. Taylor S.M.,& JONES P.A., Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. (1979) Cell 17:771-243.
    12. Lu C.C., Brennan J & Robertson E.J., From fertilization to gastrulation:axis formation in the mouse embryo. (2001) Current Opinion in Genetics & Development, 11:384-392
    13. Kishigami S., Mishina Y., BMP signaling and early embryonic patterning. (2005) Cytokine & Growth Factor Reviews.16:265-278.
    14. Evans M.J.,& Kaufman M., Establishment in culture of pluripotent cells from mouse embryos. (1981) Nature.292,154.
    15. Dani C., Differentiation of embryonic stem cells into adipocytes in vitro. (1997) Journal of Cell Science 110,1279-1285.
    16. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka 0, Amit M, Soreq H, Benvenisty N Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. (2000) Mol. Med.6,88.
    17. Kawaguchi J., Mee P.J., Smith A.G., Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. (2005) Bone 36:758-769.
    18. Tahal M.F., Valojerdi M.R.,& Mowla S.J., Effect of Bone Morphogenetic Protein-4 (BMP-4) on Adipocyte Differentiation from Mouse Embryonic Stem Cells (2006) Anat. Histol. Embryol.35,271-278.
    19. Aouadi M, Laurent K, Prot M., et al., Inhibition of p38MAPK Increases Adipogenesis From Embryonic to Adult Stages. (2006) Diabetes 55:281-289.
    20. Bost F., Caron L., Marchetti I., Dani C., et al., Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. (2002) Biochem. J.361,621-627.
    21. Friedenstein A.J., Gorskaja U., Kulagina N.N., Fibroblast precursors in normal and irradiated mouse hematopoietic organs. (1976) Exp. Hematol.4,261-274.
    22. Pittenger M.F., et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells. (1999) Science 284:143-147.
    23. Zuk P.A., Human Adipose Tissue Is a Source of Multipotent Stem Cells. (2002) Molecular Biology of the Cell 13:4279-4295.
    24. Reznikoff C.A., Brankow D.W.,& Heidelberger, C. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. (1973) Cancer Res.33:3231-3238.
    25. Tang Q.Q., Otto T.C.,& Lane M.D., Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. (2004) Proc Natl Acad Sci U S A.101:9607-11. Preadipocyte
    26. Cornelius, P., MacDougald, O. A.& Lane, M. D. (1994) Regulation of adipocyte development. Annu. Rev. Nutr.14:99-129.
    27. MacDougald, O. A.& Lane, M. D. Transcriptional regulation of gene expression during adipocyte differentiation. (1995) Annu. Rev. Biochem.64,345-373.
    28. Mandrup S.,& Lane M.D., Regulating Adipogenesis (1997) J. Biol. Chem.272, 5367-5370.
    29. Tang Q.Q., Otto T.C.,& Lane M.D., Mitotic clonal expansion:A synchronous process required for adipogenesis (2003) Proc Natl Acad Sci U S A.100:44-49.
    30. Yeh, W.C., Cao, Z., Classon, M.& McKnight, S. L. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. (1995) Genes Dev.9,168-181.
    31. Spiegelman, B. M.& Flier, J. S. Adipogenesis and obesity:rounding out the big picture. (1996) Cell 87,377-389.
    32. Brun, R. P., Tontonoz, P., Forman, B. M., Ellis, R., Chen, J., Evans, R. M.& Spiegelman, B. M. Differential activation of adipogenesis by multiple PPAR isoforms. (1996) Genes Dev.10,974-984.
    33. Rosen, E. D., Walkey, C. J., Puigserver, P.& Spiegelman, B. M. Transcriptional regulation of adipogenesis. (2000) Genes Dev.14,1293-1307.
    34. Tang, Q.Q.& Lane, M. D. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. (1999) Genes Dev.13,2231-2241.
    35. Shao, D.& Lazar M.A., Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation.1997 J. Biol. Chem.272:21473-21478.
    36. Morrison, R.F. and Farmer S.R., Role of PPARg in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c), and p21(Waf1/Cip1), during adipogenesis.1999 J. Biol. Chem.274:17088-17097.
    37. Spiegelman, B.M., Choy L., Hotamisligil G., Graves R.A., and Tontonoz P., Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes.1993 J. Biol. Chem.268:6823-6826.
    38. Ossipow V, Descombes P, Schibler U. CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. Proc Natl Acad Sci U S A.1993,90(17):8219-8223.
    39. Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci U S A.2003, 100(3):850-5
    40. Li X, Kim JW, Grφnborg M, Urlaub H, Lane MD, Tang QQ. Role of cdk2 in the sequential phosphorylation/activation of C/EBPbeta during adipocyte differentiation. Proc Natl Acad Sci U S A.2007,104(28):11597-602. Epub 2007 Jun 29.
    41. Tang QQ, Grφnborg M, Huang H, Kim JW, Otto TC, Pandey A, Lane MD. Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci U S A.,2005,102(28):9766-71.
    42. Wu, Z., Xie Y., Bucher, N.L.R & Farmer, S. R. Conditional ectopic expression of C/EBPb in NIH3T3 cells induces PPARg and stimulates adipogenesis. Genes Dev. 1995,9:2350-2363.
    43. Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J.1997, 16(24):7432-7443.
    44. Lin FT, Lane MD. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci U S A.1994, 91(19):8757-8761.
    45. Freytag, S.O., D.L. Paielli, and J.D. Gilbert. Ectopic expression of the CCAAT/enhancer binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes & Dev.1994.8:1654-1663.
    46. Wang, N.D., M.J. Finegold, A. Bradley, C.N. Ou, S.V. Abdelsayed, M.D. Wilde, L.R. Taylor, D.R. Wilson, and G.J. Darlington. Impaired energy homeostasis in C/EBP alpha knockout mice. Science 1995.269:1108-1112.
    47. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell.1999,4(4):585-595.
    48. Rosen, E.D., P. Sarraf, A.E. Troy, G. Bradwin, K. Moore, D.S. Milstone, B.M. Spiegelman, and R.M. Mortensen. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 1999.4:611-617.
    49. Ross, S. E. et al. Microarray analyses during adipogenesis:understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor a in adipocyte metabolism. (2002) Mol. Cell Biol.22,5989-5999.
    50. Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. (2000) Science 289, 950-953.
    51. Bennett, C. N. et al. Regulation of Wnt signaling during adipogenesis. (2002) J. Biol. Chem.277,30998-31004.
    52. Moldes, M. et al. Peroxisome-proliferator-activated receptor y suppresses Wnt/β-catenin signalling during adipogenesis. (2003) Biochem. J.376,607-613.
    53. Smas, C. M.& Sul, H. S. Molecular mechanisms of adipocyte differentiation and inhibitory action of pref-1. (1997) Crit. Rev. Eukaryot. Gene Expr.7,281-298.
    54. Moon, Y. S. et al. Mice lacking paternally expressed Pref-1/Dlkl display growth retardation and accelerated adiposity. (2002) Mol. Cell Biol.22,5585-5592.
    55. Lee, K. et al. Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1). (2003) J. Clin. Invest. 111,453-461.
    56. Kawaguchi, N. et al. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. (1998) Proc. Natl Acad. Sci. USA 95,1062-1066.
    57. Hutley, L. et al. Fibroblast growth factor 1:a key regulator of human adipogenesis. (2004) Diabetes 53,3097-3106.
    58. Sakaue, H. et al. Requirement of fibroblast growth factor 10 in development of white adipose tissue. (2002) Genes Dev.16,908-912.
    59. Garces, C. et al. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. (1997) J. Biol. Chem.272, 29729-29734.
    60. Ross, D. A., Rao, P. K.& Kadesch, T. Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes. (2004) Mol. Cell Biol.24,3505-3513
    61. Bost, F., Aouadi, M., Caron, L.& Binetruy, B. The role of MAPKs in adipocyte differentiation and obesity. (2005) Biochimie 87,51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700