CCR7基因转染小鼠未成熟树突状细胞诱导皮肤移植免疫耐受的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及研究目的
     临床上同种异体皮肤移植是目前大面积深度烧伤患者早期创面覆盖最直接、最有效的治疗方法,但是由于皮肤的强烈抗原特性,导致移植后3周左右外源皮肤就会发生不可逆的排斥反应,极大地限制了自体微粒皮混合大张异体皮移植效果。如何成功诱导出皮肤移植后的免疫耐受,临床上至今未发现非常有效的措施。树突状细胞(dendritic cells,DCs)是目前已知的功能最强大的专职抗原提呈细胞,在免疫反应中发挥了极其重要的作用。DCs的分化发育过程伴随着DCs由未成熟的前体细胞分化发育为成熟细胞,细胞的形态、表面标志以及生物学功能等都发生了相应变化。未成熟树突状细胞(immature dendritic cells,imDCs)因为其功能上最显著的特点就是可以诱导T淋巴细胞的特异性低应答而成为当前研究免疫耐受策略的热点,这也在我们前一个国家自然科学基金项目(No.30271341)中得到证实。利用imDCs或者基因修饰DCs进行的联合移植实验已经在肾、肝、心脏、胰腺和小肠等器官中取得了令人较为满意的效果,这为皮肤移植实验提供了非常有利的依据。
     DCs的发育成熟过程伴随着其表型的变化,包括摄取能力的减弱和MHC类分子、共刺激分子的表达上调,最终变成强大的抗原提呈细胞。研究发现imDCs在炎性介质作用下逐渐迁移成熟的过程中,其表面趋化因子受体-7(Chemokine receptor-7,CCR7)表达上调。通过CCR7与其配体MIP3β(即CCL19)和SLC(即CCL21)的相互作用,引导DCs趋化迁移至淋巴结,由此CCR7被认为是成熟树突状细胞(mature dendritic cells,mDCs)迁移归巢完成抗原递呈从而激活初始T细胞的主要受体之一。目前CCR7趋化迁移的能力在部分恶性肿瘤的转移中得到证实,研究表明CCR7严格调控了肿瘤细胞的转移。肿瘤细胞这种非随机的、有组织器官选择性的转移过程类似于免疫刺激过程中DCs的定向迁移。基于CCR7具有非常重要的趋化迁移功能,若DCs成熟度越高,CCR7表达更强,则免疫系统呈现更为强劲的免疫应答,反之则诱导免疫耐受。然而,由于imDCs缺乏CCR7的表达,向淋巴结的趋化迁移能力较弱,长时间处于非T细胞区易受各种炎症因子或者外来抗原的刺激而发育为mDCs,严重影响其诱导免疫耐受的效果。
     基于以上分析,本研究拟通过构建含有小鼠CCR7的重组腺病毒,尝试在imDCs上建立CCR7的表达,使imDCs获得原本mDCs才具有的高效迁移能力,避免imDCs在外周组织向成熟状态的分化,有效地确保其诱导免疫耐受功能的发挥,为临床上大面积深度烧伤患者早期创面覆盖引起的免疫排斥提供新的解决方法和思路。
     研究方法
     1、小鼠骨髓源树突状细胞的培养及鉴定
     小剂量rmGM-CSF和rmIL-4联合体外诱导培养BALB/c小鼠骨髓来源的imDCs,第5天收获得到一定数量的imDCs,加入rmTNF-α刺激细胞成熟而获得mDCs。通过光学显微镜及扫描电镜观察细胞的形态学变化,应用流式细胞仪检测细胞表面标志分子的表达水平。
     2、CCR7基因转染小鼠骨髓源未成熟树突状细胞及其功能鉴定
     采用梯度离心法将Ad空载体和Ad-ccr7腺病毒转染入imDCs,通过光学显微镜和扫描电镜来观察细胞形态学上的变化,应用流式细胞仪检测细胞表面的相应标志物,从而来观察Ad-ccr7腺病毒转染对小鼠骨髓源imDCs的成熟状态及形态的影响。采用Real-time PCR法、细胞免疫荧光法、Western Blot法检测Ad-ccr7腺病毒转染前后小鼠骨髓源树突状细胞CCR7mRNA及蛋白水平的表达变化。通过体外趋化试验和混合淋巴细胞反应比较观察Ad-ccr7腺病毒转染前后小鼠骨髓源DCs的体外迁移能力和体外刺激T淋巴细胞增殖能力。
     3、CCR7基因转染imDCs对小鼠异基因皮肤移植的影响
     在小鼠异基因皮肤移植实验中,我们将供者源imDCs、供者源mDCs、供者源imDCs+Ad、供者源imDCs+Ad-ccr7和供者源imDCs+Ad-ccr7+IL-10通过腹腔注射入受体小鼠体内,观察各组细胞对小鼠异基因移植皮片存活状况的影响,并通过组织学检查观察移植皮片的结构改变。
     实验结果
     1、小鼠骨髓源DCs的培养及鉴定结果
     体外培养的DCs经光学显微镜及扫描电镜观察发现:imDCs表面光滑,凹凸不平,毛刺状突起较少,而mDCs表面伸出许多较长的树枝样突起,突起长短不一,形态各异。流式细胞仪检测发现在imDCs中CD11c、CD80、CD83、MHCⅡ的阳性率分别为24.7%、9.4%、20.5%和20.5%,而在mDCs中CD11c、CD80、CD83、MHCⅡ的阳性率分别为86.5%、88.4%、76.9%和92.4%。这表明体外培养的DCs符合其典型形态学特征和表面标志水平。
     2、CCR7基因转染对小鼠骨髓源imDCs的影响
     2.1采用高速离心法将Ad-ccr7腺病毒转染入小鼠骨髓源imDCs内,其感染效率在MOI达到100时约有70%左右。在扫描电镜中可见imDCs转染腺病毒空载体和Ad-ccr7后,细胞形态不规则,表面粗糙,细胞表面的不规则膜性树枝状突起较未转染imDCs增多,而IL-10组细胞膜表面不规则突起明显减少,这说明IL-10可一定程度地抑制imDCs的成熟。小鼠骨髓源imDCs经腺病毒转染2天后,流式细胞术检测发现imDCs+Ad组细胞中CD11c、CD80、CD83、MHCⅡ的阳性率分别为40.0%、27.7%、28.5%和37.8%。imDCs+Ad-ccr7组细胞中CD11c、CD80、CD83、MHCⅡ的阳性率分别为37.8%、27.4%、21.3%和37.0%,而imDCs+Ad-ccr7+IL-10组细胞中CD11c、CD80、CD83、MHCⅡ的阳性率分别为20.5%、15.5%、21.6%和32.9%。这表明转染Ad空载体和Ad-ccr7腺病毒可促使imDCs表面标志略微升高,即向成熟方向发展,但加入细胞因子IL-10可略微下调这些表面标志的表达,在一定程度上抑制imDCs的成熟。
     2.2 Real-time PCR结果显示, imDCs中CCR7mRNA水平较低, mDCs中CCR7mRNA含量是imDCs的1.544倍。imDCs转染Ad空载体后,其CCR7mRNA含量是imDCs的1.115倍,imDCs转染Ad-ccr7腺病毒后,其CCR7mRNA含量是imDCs的2.941倍,而IL-10组中CCR7mRNA含量为imDCs的1.556倍,接近正常mDCs含量。这也说明Ad-ccr7腺病毒转染可以明显增加未成熟树突状细胞CCR7mRNA水平的表达,同时IL-10在一定程度上可以抑制转染过程中imDCs的成熟。
     2.3细胞免疫荧光结果显示imDCs和imDCs+Ad组细胞不表达CCR7,而mDCs细胞可表达CCR7。imDCs转染Ad-ccr7腺病毒后CCR7的表达增加,说明CCR7基因有效转入imDCs并表达蛋白。Western Blot结果通过Qulitity One软件分析显示:imDCs、imDCs+Ad、imDCs+Ad-ccr7、imDCs+Ad-ccr7+IL-10和mDCs中CCR7蛋白表达的相对含量分别为0.09、0.15、0.96、0.46和0.35。结果表明,imDCs和imDCs+Ad组中CCR7在蛋白水平几乎不表达,而转染Ad-ccr7腺病毒后imDCs的CCR7蛋白含量明显上升,其蛋白相对含量可以高于正常mDCs的含量。加入IL-10可以抑制imDCs朝成熟方向转化,但是其CCR7蛋白的表达含量仍可以达到mDCs的水平。
     2.4体外迁移实验结果表明imDCs细胞的体外趋化迁移率均低于5%,而mDCs、imDCs+Ad-ccr7、imDCs+Ad-ccr7+IL-10组细胞在CCL19作用下体外趋化迁移率均较imDCs组明显上升(aP<0.05)。而CCL19+anti-CCR7mAb组,在CCL19对抗剂anti-CCR7mAb作用下迁移率均有下降(dP <0.05),但仍高于各自的空白组。这表明能够表达CCR7蛋白的转染病毒后imDCs及mDCs可在其配体CCL19的作用下增强体外迁移能力,同时anti-CCR7mAb可以在体外部分的拮抗其配体CCL19的作用。
     2.5混合淋巴细胞反应结果表明,imDCs以1:5比率与同种异体未致敏T淋巴细胞混合后imDCs组刺激T淋巴细胞增殖能力较弱,刺激指数为1.6±0.1,而mDCs组刺激T淋巴细胞增殖能力明显增强,刺激指数为5.6±0.3(aP<0.05)。腺病毒转染后细胞刺激T细胞增殖的能力较imDCs组增强但是弱于mDCs组,刺激指数分别为3.4±0.2和3.1±0.2,但是加入IL10可以明显降低刺激能力,刺激指数为1.8±0.1(bP<0.05)。表明腺病毒转染可部分增强imDCs的刺激增殖能力,但还是弱于mDCs,IL-10可抑制其促增殖能力。
     3、CCR7基因转染imDCs对小鼠异基因移植皮片的影响
     3.1通过与对照组(NS)相比较,供者源imDCs、供者源imDCs+Ad-ccr7、供者源imDCs+Ad-ccr7+IL-10组皮肤移植物的MST均明显延长(aP<0.05),而供者源mDCs和imDCs+Ad组MST与对照组相比无显著性差异(P>0.05),说明单纯使用供者源mDCs对移植皮片的存活无明显影响,但供者源未成熟DC的应用可延长皮片的存活时间。同时,供者源imDCs+Ad-ccr7+IL-10组MST较供者源imDCs组显著延长(bP<0.05),而供者源imDCs+Ad-ccr7组MST较供者源imDCs组差异不明显(P>0.05),显示供者源imDCs在转染腺病毒Ad-ccr7后,其诱导免疫耐受的能力较转染前提高,加入IL-10更能够显著提高皮片存活的时间。
     3.2组织切片活检显示皮肤组织结构较清楚,纤维组织结构排列有序,成纤维细胞多,真皮层内血管腔丰富,结构完整,大小不一,局部有炎性细胞浸润。表明皮片生长情况良好,白细胞的趋化功能正常。
     结论
     1、小鼠骨髓来源细胞在应用低剂量rmGM-CSF和rmIL-4联合刺激诱导后获得具有典型形态特征的imDCs和mDCs。
     2、Ad-ccr7腺病毒成功转染入小鼠骨髓源imDCs内。转染后小鼠imDCs在形态学及细胞表面标志分子上可向成熟状态分化,但IL-10可一定程度地抑制imDCs的成熟。
     3、Real-time PCR结果表明Ad-ccr7腺病毒转染可以明显增加未成熟树突状细胞CCR7mRNA水平的表达,同时IL-10在一定程度上可以抑制转染过程中imDCs的成熟。
     4、细胞免疫荧光及Western Blot结果表明,转染Ad-ccr7腺病毒后imDCs的CCR7蛋白含量明显上升。加入IL-10可以抑制imDCs朝成熟方向分化,但其CCR7蛋白的表达含量仍可以达到mDCs的水平。
     5、体外迁移实验表明imDCs细胞的体外趋化迁移率均较低,而转染Ad-ccr7腺病毒后imDCs在CCL19作用下体外趋化迁移率均较imDCs组明显上升。同时anti-CCR7mAb可以在体外部分的拮抗其配体CCL19的作用。
     6、混合淋巴细胞反应实验显示imDCs组刺激T淋巴细胞增殖能力较弱,而mDCs组刺激T淋巴细胞增殖能力明显增强。Ad-ccr7腺病毒转染后其刺激T细胞增殖的能力较imDCs组增强但是弱于mDCs组,加入IL10可以明显降低刺激能力。
     7、小鼠异基因皮肤移植实验表明,单纯使用供者源mDCs对移植皮片的存活无明显影响,供者源imDCs在转染Ad-ccr7腺病毒后可明显延长皮片的存活时间,加入IL-10更能够显著提高皮片存活的时间。
Background and objective
     Allogeneic skin transplantation is the most effective method in the early coverage of extensive burn wounds. However, the host versus graft reaction (HVGR) after transplantation leads to irreversible rejection about 3 weeks later, which limits the effection of skin transplantation. And there isn’t any effective treatment to induce immune tolerance after transplantation. Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APC) in vivo, which play critical roles in immune reponse. Dendritic cells differentiate from immature dendritic cells (imDCs) to mature dendritic cells (mDCs), in the process, morphological characteristics, surface markers and biological functions in DCs have changed accordingly. The most distinguished ability of imDCs is inducing T cell anergy and promote alloantigen-specific tolerance, which has been verified in our last National Natural Science Foundation of China (NSFC) subjest (No.30271341). Based on the advantages, combined transplantation using imDCs or genetically-modified imDCs have seen satisfied results in kidney、liver、heart、pancreatic islet and small intestine transplantation.
     The phenotypical changes that take place during maturation include the blunting of the endocytic ability and the up-regulation of MHCs and costimulatory molecules that eventually transform these DCs into potent APC. Maturation takes place concomitantly with the migration of the DCs from their niches in the peripheral tissues to the lymph nodes where they arrive through the lymphatics. In this regard, during maturation the expression of the chemokine receptor-7 (CCR7) is up regulated. Through interaction with ligand MIP3β(CCL19) and SLC (CCL21), CCR7 guides the migratory DCs to the nodes, presents antigens to naive T cells and activates immune response. Recent studies have also showed that CCR7 plays an important role in cancer metastasis. Such function of CCR7 is kind of like oriented migration in DCs. If DCs became more matured, they express more CCR7, the immune system will present stronger response. Otherwise, immune tolerance is induction. However, imDCs lack the expression of CCR7 and direct less migratory DCs to lymph nodes. Long time for residing in non-T cell area put imDCs into high risks sensing of“danger signals”(tissue damage、inflammatory cytokines or pathogens), which starts the differentiation of maturation and change the important tolerance inducing functions of imDCs.
     Base on the the analysis above, the present study was designed to build expression of CCR7 in imDCs through the construction of recombinant adenovirus carrying murine CCR7 gene, which will afford imDCs high chemotactic ability possessed by mDCs, inhibit the maturation of imDCs in peripheral tissues and guarantee the induction of immune tolerance of imDCs in the early coverage of extensive burn wounds
     Methods
     1、Cultivation and identification of dendritic cells derived from murine marrow ImDCs isolated from BALB/c murine marrow was induced and proliferated by rmGM-CSF and rmIL-4, and harvested amount of imDCs after 5 days, obtained mDCs through the stimulation of rmTNF-α. The change of cell morphology was observed through the light microscope and the scanning electron microscope, the expression level of cell surface markers were detected application flow cytometry.
     2、CCR7 gene transfection immature dendritic cell derived from murine marrow and identification of its function
     Transfected the Ad-ccr7 adenovirus into immature dendritic cells through gradient centrifugation methods, observed the change of cell morphology through the light microscope and the scanning electron microscope and detected the expression level of cell surface markers application flow cytometry after Ad-ccr7 adenovirus transfection it, it will be useful to observed the influence of mature state and morphology after transfection. The expression change of CCR7 mRNA and protein in immature dendritic cells after Ad-ccr7 adenovirus tansfection were detected by Real-time PCR、cell immumofluorescence and Western Blot methods. The migration ability and the stimulate proliferation ability of T lymphocyte by immature dendritic cells after Ad-ccr7 adenovirus transfection was observed by migration experiment and mixed lymphocyte reaction in vitro.
     3、Influence of imDCs after CCR7 gene transfection to murine allogene skin transplantion
     In murine allogene skin transplantion experiments, we injected the donor imDCs、donor mDCs、donor imDCs+Ad、donor imDCs+Ad-ccr7 and donor imDCs+Ad-ccr7+IL-10 into receptor murine, observed the influence of each group cells to murine allogene skin transplantion graft survive state and observed the construction change of skin grafts through histology detection.
     Results
     1、The results of cultivation and identification of dendritic cells derived from murine marrow
     The dendritic cells cultivated in vitro were observed by light mircroscope and scanning electron microscope, we discovered: the surface of immature dendritic cell was slick、rugosity and less sentus ecphyma, but the surface of mature dendritic cell was stretched out many branch ecphymas, which was different longer and strange form. The flow cytometry founded that the positive percentage of CD11c、CD80、CD83、MHCⅡin immature dendritic cell was 24.7%、9.4%、20.5% and 20.5%, but the positive percentage in mature dendritic cell was 86.5%、88.4%、76.9% and 92.4%. These demonstrated the dendritic cells cultivation in vitro consistented with the typical morphology characteristic and the level of surface markers.
     2、Influence of CCR7 gene transfection to immature dendritic cells derived from murine marrow
     2.1 We transfected Ad-ccr7 adenovirus to immature dendritic cells derived from murine marrow by high speed centrifugation method, the transfection efficiency up to 70% as MOI in 100. The morphology of immature dendritic cell after transfection Ad void vector and Ad-ccr7 adenovirus by scanning electron microscope was rugosity, rough hard sphere, the irregularity dendritic processes more than imDCs un-transfection, but the irregularity dendritic processes decreased in IL-10 group, this illustration IL-10 can slightly inhibited the maturation of imDCs. The flow cytometry founded that the positive percentage of CD11c、CD80、CD83、MHCⅡin imDCs+Ad was 40.0%、27.7%、28.5% and 37.8%, the positive percentage of CD11c、CD80、CD83、MHCⅡin imDCs+Ad-ccr7 was 37.8%、27.4%、21.3% and 37.0%, but the positive percentage in imDCs+Ad-ccr7+IL-10 was 20.5%、15.5%、21.6% and 32.9%. These demonstrated Ad-ccr7 adenovirus transfection can spur the surface marker of imDCs slightly increased, development to maturity direction, but IL-10 can slightly down regulated the expression of surface markers and inhibited the maturation of imDCs.
     2.2 Results of Real-time PCR manifested, the expression level of CCR7 mRNA in imDC was low, and the expression level of CCR7 mRNA in mDCs was 1.544 fold than imDCs. The expression level of CCR7 mRNA in imDCs after Ad void vector transfection was 1.115 fold than imDCs, the expression level of CCR7 mRNA in imDCs after Ad-ccr7 adenovirus transfection was 2.941 fold than imDCs, but the expression level of CCR7 mRNA in IL-10 group was 1.566 fold than imDCs, approach the normal level in mDCs. These illustrated the expression level of CCR7 mRNA in imDCs after Ad-ccr7 adenovirus transfection can increased obviously, meanwhile IL-10 can slightly inhibited the maturation of imDCs during transfection.
     2.3 Results of cell immunofluorescence displayed there has no expression of CCR7 in imDCs and imDCs+Ad group, but it had expression of CCR7 in mDCs. The expression of CCR7 in imDCs after Ad-ccr7 adenovirus transfection was increased, it means CCR7 gene had transfected imDCs and expressed the protein of CCR7. The results of Western Blot analysed by software Qulitity One manifested: the expression relative amount of CCR7 protein in imDCs、imDCs+Ad、imDCs+Ad-ccr7、imDCs+Ad-ccr7+IL-10 and mDCs were 0.09、0.15、0.96、0.46 and 0.35 respectively. There almost has no expression of CCR7 protein in imDCs and imDCs+Ad group, but the expression of CCR7 in imDCs after Ad-ccr7 adenovirus transfection upgraded obviously, the expression relative amount of CCR7 protein more than the normal expression in mDCs. IL-10 can inhibitted the imDCs differentiation toward maturation, but the expression of CCR7 protein can achieve the level of mDCs.
     2.4 The results of migration experiment in vitro displayed the migration percentage of imDCs less than 5%, but the migration percentage in mDCs、imDCs+ Ad-ccr7 and imDCs+Ad-ccr7+IL-10 group which affected by CCL19 were increased obviously than imDCs(aP<0.05). But in CCL19+anti-CCR7 mAb group, the migration percentage decreased by CCL19 antagonizer anti-CCR7 mAb, it higher than its control group respectively (dP <0.05).These indicated that the migration ability in vitro of imDCs after Ad-ccr7 adenovirus transfection and mDCs which expressed CCR7 protein can enhanced by its ligand CCL19, meanwhile anti-CCR7 mAb can rivalied the effection of its ligand CCL19 in vitro.
     2.5 The results of mixed lymphocyte reaction demonstrated, imDCs mixed the T lymphocytes at rate 1:5, the proliferation ability of imDCs stimulate to T lymphocytes was lower, SI was 1.6±0.1, but the proliferation ability of mDCs stimulate to T lymphocytes increased significantly, SI was 5.6±0.3 (aP<0.05). The proliferation ability of imDCs after adenovirus transfection was higher than imDCs and lower than mDCs, SI was 3.4±0.2 and 3.1±0.2 respectively. IL-10 can decreased the proliferation ability, SI was 1.8±0.1 (bP<0.05). Adenovirus transfection can partly enhance the proliferation ability of imDCs, but it still lower than mDCs, IL-10 can inhibited the proliferation ability.
     3、Influence of imDCs after CCR7 gene transfection to murine allogene skin transplantion
     3.1 Compare to control group, the MST of skin grafts in donor imDCs、donor imDCs+Ad-ccr7、donor imDCs+Ad-ccr7+IL-10 group were prolonged obviously (aP<0.05), but the MST of donor mDCs and imDCs+Ad group had no difference(P>0.05). It means the donor mDCs had no obviously influence on the MST of skin grafts, but the donor imDCs can prolong the MST of skin grafts. Meanwhile the MST of donor imDCs+Ad-ccr7+IL-10 group was significant prolongation than the MST of donor imDCs, but the MST of donor imDCs+Ad-ccr7 group has no obviously difference than donor imDCs, it manifestation the ability of induction immune tolerance of imDCs after Ad-ccr7 adenovirus transfection was higher than before the transfection, IL-10 can significant extended the MST of skin grafts.
     3.2 The clear epithelial structure and infiltration of inflammatory cells were observed in specimens.
     Conclusion
     1. The cells we cultured displayed typical morphlogical features of imDCs and mDCs, which were induced with lower rmGM-CSF and rmIL-4 from murine marrow.
     2. We successfully transfected Ad-ccr7 adenovirus to immature dendritic cells derived from murine marrow. The morphology and surface marker of imDCs after Ad-ccr7 adenovirus transfection can differentiated towards maturity direction, but IL-10 can slightly inhibited the maturation of imDCs.
     3. Results of Real-time PCR manifested the expression level of CCR7 mRNA in imDCs after Ad-ccr7 adenovirus transfection can increased obviously, meanwhile IL-10 can slightly inhibited the maturation of imDCs during transfection.
     4. Results of cell immunofluorescence and Western Blot displayed the expression of CCR7 in imDCs after Ad-ccr7 adenovirus transfection upgraded obviously. IL-10 can inhibitted the imDCs differentiated towards maturation, but the expression of CCR7 protein can achieved the level of mDCs.
     5. The results of migration experiment in vitro displayed the migration percentage of imDCs was lower, but the migration percentage in imDCs after Ad-ccr7 adenovirus transfection which affected by CCL19 were increased obviously than imDCs. Meanwhile anti-CCR7 mAb can slightly rivalied the effection of its ligand CCL19 in vitro.
     6. The results of mixed lymphocyte reaction demonstrated the proliferation ability of imDCs stimulate to T lymphocytes was lower, but the proliferation ability of mDCs stimulate to T lymphocytes increased significantly. The proliferation ability of imDCs after adenovirus transfection was higher than imDCs and lower than mDCs, IL-10 can decreased the proliferation ability.
     7. Results of murine allogene skin transplantion experiment demonstrated the MST of skin grafts in donor mDCs had no significant difference, but the donor imDCs after Ad-ccr7 adenovirus transfection can prolonged the MST of skin grafts, IL-10 can significant extended the MST of skin grafts.
引文
1.黎鳌主编,烧伤治疗学.上海科学技术出版社, 2002.
    2. Ganschow R, Grabhorn E, Schulz A, et al. Long-term results of basiliximab induction immunosuppression in pediatric liver transplant recipients. Pediatr- Transplant, 2005, 9(6):741-745.
    3. Saas P, Tiberghien P. Dendritic cells: to where do they lead ?Transplantation, 2002, 73(1 Suppl):S12-15.
    4. Rogers N J, Lechler R I. Allorecognition. Am J Transplant, 2001, 1(2):97-102.
    5. Morelli AE, Larregina A T, Ganster R W, et al. Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaβ-dependent pathway. J Virol, 2000, 74(20):9617-9628.
    6. Goldschneider I, Cone R E. A central role for peripheral dendritic cells in the induction of acquired thymic tolerance. Trends Immunol, 2003,24(2):77-81.
    7. Stingl G, Bergstresser P R. Dendritic Cells - a Major Story Unfolds. Immunology Today, 1995, 16(7):330-333.
    8. Guermonprez P, Valladeau J, Zitvogel L, et al. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol, 2002, 20:621-667.
    9. Bohana-Kashtan O, Civin C I. Fas ligand as a tool for immunosuppression and generation of immune tolerance. Stem Cells, 2004, 22(6):908-924.
    10. Tomasoni S, Aiello S, Cassis L, et al. Dendritic cells genetically engineered with adenoviral vector encoding dnIKK2 induce the formation of potent CD4+ T-regulatory cells. Transplantation, 2005, 79(9):1056-1061.
    11. Morelli A E, O'Connell P J, Khanna A, et al. Preferential induction of Th1 responses by functionally mature hepatic (CD8 alpha (-) and CD8 alpha (+)) dendritic cells - Association with conversion from liver transplant tolerance to acute rejection. Transplantation, 2000, 69(12):2647-2657.
    12. Tiao M M, Lu L, Tao R, et al. Prolongation of cardiac allograft survival by systemic administration of immature recipient dendritic cells deficient in NF-kappaβactivity.Annals of Surgery, 2005, 241(3):497-505.
    13. Zhu M, Wei M F, Liu F, et al. Allogeneic T-cell apoptosis induced by interleukin-10-modified dendritic cells: A mechanism of prolongation of intestine allograft survival? Transplantation Proceedings, 2004, 36(8):2436-2437.
    14. Oluwole O O, Depaz H A, Gopinathan R, et al. Indirect allorecognition in acquired thymic tolerance - Induction of donor-specific permanent acceptance of rat islets by adoptive transfer of allopeptide-pulsed host myeloid and thymic dendritic cells. Diabetes, 2001, 50(7):1546-1552.
    15. Chaussabel D, Banchereau J. Dendritic cells, therapeutic vectors of immunity and tolerance. American Journal of Transplantation, 2005, 5(2):205-206.
    16. Sallusto F, Lanzavecchia A Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. Journal of Experimental Medicine, 1999, 189(4):611-614.
    17. Baggiolini M. Chemokines and leukocyte traffic. Nature, 998,392(6676):565-568.
    18. Zlotnik A, Yoshie O. Chemokines: A new classification system and their role in immunity. Immunity, 2000, 12(2):121-127.
    19. Yoshida R, Nagira M, Kitaura M, et al. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. Journal of Biological Chemistry, 1998, 273(12):7118-7122.
    20. Till K J, Lin K, Zuzel M, et al. The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood, 2002, 99(8):2977-2984.
    21. Schimanski C C, Bahre R, Gockel I, et al. Chemokine receptor CCR7 enhances intrahepatic and lymphatic dissemination of human hepatocellular cancer. Oncology Reports, 2006, 16(1):109-113.
    22. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410(6824):50-56.
    23. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Research, 2002, 62(10):2937-2941.
    24. Ding Y Z, Shimada Y, Maeda M, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clinical Cancer Research, 2003, 9(9):3406-3412.
    25. Cabioglu N, Yazici M S, Arun B, et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T-1 breast cancer. Clinical Cancer Research, 2005, 11(16):5686-5693.
    26. Ritter U, Wiede F, Mielenz D, et al. Analysis of the CCR7 expression on murine bone marrow-derived and spleen dendritic cells. J Leukoc Biol, 2004, 76(2):472-476
    27.王强,彭毅志,王逸涛等.负载异体抗原对低剂量粒细胞巨噬细胞集落刺激因子诱导的树突状细胞免疫学性状的影响.中华烧伤杂志, 2006, 22(3):211-214.
    28.陶忠芬,可金星,黄文琪等.树突状细胞的培养与扫描电镜样品制备.电子显微学报, 2005, (04):439-441.
    29. Vermaelen K, Pauwels R. Accurate and simple discrimination of murine pulmonary dendritic cell and macrophage populations by flow cytometry: methodology and new insights. Cytometry A, 2004, 61(2):170-177.
    30. Gilboa E, Nair S K, Lyerly H K. Immunotherapy of cancer with dendritic-cell based vaccines. Cancer Immunology Immunotherapy, 1998, 46(2):82-87.
    31. Usharauli D. Dendritic cells and the immunity/tolerance decision. Med Hypotheses, 2005, 64(1):112-113.
    32. Adikari S B, Lefvert A K, Pirskanen R, et al. Dendritic cells activate autologous T cells and induce IL-4 and IL-10 production in myasthenia gravis. J Neuroimmunol, 2004, 156(1-2):163-170.
    33. Manavalan J S, Rossi P C, Vlad G, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol, 2003, 11(3-4):245-258.
    34. Gilliet M, Liu Y J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med, 2002, 195(6):695-704.
    35. O'Rourke R W, Kang S M, Lower J A, et al. A dendritic cell line genetically modified to express CTLA4-IG as a means to prolong islet allograft survival. Transplantation, 2000, 69(7):1440-1446.
    36. Gorczynski R M, Bransom J, Cattral M, et al. Synergy in induction of increased renal allograft survival after portal vein infusion of dendritic cells transduced to express TGFbeta and IL-10, along with administration of CHO cells expressing the regulatory molecule OX-2. Clin Immunol, 2000, 95(3):182-189.
    37. Min W P, Gorczynski R, Huang X Y, et al. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J Immunol, 2000, 164(1):161-167.
    38. Dunzendorfer S, Kaser A, Meierhofer C, et al. Dendritic cell migration in different micropore filter assays. Immunology Letters, 2000, 71(1):5-11.
    39. Talmor M, Mirza A, Turley S, et al. Generation or large numbers of immature and mature dendritic cells from rat bone marrow cultures. European Journal of Immunology, 1998, 28(3):811-817.
    40. Lutz M B, Kukutsch N A, Ogilvie A L J, et al.An improved method for generating large quantities of dendritic cells from murine bone marrow and novel factors regulating their maturation. Journal of Investigative Dermatology, 1998, 110(4): 639-639.
    41. Fresnay S, Chalmers D E, Ferrand C, et al. Polybrene and interleukin-4: two opposing factors for retroviral transduction of bone-marrow-derived dendritic cells. J Gene Med, 2002, 4(6):601-612.
    42. Lutz M B, Suri R M, Niimi M, et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol, 2000, 30(7):1813-1822.
    43. Gorczynski R M, Bransom J, Cattral M, et al. Synergy in induction of increased renal allograft survival after portal vein infusion of dendritic cells transduced to express TGF beta and IL-10, along with administration of CHO cells expressing the regulatory molecule OX-2. Clinical Immunology, 2000, 95(3):182-189.
    44. Delemarre F G A, Hoogeveen P G, De-Haan M M, et al. Homotypic cluster formation of dendritic cells, a close correlate of their state of maturation.Defects in the biobreeding diabetes-prone rat. Journal of Leukocyte Biology, 2001, 69(3):373-380.
    45. Berges C, Naujokat C, Tinapp S, et al. A cell line model for the differentiation of humandendritic cells.Biochemical and Biophysical Research Communications, 2005, 333(3):896-907.
    46.王强,彭毅志.低剂量粒细胞巨噬细胞集落刺激因子诱导的小鼠骨髓未成熟树突状细胞抗成熟特性的研究.中华烧伤杂志, 2004;20(6):327-329.
    47. Nishimura N, Nishioka Y, Shinohara T, et al. Novel centrifugal method for simple and highly efficient adenovirus-mediated green fluorescence protein gene transduction into human monocyte-derived dendritic cells. J Immunol Methods, 2001, 253:113-124.
    48. Joseph S, David R, Molecular Cloning: A Laboratory Manual, third edition, Cold Spring Harbor Laboratory Press, 2001.
    49. Hansson M, Lundgren A, Elgbratt K, et al. Dendritic cells express CCR7 and migrate in response to CCL19 (MIP-3beta) after exposure to Helicobacter pylori. Microbes Infect, 2006, 8(3): 841-850.
    50. Wang J, Zhang X, Thomas S M, et al. Chemokine receptor 7 activates phosphoinositide-3 kinase-mediated invasive and prosurvival pathways in head and neck cancer cells independent of EGFR. Oncogene, 2005, 24(38):5897-5904.
    51. Wiley H E, Gonzalez E B, Maki W, et al. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst, 2001, 93(21):1638-1643.
    52. Liu Q, Chen T, Chen G, et al. Triptolide impairs dendritic cell migration by inhibiting CCR7 and COX-2 expression through PI3-K/Akt and NF-kappaβpathways. Mol Immunol, 2007, 44(10):2686-2696.
    53. Zhao C F, Wood M W, Galyov E E, et al. Salmonella typhimurium infection triggers dendritic cells and macrophages to adopt distinct migration patterns in vivo. European Journal of Immunology, 2006, 36(11):2939-2950.
    54. Abe M, Zahorchak A E, Colvin B L, et al. Migratory responses of murine hepatic myeloid, lymphoid-related, and plasmacytoid dendritic cells to CC chemokines. Transplantation, 2004, 78(5):762-765.
    55. Harui A, Roth M D, Vira D, et al. Adenoviral-encoded antigens are presented efficiently by a subset of dendritic cells expressing high levels of alpha v beta3 integrins. J LeukocBiol, 2006, 79(6): 1271-1278.
    56. Jenne L, Hauser C, Arrighi J F, et al. Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Ther, 2000, 7(18):1575-1583.
    57. Rouard H, Leon A, Klonjkowski B, et al. Adenoviral transduction of human 'clinical grade' immature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity. J Immunol Methods, 2000, 241(1-2):69-81.
    58. Zhong L, Granelli-Piperno A, Choi Y, et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol, 1999, 29(3):964-972.
    59. Messmer D, Jacque JM, Santisteban C, et al.Endogenously expressed nef uncouples cytokine and chemokine production from membrane phenotypic maturation in dendritic cells. J Immunol, 2002, 169(8):4172-4182.
    60. Bhattacharyya S, Sen P, Wallet M, et al. Immunoregulation of dendritic cells by IL-10 is mediated through suppression of the PI3K/Akt pathway and of Ikappaβkinase activity. Blood, 2004, 104(4):1100-1109.
    61. Lu L, Lee WC, Takayama T, et al. Genetic engineering of dendritic cells to express immunosuppressive molecules (viral IL-10, TGF-beta, and CTLA4Ig). J Leukoc Biol, 1999, 66(2):293-296.
    62. Rea D, Laface D, Hutchins B, et al. Recombinant adenovirus-transduced human dendritic cells engineered to secrete interleukin-10 (IL-10) suppress Th1-type responses while selectively activating IL-10-producing CD4+ T cells. Hum Immunol, 2004, 65(11):1344-1355.
    63. Bosma B M, Metselaar H J, Mancham S, et al. Characterization of human liver dendritic cells in liver grafts and perfusates. Liver Transpl, 2006, 12(3):384-393.
    64. Tomasoni S, Aiello S, Cassis L, et al. Dendritic cells genetically engineered with adenoviral vector encoding dnIKK2 induce the formation of potent CD4+ T-regulatory cells. Transplantation, 2005, 79(9):1056-1061.
    65. Foti M, Granucci F, Aggujaro D, et a1. Upon dendritic cell (DC) activation chemokinesand chemokine receptor expression ale rapidly regulated for recruitment and maintenance of DC at the inflammatory site. Int-Immunol, 1999, 11(6):979-986.
    66. Forster R, Schubel A, Breitfeld D, et al. CCR7 coordinates the primary immune response by establishing functional microenvittmments in secondary lymphoid organs. Cell, 1999, 99(1):23-33.
    67. Guo J, Wang B, Zhang M, et al. Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor imnmnity. Gene Ther, 2002, 9(12):793-803.
    68. Guo J, Zhang M, Wang B, et a1. Fractalkine transgene induces T cell dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int-J-Cancer, 2003, 103(2):212-220.
    69. John S M, Paola C R, George V, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transplant Immunology, 2003, 11:245-258.
    70. Pierce G E. Allogeneic versus semiallogeneic F1 bone marrow transplantation into sublethally irradiated MHC-disparate hosts.Transplantation, 1990, 49(1):138-144.
    71. Zheng Z, Narita M, Takahashi M, et al.Induction of T cell anergy by the treatment with IL-10-treated dendritic cells. Comp Immunol Microbiol Infect Dis, 2004, 27(2): 93-103.
    72. Masatoshi E, Holger H, Katsuhiko K, et al. Promotion of Skin Graft Tolerance Across MHC Barriers by Mobilization of Dendritic Cells in Donor Hemopoietic Cell Infusions. J Immunol, 2002, 169: 2390-2396.
    73. Mia L, Yair R. Induction of prolonged tolerance to third-party skin grafts following fully allogeneic bone marrow transolantation in mice. Transplantation, 1993, 55(3):633-638.
    74. Chiu T, Burd A.“Xenograft”dressing in the treatment of burns.Clin Dermatol, 2005, 23(4): 419-423.
    75. DeSanti L. Pathophysiology and current management of burn injury.Adv Skin Wound Care, 2005, 18(6): 323-332.
    76. Dennis C. Spray-on skin: hard graft. Nature, 2005, 436(7048): 166-167.
    77. Gore D C.Utility of acellular allograft dermis in the care of elderly burn patients.J Surg Res, 2005, 125(1): 37-41.
    78. Dvorankova B, Broz L, Pafcuga I, et al.The role of skin bank in the treatment of severely burnt patients. ACTX Chir Plast, 2004, 46(2): 51-55.
    79. Garrison J L, Thomas F, Cunningham P. Improved large burn therapy with reduced mortality following an associated septic challenge by early excision and skin allografting using donor-specific tolerance. Transplant Proc, 1995, 27(1): 1416-1418.
    80. Demir Y, Ozmen S, Klimczak A, et al. Stra tegies to develop chimerism in vascularized skin allografts across MHC barrier. Microsurgery,2005, 25(5): 415-422.
    81. Chen B G, Liu Z, Wu Y. Specific tolerance induction of allo-K(b)-skin grafts by FK506 in the CD8-depleted H-2(k) recipients required low amounts of K(b)-antigen. Transpl Immunol, 2005, 15(1): 9-16.
    82. Zielinski A, Nazarewski S, Bogetti D, et al. Simultaneous pancreas-kidney transplant from living related donor: a single-center experience. Transplantation, 2003, 76(3): 547 -552.
    83. Debray D, Furlan V, Baudouin V, et al. Therapy for acute rejection in pediatric organ transplant recipients. Paediatr Drugs, 2003, 5(2): 81-93.
    84.吴军.器官移植的困难与对策.第三军医大学学报, 2003, 25(21):1875-1877.
    85. Enk AH. Dendritic cells in tolerance induction. Immunol Lett, 2005, 99(1): 8-11.
    86. McIntire RH, Hunt J S.Antigen presenting cells and HLA-G--a review. Placenta, 2005, 26(Suppl A: S104-S109.
    87. Kubach J, Becker C, Schmitt E, et al. Dendritic cells: sentinels of immunity and tolerance. Int J Hematol. 2005, 81(3): 197-203.
    88. Lanzavecchia A, Sallusto F. Lead and follow: the dance of the dendritic cell and T cell. Nat Immunol, 2004, 5(12): 1201-1202.
    89. Rao A S, Phil D, Fontes P, et al.An attempt to induce tolerance with infusion of donor bone marrow in organ allograft recipients. Adv Exp Med Biol, 1997, 417:269-274.
    90. Fumin Fu, Youping Li. Costimulatory molecule-deficient dendritic cell progenitors (MHC classⅡ+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmuno -suppressed recipients. Transplantation, 1996, 62(5):659-665.
    91. Ricordi C, Socci C. Swine islet isolation and transplantation. Horm Metab Res Suppl,1990, 25: 26-30.
    92. den Dulk M, Bishop G A.Immune mechanisms contributing to spontaneous acceptance of liver transplants in rodents and their potential for clinical transplantation. Arch Immunol Ther Exp (Warsz), 2003, 51(1): 29-44.
    93. Zhu M, Wei M F, Liu F, et al. Interleukin-10 modified dendritic cells induce allo -hyporesponsiveness and prolong small intestine allograft survival. World J Gastroen–terol, 2003, 9(11): 2509-2512.
    94. Lespagnard L, Mettens P, De Smedt T, et al. The immune response induced in vivo by dendritic cells is dependent on B7-1 or B7-2, but the inhibition of both signals does not lead to tolerance. Int Immunol, 1998, 10(3): 295-304.
    95. Lamioni A, Parisi F, Isacchi G, et al. The immunological effects of extracorporeal photopheresis unraveled: induction of tolerogenic dendritic cells in vitro and regulatory T cells in vivo. Transplantation, 2005, 79(7): 846-850.
    96. Steinman RM, Inaba K, Turley S, et al. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. Hum Immunol, 1999, 60(7): 562-567.
    97. Adams S, O'Neill D W, Bhardwaj N. Recent advances in dendritic cell biology. J Clin Immunol, 2005, 25(2): 87-98.
    98. Kwang W H, William B S. Cutting edge: targeted ligation of CTLA-4 in vivo by membrane-bound antibody prevents rejection of allogenic cells. J Immunol, 2002, 169:633-637.
    1. Banchereau J, Steinman R M. Dendritic cells and the control of immunity. Nature, 1998, 392:245–252.
    2. Yamamura M, Uyemura K,Deans RJ, et al. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science, 1991, 254(5029):277–279.
    3. Itano AA, McSorley S J, Reinhardt R L, et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cellmediated immunity. Immunity, 2003, 19(1):47–57.
    4. Jego G, Pascual V, Palucka A K, et al. Dendritic cells control B cell growth and differentiation. Curr Dir Autoimmun, 2005, 8:124–139.
    5. Qi H, Egen J G, Huang AY, et al. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science, 2006, 312:1672–1676.
    6. Lucas M, Schachterle W, Oberle K, et al. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity, 2007, 26:503–517.
    7. Steinman R M, Hawiger D, Nussenzweig M C. Tolerogenic dendritic cells. Annu Rev Immunol, 2003, 21:685–711.
    8. Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science, 2001, 293(5528):253–256.
    9. Trombetta E S, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol, 2005, 23:975–1028.
    10. Piqueras B, Connolly J, Freitas H, et al. Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood, 2006, 107:2613–2618.
    11. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124:783–801.
    12. Flacher V, Bouschbacher M, Verronèse E, et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol, 2006, 177(11):7959–7967.
    13. van der Aar A M, Sylva-Steenland R M, Bos J D, et al. Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol, 2007, 178(4):1986–1990.
    14. Napolitani G, Rinaldi A, Bertoni F, et al. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol, 2005, 6: 769–776.
    15. Geijtenbeek T B, van Vliet S J, Engering A, et al. Self- and nonselfrecognition by C-type lectins on dendritic cells. Annu Rev Immunol, 2004, 22:33–54.
    16. Bozzacco L, Trumpfheller C, Siegal F P, et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci USA, 2007, 104(4):1289–1294.
    17. van Gisbergen K P, Sanchez-Hernandez M, Geijtenbeek T B, et al. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med, 2005, 201:1281–1292.
    18. Kanazawa N. Dendritic cell immunoreceptors: C-type lectin receptors for pattern-recognition and signaling on antigen-presenting cells. J Dermatol Sci, 2007, 45(2):77–86.
    19. Brown G D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol, 2006, 6(1):33–43.
    20. Rogers N C, Slack E C, Edwards A D, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity, 2005, 22(4):507–517.
    21. Gross O, Gewies A, Finger K, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature, 2006, 442(7103):651–656.
    22. Ting J P, Davis B K. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol, 2005, 23:387–414.
    23. Delbridge L M, O’Riordan M X. Innate recognition of intracellular bacteria. Curr Opin Immunol, 2007, 19:10–16.
    24. Mariathasan S, Monack D M. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol, 2007, 7:31–40.
    25. Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440:237–241.
    26. Fritz J H, Girardin S E, Fitting C, et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2- activating agonists. Eur JImmunol, 2005, 35(8):2459–2470.
    27. Kummer J A, Broekhuizen R, Everett H, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues, suggesting a site-specific role in the inflammatory response. J Histochem Cytochem, 2007, 55(5):443–452.
    28. Lotze M T, Tracey K J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol, 2005, 5:331–342.
    29. Rock K L, Hearn A, Chen C J, et al. Natural endogenous adjuvants. Springer Semin Immunopathol, 2005, 26:231–246.
    30. So A, De Smedt T, Revaz S, et al.A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther, 2007, 9(2):R28.
    31. Liu Y J. IPC: professional type 1 interferonproducing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol, 2005, 23:275–306.
    32. Ludwig I S, Geijtenbeek T B, van Kooyk Y. Two way communication between neutrophils and dendritic cells. Curr Opin Pharmacol, 2006, 6:408–413.
    33. Munz C, Steinman R M, Fujii S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med, 2005, 202: 203–207.
    34. Mandelboim O, Lieberman N, Lev M, et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature, 2001, 409(6823):1055–1060.
    35. Chang D H, Osman K, Connolly J, et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med, 2005, 201(9):1503–1517.
    36. Conti L, Casetti R, Cardone M, et al. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and inflammatory cytokines. J Immunol, 2005, 174(1):252–260.
    37. Dubsky P, Saito H, Leogier M, et al. IL-15-induced human DC efficiently prime melanoma-specific na?ve CD8t T cells to differentiate into CTL. Eur J Immunol, 2007, 37(6):1678–1690.
    38. Uhlig H H, McKenzie B S, Hue S, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity, 2006, 25(2):309–318.
    39. Kastelein R A, Hunter C A, Cua D J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol, 2007, 25:221–242.
    40. Langrish CL, Chen Y, Blumenschein W M, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 2005, 201(2): 233–240.
    41. Harrington L E, Hatton R D, Mangan P R, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005, 6(11):1123–1132.
    42. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006, 441(7090):235–238.
    43. Batten M, Li J, Yi S, et al. Interleukin 27 limitsautoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol, 2006, 7(9):929–936.
    44. Stumhofer J S, Laurence A, Wilson E H, et al. Interleukin 27 negatively regulates the development of interleukin 17- producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol, 2006, 7(9):937–945.
    45. Greenwald R J, Freeman G J, Sharpe A H. The B7 family revisited. Annu Rev Immunol, 2005, 23:515–548.
    46. Ito T, Yang M, Wang Y H, et al. Plasmacytoid dendritic cells prime IL-10 producing T regulatory cells by inducible costimulator ligand. J Exp Med, 2007, 204(1):105–115.
    47. Day C L, Kaufmann D E, Kiepiela P, et al. PD-1 expression on HIV specific T cells is associated with T-cell exhaustion and disease progression. Nature, 2006, 443(7109):350–354.
    48. Trautmann L, Janbazian L, Chomont N, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med, 2006, 12(10):1198–1202.
    49. Ito T, Wang Y H, Duramad O, et al. OX40 ligand shuts down IL-10- producing regulatory T cells. Proc Natl Acad Sci USA, 2006, 103(35):13138–13143.
    50. Watanabe N, Wang Y H, Lee H K, et al. Hassall’s corpuscles instruct dendritic cells to induce CD4tCD25t regulatory T cells in human thymus. Nature, 2005, 436:1181–1185.
    51. Kretschmer K, Apostolou I, Hawiger D, et al. Inducing and expanding regulatory T cellpopulations by foreign antigen. Nat Immunol, 2005, 6:1219–1227.
    52. Banerjee D K, Dhodapkar M V, Matayeva E, et al. Expansion of FOXP3 high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood, 2006, 108:2655–2661.
    53. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and nonself. Nat Immunol, 2005, 6(4):345–352.
    54. de Graaff P M, de-Jong E C, van-Capel T M, et al. Respiratory syncytial virus infection of monocyte-derived dendritic cells decreases their capacity to activate CD4 T cells. J Immunol, 2005, 175(9):5904– 5911.
    55. Kissenpfennig A, Henri S, Dubois B, et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity, 2005, 22(5):643–654.
    56. Dudziak D, Kamphorst A O, Heidkamp G F, et al. Differential antigen processing by dendritic cell subsets in vivo. Science, 2007, 315(5808):107–111.
    57. Palucka A K, Blanck J P, Bennett L, et al. Cross-regulation of TNF and IFN-αin autoimmune diseases. Proc Natl Acad Sci USA, 2005, 102:3372– 3377.
    58. Chan C W, Crafton E, Fan H N, et al. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med, 2006, 12(2):207–213.
    59. Taieb J, Chaput N, Ménard C, et al.A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med, 2006, 12(2):214–219.
    60. Delamarre L, Pack M, Chang H, et al. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science, 2005, 307:1630–1634.
    61. Bergtold A, Desai D D, Gavhane A, et al. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity, 2005, 23:503–514.
    62. Sakurai D, Hase H, Kanno Y, et al. TACI regulates IgA production by APRIL in collaboration with HSPG.. Blood, 2007, 109:2961–2967.
    63. Sigmundsdottir H, Pan J, Debes G F, et al. DCs metabolize sunlight-induced vitamin D3 to‘program’T cell attraction to the epidermal chemokine CCL27. Nat Immunol, 2007, 8(3):285–293.
    64. Lowes M A, Chamian F, Abello M V, et al. Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab(anti-CD11a). Proc Natl Acad Sci USA, 2005, 102(52):19057–19062.
    65. Mathian A, Weinberg A, Gallegos M, et al. IFN-αinduces early lethal lupus in preautoimmune (New Zealand Black x New Zealand White) F1 but not in BALB/c mice. J Immunol, 2005, 174(5):2499–2506.
    66. Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity, 2006, 25:383–392.
    67. Pisitkun P, Deane J A, Difilippantonio M J, et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science, 2006, 312(5780): 1669–1672.
    68. Savarese E, Chae O W, Trowitzsch S, et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood, 2006, 107(8):3229–3234.
    69. Guiducci C, Ott G, Chan J H, et al. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med, 2006, 203(8):1999–2008.
    70. Boruchov AM, Heller G, Veri M C, et al. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J Clin Invest, 2005, 115:2914–2923.
    71. Yurasov S, Tiller T, Tsuiji M, et al. Persistent expression of autoantibodies in SLE patients in remission. J Exp Med, 2006, 203(10):2255–2261.
    72. Isenberg D, Rahman A. Systemic lupus erythematosus -2005 annus mirabilis? Nat Clin Pract Rheumatol, 2006, 2(3):145–152.
    73. Nestle F O, Conrad C, Tun-Kyi A, et al. Plasmacytoid predendritic cells initiate psoriasis through interferonalpha production. J Exp Med, 2005, 202(1):135–143.
    74. Gottenberg J E, Cagnard N, Lucchesi C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren’s syndrome. Proc Natl Acad Sci USA, 2006, 103(8):2770–2775.
    75. Verginis P, Li H S, Carayanniotis G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin specific CD4+CD25+ T cells. J Immunol, 2005, 174:7433–7439.
    76. Tarbell K V, Petit L, Zuo X, et al. Dendritic cell expanded, islet specific CD4+CD25+CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. JExp Med, 2007, 204(1):191–201.
    77. Kim J M, Rasmussen J P, Rudensky A Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol, 2007, 8:191–197.
    78. Fujita S, Seino K, Sato K, et al. Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood, 2006, 107(9):3656–3664.
    79. Liu Y J, Soumelis V, Watanabe N, et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol, 2007, 25:193–219.
    80. Wang Y H, Ito T, Wang Y H, et al. Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity, 2006, 24(6):827–838.
    81. Bogiatzi S I, Fernandez I, Bichet J C, et al. Cutting edge: proinflammatory and Th2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J Immunol, 2007, 178(6):3373–3377.
    82. Idzko M, Hammad H, van-Nimwegen M, et al. Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest, 2006, 116(11):2935–2944.
    83. Idzko M, Hammad H, van-Nimwegen M, et al. Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function. J Clin Invest, 2007, 117(2):464–472.
    84. Hammad H, Kool M, Soullie T, et al. Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J Exp Med, 2007, 204(2):357–367.
    85. Finlay B B, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell, 2006, 124:767–782.
    86. de Witte L, Nabatov A, Pion M, et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med, 2007, 13(3):367–371.
    87. Rabinovich G A, Gabrilovich D, Sotomayor E M. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol, 2007, 25:267–296.
    88. Aarnoudse C A, Garcia Vallejo J J, Saeland E, et al. Recognition of tumor glycans by antigen-presenting cells. Curr Opin Immunol, 2006, 18:105–111.
    89. Aspord C, Pedroza-Gonzalez A, Gallegos M, et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4t T cells that facilitate tumor development. J Exp Med, 2007, 204(5):1037– 1047.
    90. Palucka A K, Ueno H, Connolly J, et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J Immunother, 2006, 29(5):545–557.
    91. Schadendorf D, Ugurel S, Schuler-Thurner B, et al. Dacarbazine (DTIC) versus vaccination with autologous peptidepulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol, 2006, 17(4):563–570.
    92. Peggs K S, Quezada S A, Korman A J, et al. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol, 2006, 18:206–213.
    93. Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol, 2005, 23:23–68.
    94. Spisek R, Charalambous A, Mazumder A, et al. Bortezomib enhances dendritic cell (DC) mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood, 2007, 109(11):4839–4845.
    95. Kumar K A, Sano G, Boscardin S, et al. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature, 2006, 444(7121): 937–940.
    96. Soares H, Waechter H, Glaichenhaus N, et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70 dependent mechanism in vivo. J Exp Med, 2007, 204(5):1095–1106.
    97. Schjetne K W, Fredriksen A B, Bogen B. Delivery of antigen to CD40 induces protective immune responses against tumors. J Immunol, 2007, 178:4169–4176.
    98. Vingert B, Adotevi O, Patin D, et al. The Shiga toxin B-subunit targets antigen in vivo to dendritic cells and elicits anti-tumor immunity. Eur J Immunol, 2006, 36(5):1124–1135.
    Bai, Y., Liu, J., Wang, Y., Honig, S., Qin, L., Boros, P., and Bromberg, J.S. 2002. L-selectin-dependent lymphoid occupancy is required to induce alloantigen-specific tolerance. J Immunol 168(4): 1579-1589.
    Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K. 2000. Immunobiology of dendritic cells. Annu Rev Immunol 18: 767-811.
    Chen, C., Qu, Q.-X., Huang, J.-a., Zhu, Y.-B., Ge, Y., Wang, Q., and Zhang, X.-G. 2007. Expression of programmed-death receptor ligands 1 and 2 may contribute to the poor stimulatory potential of murine immature dendritic cells. Immunobiology 212(3): 159-165.
    Chen, L. 2004. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4(5): 336-347.
    De Smedt, T., Van Mechelen, M., De Becker, G., Urbain, J., Leo, O., and Moser, M. 1997. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 27(5): 1229-1235.
    de Waal Malefyt, R., Haanen, J., Spits, H., Roncarolo, M.G., te Velde, A., Figdor, C., Johnson, K., Kastelein, R., Yssel, H., and de Vries, J.E. 1991. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174(4): 915-924.
    Dieu-Nosjean, M.C., Vicari, A., Lebecque, S., and Caux, C. 1999. Regulation of dendritic cell trafficking: a process that involves the participation of selective chemokines. J Leukoc Biol 66(2): 252-262.
    Ding, L., Linsley, P.S., Huang, L.Y., Germain, R.N., and Shevach, E.M. 1993. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol 151(3): 1224-1234.
    Flores-Romo, L. 2001. In vivo maturation and migration of dendritic cells. Immunology102(3): 255-262.
    Forster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Muller, I., Wolf, E., and Lipp, M. 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99(1): 23-33.
    Garrod, K.R., Chang, C.K., Liu, F.-C., Brennan, T.V., Foster, R.D., and Kang, S.-M. 2006. Targeted lymphoid homing of dendritic cells is required for prolongation of allograft survival. J Immunol 177(2): 863-868.
    Hansson, M., Lundgren, A., Elgbratt, K., Quiding-Jarbrink, M., Svennerholm, A.-M., and Johansson, E.-L. 2006. Dendritic cells express CCR7 and migrate in response to CCL19 (MIP-3beta) after exposure to Helicobacter pylori. Microbes Infect 8(3): 841-850.
    Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., and Enk, A.H. 2000. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192(9): 1213-1222.
    Jonuleit, H., Schmitt, E., Steinbrink, K., and Enk, A.H. 2001. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol 22(7): 394-400.
    Lakkis, F.G., Arakelov, A., Konieczny, B.T., and Inoue, Y. 2000. Immunologic 'ignorance' of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat Med 6(6): 686-688.
    Mellman, I., and Steinman, R.M. 2001. Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3): 255-258.
    Nishimura, N., Nishioka, Y., Shinohara, T., Ogawa, H., Yamamoto, S., Tani, K., and Sone, S. 2001. Novel centrifugal method for simple and highly efficient adenovirus-mediated green fluorescence protein gene transduction into human monocyte-derived dendritic cells. J Immunol Methods 253(1-2): 113-124.
    Parlato, S., Santini, S.M., Lapenta, C., Di Pucchio, T., Logozzi, M., Spada, M., Giammarioli, A.M., Malorni, W., Fais, S., and Belardelli, F. 2001. Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood 98(10): 3022-3029.
    Sallusto, F., Schaerli, P., Loetscher, P., Schaniel, C., Lenig, D., Mackay, C.R., Qin, S.,and Lanzavecchia, A. 1998. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28(9): 2760-2769.
    Sambrook, J., Russell, D.W. 2001.Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York.
    Sozzani, S., Allavena, P., D'Amico, G., Luini, W., Bianchi, G., Kataura, M., Imai, T., Yoshie, O., Bonecchi, R., and Mantovani, A. 1998. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161(3): 1083-1086.
    Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J., and Enk, A.H. 1997. Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159(10): 4772-4780.
    Takayama, T., Morelli, A.E., Onai, N., Hirao, M., Matsushima, K., Tahara, H., and Thomson, A.W. 2001. Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate C-C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J Immunol 166(12): 7136-7143.
    Winzler, C., Rovere, P., Rescigno, M., Granucci, F., Penna, G., Adorini, L., Zimmermann, V.S., Davoust, J., and Ricciardi-Castagnoli, P. 1997. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 185(2): 317-328.
    Young, J.W., Szabolcs, P., and Moore, M.A. 1995. Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J Exp Med 182(4): 1111-1119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700