缺氧早期心肌细胞微管结构变化对糖酵解的影响及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     缺氧是许多疾病过程中重要的病理生理现象之一,缺氧诱导因子(HIF)-1α在缺氧细胞的能量代谢中有着重要作用。本研究旨在明确缺氧早期心肌细胞微管结构破坏是否通过调控HIF-1α来影响细胞糖酵解供能。
     材料和方法
     1、建立体外培养新生大鼠心肌细胞模型。分别采用常氧、缺氧、以及常氧和缺氧下微管解聚剂和不同浓度微管稳定剂处理心肌细胞;建立心肌细胞高表达微管相关蛋白4和RNA干扰后低表达α-微管蛋白模型。
     2、激光扫描共聚焦显微镜观察培养新生大鼠心肌细胞α-微管结构和含量变化,胎盘蓝染色观察细胞存活率,CCK法观察细胞活力,化学比色法和高效液相色谱法分别观察心肌细胞糖酵解关键酶(PK、HK和PFK)活性、肌酸激酶(CK)、乳酸生成,LDH漏出及ATP/ADP生成。
     3、免疫印记法及激光共聚焦显微镜观察心肌细胞微管结构改变后HIF-1α蛋白含量和细胞内分布变化,实时定量PCR法检测心肌细胞HIF-1αmRNA表达变化。
     结果
     1、缺氧后早期,体外培养新生大鼠心肌细胞微管网状结构破坏,聚合态α-微管蛋白含量减少,心肌细胞的活力降低,死亡率升高;稳定微管网状结构可以使细胞存活率和活性升高。
     2、缺氧后早期,体外培养新生大鼠心肌细胞微管网状结构破坏引起糖酵解关键酶(PK、HK和PFK)活性降低,代谢终产物乳酸生成减少,细胞ATP生成减少;而稳定微管网状结构可以在缺氧早期一段时间内升高PK、HK和PFK的活性,促进细胞能量生成。
     3、缺氧后早期,体外培养新生大鼠心肌细胞微管网状结构破坏使HIF-1α蛋白表达及入核表达均减少。微管稳定剂和高表达微管相关蛋白4可稳定缺氧心肌细胞微管网状结构,上调HIF-1α蛋白含量及入核表达;微管解聚剂和下调微管蛋白表达则可加重缺氧心肌细胞微管结构破坏,HIF-1α蛋白含量及入核表达减少更明显。而且HIF-1α蛋白表达的增加发生在转录后水平。
     结论
     微管结构变化通过调节HIF-1α可影响缺氧心肌细胞早期糖酵解。稳定微管结构可促进HIF-1α入核表达并提高HIF-1α蛋白含量,提高厌氧糖酵解关键酶活性和能量生成,表明微管结构变化通过调节HIF-1α影响缺氧心肌细胞早期糖酵解,这为临床改善缺氧早期细胞能量代谢提供了潜在的治疗靶点。
Aims Hypoxia is one of the important pathophysiolgical phenomena in many disease processes,and hypoxia inducible factor(HIF)-1αis a key regulator of anaerobic energy metabolism in hypoxic cells. The present study is designed to investigate that cytoskeleton change affects glycolysis under hypoxia and breakdown of microtubular structures influences glycolysis in early hypoxic cardiomyocytes through regulating HIF-1αactivity and distribution in cells.
     Materials and methods
     1. To establish neonatal rat cardiomyocytes cultured model. Neonatal rat cardiomyocytes were cultured and treated with normoxia, hypoxia, a microtubule stabilizing agent or a microtubule depolymerizing agent which were used to establish the model for high expression of microtubule-associated protein 4 and the model for RNA interference-caused low expression of microtubulin.
     2. The microtubular structural changes and intracellular distribution of HIF-1αprotein were observed under laser confocal scanning microscopy. The cell survival was determined by Trypan blue stain. The activity of key glycolytic enzymes, creatine kinase, lactic acid, viability and energy production of cardiomyocyte were determined by colorimetry and high-performance liquid chromatography.
     3. The content of HIF-1αprotein following microtubular structural change was examined by Western blotting, and HIF-1αmRNA expression was determined by real-time PCR assay.
     Results
     1. During the earlier time of hypoxia, microtubular structures were broken in cardiomyocytes. Then the viability of cardiomyocytes and myocardial cell survival decreased. The stablilization of microtubule enhanced the viability of cardiomyocytes and myocardial cell survival.
     2. Disorganization of microtubular structures inhibited the activity of key glycolytic enzymes, and contents of lactic acid and ATP decreased during the earlier time of hypoxia. The microtubule stabilizing agent stabilized the reticular microtubular structures in hypoxic cardiomyocytes, increased the activity of key glycolytic enzymes, ameliorated cell energy supply and viability,
     3. During the earlier time of hypoxia, disorganization of microtubule structures inhibited the expression of HIF-1αand HIF-1αendonuclear aggregation. The microtubule stabilizing agent and high expression of microtubule-associated protein 4 upregulated HIF-1αprotein expression and endonuclear aggregation. In contrast, the microtubule -depolymerizing agent or knock-down of microtubulin expression aggravated breakdown of microtubular structures of hypoxic cardiomyocytes, further decreased HIF-1αprotein contents and endonuclear aggregation.
     Conclusions Microtubular structural changes influence glycolysis of early hypoxic cardiomyocytes by regulating HIF-1αactivity. Stabilizing microtubular structures increases endonuclear and total HIF-1αexpression, the activity of key glycolytic enzymes and energy supply. These findings provide potential therapeutic targets for ameliorating cell energy metabolism during early hypoxia.
引文
1. Yuesheng Huang, Zhiqing Li, Zongcheng Yang. Roles of ischemia and hypoxia and the molecular pathogenesis of post-burn cardiac shock. Burns 2003; 29:828-833.
    2. Yuesheng Huang, Z. Jiaping, L. Xiaohui. A serial studies on post-burn shock heart. Burns 2007; 33: S14-S15
    3.黄跃生.重视缺血缺氧与细胞因子在“休克心”发生机制中的作用.中华烧伤杂志,2002,18:261-262.
    4.黄跃生.深入研究烧伤休克及缺血缺氧损害的细胞分子机制.中华烧伤杂志,2005,21(5),324-325.
    5.李晓东,黄跃生,张东霞.机械牵张对缺血缺氧离体培养心肌细胞形态的影响,2004,36:8206-8208.
    6.郑霁,张西联,周军利,等.微管解聚与心肌细胞缺氧性损害的实验研究.第三军医大学学报,2006,28(7);617-620.
    7. Lionel H. Opie. The heart physiology, from cell to circulation, Third Edition. 1998; Published by arrangement with Lippincott Williams & Wilkins Inc., U.S.A..
    8. Liang Wanyi, Yang Zongcheng, Huang Yuesheng. Calcium induced the damage of myocardial mitochondrial respiratory function in the early stage after severe burns. Burns 2002; 28:134-136.
    9. DANG Yong-ming, HUANG Yue-sheng, ZHOU Jun-li, ZHANG Jia-ping, YAN Hong, ZHANG Ming. An experimental study on the influence of hypoxia induction factor-1αon the glycolysis of the rat myocardial cell under hypoxic condition。Chinese Journal of Burns 2005;21: 339-342.
    10. DANG Yong-ming, HUANG Yue-sheng, CHEN Li-feng.Studies on the changes in expression of hypoxia induction factor-1αin myocardial tissue in severely scalded rats during early postburn stage.Chinese Journal of Burns 2005;19: 263-266
    11. Yuesheng Huang, Jun Zheng, Pengju Fan, Xiaorong Zhang. Transfection of antisense p38alpha gene ameliorates myocardial cell injury mediated by hypoxia and burn serum. Burns 2007; 33: 599-605.
    12. Jia-Ping Zhang, Wan-Yi Liang, Zhong-Hua Luo, Zong-Cheng Yang, Hsiao-Chang Chan, Yue-Sheng Huang. Involvement of P38 MAP kinase in burn-induced degradation ofmembrane phospholipids and upregulation of cPLA2 in cardiac myoctes. Shock 2007; 28: 86-93.
    13.房亚东,党永明,郑霁,张西联,张家平,陈渝,张琼,黄跃生(通讯作者)。大鼠MAP4重组腺病毒载体的构建及在细胞中的表达鉴定.第三军医大学学报,2006,28(9):811~813.
    14. Elisabeth Ehler, and Jean-Claude Perriard. Cardiomyocyte Cytoskeleton and Myofibrillogenesis in Healthy and Diseased Heart. Heart Failure Reviews. 2000 5, 259-269.
    15. Asangi R.K. Kumarapeli, XuejunWang. Genetic modification of the heart: chaperones and the cytoskeleton. Journal of Molecular and Cellular Cardiology 2004; 37:1097–1109.
    16. Paul A. O'Connell, Devanand M. Pinto, Ken A. Chisholm, Thomas H. MacRae. Characterization of the microtubule proteome during post-diapause development of Artemia franciscana. Biochimica et Biophysica Acta 2006;176:4920–928.
    17. David Vandroux, Céline Schaeffer, Cindy Tissier, Alain Lalande,Sandrine Bès, Luc Rochette, et al. Microtubule alteration is an early cellular reaction to the metabolic challenge in ischemic cardiomyocytes. Molecular and Cellular Biochemistry 2004;258: 99–108.
    18. Young LH, Renfu Y, Russell R, Hu X, Caplan M, Ren J, et al. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation. 1997;95:415-22.
    19. Lea Glass-Marmor, Rivka Beitner. Taxol paclitaxel induces a detachment of phosphofructokinase from cytoskeleton of melanoma cells and decreases the levels of glucose 1,6-bisphosphate, fructose 1,6-bisphosphate and ATP. European Journal of Pharmacology 1999;370:195–199.
    20. Nicola J. Mabjeesh, Daniel Escuin, Theresa M. LaVallee, Victor S. Pribluda, Glenn M. Swartz,Michelle S. Johnson. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003; 3 :363-375.
    21. Daniel Escuin, Erik R. Kline, Paraskevi Giannakakou. Both Microtubule-Stabilizing and Microtubule-Destabilizing Drugs Inhibit Hypoxia-Inducible Factor-1A Accumulation and Activity by Disrupting Microtubule Function. Cancer Res 2005; 65:9021-9028.
    22.司徒镇强.细胞培养.2004:266-267.
    23.王达理,曾爱萍,南柏松.心肌细胞培养方法和活细胞噻唑兰法测定.第四军医大学吉林军医学院学报,1999,4:191-193.
    24. Daniel R. Webster. Regulation of Post-translationally Modified Microtubule Populations During Neonatal Cardiac Development. J Mol Cell Cardiol 1997;29, 1747–1761.
    25. Mohammad Rubayet Hasan, Sayaka Koikawa, Susumu Kotani,Shigeaki Miyamoto, Hiroyuki Nakagawa. Ferritin forms dynamic oligomers to associate with microtubules in vivo: Implication for the role of microtubules in iron metabolism. Experimental Cell Research 2006; 312 :1950– 1960.
    26. Iku Nemotoa, Kazuhisa Kawamura. Cytomagnetometric study of interactions between microfilaments and microtubules by measuring the energy imparted to magnetic particles within the cells. Journal of Magnetism and Magnetic Materials 2005; 293:358–364.
    27. Daniel R. Webster. Neonatal Rat Cardiomyocytes Possess a Large Population of Stable Microtubules that is Enriched in Post-Translationally Modified Subunits. J Mol Cell Cardiol 1997;29: 2813–2824.
    28. Jeffrey M. Rosenstein.Diminished expression of microtubule -associated protein (MAP-2) andβ-tubulin as a putative marker for ischemic injury in neocortical transplants. Cell Transplantation 1995;4:83-91.
    29. Giuseppina Raspaglio, Flavia Filippetti, Silvia Prislei, Roberta Penci, Ilaria De Maria, Lucia Cicchillitti ,et al. Hypoxia induces class III beta-tubulin gene expression by HIF-1αbinding to its 3' flanking region. Gene 2008;409:100–108.
    30. Sato H, Nagai T, Kuppuswamy D, Narishige T, Koide M, Menick DR. Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol 1997;139:963–73.
    31. Susan L. Mooberry.Mechanism of action of 2-methoxyestradiol: new developments. Drug Resistance Updates 2003;6: 355-361.
    32. Emanuela Bonfoco, Sanda Ceccatelli, Luigi Manzo, Pierluigi Nicotera. Colchicine induces apoptosis in cerebellar granule cells. Experimental Cell research 1995; 218:189-200.
    33. Purohit, A. Singh, M. W. Ghilchik, M. J. Reed. Inhibition of tumor necrosis factor a-stimulated aromatase activity by microtubule-stabilizing agents, paclitaxel and 2-methoxyestradiol. biochemical and biophysical research communications 1999;261: 214–217.
    34. Keun-Ho Lee, Eun-Kyoung Yim, Chan-Joo Kim, Sung-Eun Namkoong, Soo-Jong Um, Jong-Sup Park. Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecologic Oncology 2005;98: 45– 53.
    35. Agneás Mailloux, Karine Grenet, Arnaud Bruneel, Be?ne?dicte Be?ne?teau-Burnat, Michel Vaubourdolle, Bruno Baudin. Anticancer drugs induce necrosis of human endothelial cells involving both oncosis and apoptosis. European Journal of Cell Biology 2001;80:442– 449.
    36. Gilla Lilling and Rivka Beitner. Altered allosteric properties of cytoskeleton-bound phosphofructokinase in muscle from mice with X chromosome-linked muscular dystrophy (mdx). Biochemical Medicine and Metabolic Biology 1991;45: 319-325
    37. Michael J. Napolitano, Daniel H. Shain. Quantitating adenylate nucleotides in diverse organisms. J. Biochem. Biophys. Methods 2005; 63:69–77.
    38. Fernie AR, Carrari F, Sweetlove LJ,Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 2004; 7(3):254-261.
    39. Chenhui Zou, Zhufang Shen. An optimized in vitro assay for screening compounds that stimulate liver cell glucose utilization with low cytotoxicity. Journal of Pharmacological and Toxicological Methods 2007; 120:512-517..
    40. M. Warholm, U. Stenius, A. Stahl, J. Hogberg. Resistance against Ethacrynic Acid in Glutathione Transferase 7-7 (GST-P)-positive Hepatocytes Isolated from Carcinogen-treated Rats: the Role of Cytoskeletal Changes and ATP Depletion. Toxic 1995; 9:937-943.
    41. Masaru Harada, Shotaro Sakisaka, Masao Yoshitake, Masahito Ohishi, Satoshi Itano, Satoshi Shakado. Role of cytoskeleton and acidification of endocytic compartment in asialoglycoprotein metabolism in isolated rat hepatocyte couplets. Hepatology 1995;21:1413-1421.
    42. Ka′roly Liliom, Ga′bor Wa′gner, Ja′nos Kova′, Begon? a Comin, Marta Cascante, Ferenc Orosz, et al. Combined Enhancement of Microtubule Assembly and GlucoseMetabolism in Neuronal Systems in Vitro: Decreased Sensitivity to Copper Toxicity. Biochemical and Biophysical Research Communications 1999; 264:605–610.
    43. K. Warren Volker, Catharine A. Reinitz, Harvey R. Knull. Glycolytic enzymes and assembly of microtubule networksComp. Biochem. Physiol 1995:l12B: 503-514.
    44. A-S. Marsin, L. Bertrand, M.H. Rider, J. Deprez, C. Beauloye, M.F. Vincent, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biology 2000:10:1247–1255.
    45. Kenneth A. Myers, Jerome B. Rattner, Nigel G. Shrive, David A. Hart. Osteoblast-like cells and fluid flow: Cytoskeleton-dependent shear sensitivity. Biochemical and Biophysical Research Communications 2007;364:214–219.
    46. Wang X, Li F, Campbell SE, Gerdes AM. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: II. Cytoskeletal remodeling. J Mol Cell Cardiol 1999;31:319–331.
    47. Tagawa H, Koide M, Sato H, Zile MR, Carabello BA, Cooper 4th G.. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ Res 1998;82:751–761.
    48. Takahashi M, Shiraishi H, Ishibashi Y, Blade KL, McDermott PJ, Menick DR, et al. Phenotypic consequences of beta1-tubulin expression and MAP4 decoration of microtubules in adult cardiocytes. Am J Physiol Heart Circ Physiol 2003;285:H2072–H2083.
    49. Sally A. Lewis, Mary Gwo-shu Lee, and Nicholas J. Cowan. Five mouse tubulin isotypes and their regulated expression during development The Journal of Cell Biology 1985; 101:852-861.
    50.邝勇,黄跃生。微管损伤与缺氧心肌细胞线粒体损害的关系研究。第三军医大学学报2006;28:1547-1549.
    51. Joseph Sambrook, David W.Russell. Molecular Cloning: A Laboratory Mannal, 3rd ed. 2001 by Cold Spring Harbor Laboratory Press.
    52. Klebe, S., Sykes, P. J., Coster, D. J., Krishnan, R. & Williams, K. A. Prolongation of sheep corneal allograft survival by ex vivo transfer of the gene encoding interleukin-10. Transplantation 2001;71:1214–1220.
    53. Skelly, R. H., Wicksteed, B., Antinozzi, P. A. & Rhodes, C. J. Glycerol-stimulatedproinsulin biosynthesis in isolated pancreatic rat islets via adenoviral-induced expression of glycerol kinase is mediated via mitochondrial metabolism. Diabetes 2001;50:1791–1798.
    54. Eykholt, R. L., Mitchell, M. D. & Marvin K. W. Accelerated Titering of Adenoviruses. BioTechniques 2000;28:871–873.
    55. Price, J., Turner, D., Cepko C. Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. U.S.A..1987;84:156–160.
    56. Graham, F. L. & Prevec, L. Manipulation of adenovirus vectors. In Methods inMolecular Biology, Vol. 7: Gene Transfer and Expression Protocols. Ed. Murray, E. J. 1991 by Human Press Inc.
    57. Hoganson, D. K., Ma, J. C., Asato, L., Ong, M., Printz, M. A., Huyghe, B. G.,Sosnowski, B . A. & D’Andrea, M. J. (March 2002) Development of a stable adenoviral vector formulation. p. 43–48.
    58. Wei-Gan Shen, Wan-Xin Peng, Gu Dai, Jian-Feng Xu, Yu Zhang, Chao-Jun Li. Calmodulin is essential for angiogenesis in response to hypoxic stress in endothelial cells. Cell Biology International 2007;31: 126-134.
    59. Monique C.A. Duyndam, Maria P.A. van Berkel, Josephine C. Dorsman,Davy A.P. Rockx, Herbert M. Pinedo, Epie Boven. Cisplatin and doxorubicin repress Vascular Endothelial Growth Factor expression and differentially down-regulate Hypoxia-inducible Factor I activity in human ovarian cancer cells. Biochemical pharmacology 2007;74:191-201.
    60. Kanu Chatterjee, Jianqing Zhang, Norman Honbo, Uschi Simonis, Robin Shaw, Joel S. Karliner. Acute vincristine pretreatment protects adult mouse cardiac myocytes from oxidative stress. Journal of Molecular and Cellular Cardiology. 2007;43:327–336.
    61. Talks KL, Turley H, Gatter KC, et al,The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000;157:411-21.
    62. Hanze J, Eul BG, Savai R, Krick S, RNA interference for HIF-1alpha inhibits its downstream signalling and affects cellular proliferation. Biochem Biophys Res Commun. 2003;312:571-577.
    63. Cho S, Choi YJ, Kim JM, et al. Binding and regulation of HIF-lalpha by a subunit ofthe proteasome complex, PSMA7. FEBS Lett 2001; 498: 62-66.
    64. Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proc Natl Acad Sci U S A, 1995; 92: 5510-5514.
    65. Robert E. Barry, Wilhelm Krek. The von Hippel–Lindau tumour suppressor: a multi-faceted inhibitor of tumourigenesis. Trends in Molecular Medicine 2004;10:466-472.
    66. Ergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 2003;5:64-70.
    67. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for 02 sensing. Science 2001; 292: 464-468.
    1. Patzke Sebastian, Hauge Helena, Sioud Mouldy, et al. Identification of a novel centrosome/microtubule-associated coiled-coil protein involved in cell-cycle progression and spindle organization. Oncogene 2005;24:1159-1173.
    2. Elizabeth A. Schroder, Kimimasa Tobita, Joseph P. Tinney, et al. Microtubule Involvement in the Adaptation to Altered Mechanical Load in Developing Chick Myocardium. Circulation Research 2002;91:353-359.
    3. H. Alexandre, V. Delsinne J. -J. Effect of taxol and okadaic acid on microtubule dynamics in thimerosal-arrested primary mouse oocytes: a confocal study. Biology of the Cell 2003;95:407-414.
    4. Caponigro, Francesco A, Basile Maria, et al. New Drugs in Cancer Therapy. Anti-Cancer Drugs 2005; 16:211-221.
    5. Li Peiling, Liu Meimei, Ni jiang. Taxol mediated apoptosis may involve pathways other than microtubule stabilization. Chinese Journal of Clinical Oncology 2004;31:372-375.
    6. Etienne-Manneville, Sandrine Actin .Microtubules in Cell Motility: Which One is in Control? Traffic 2004;5:470-477.
    7. Webster DR. Regulation of post-translationally modified microtubule populations during neonatal cardiac development. J Mol Coll Cardiol 1997;29:1747-1751.
    8. Wade RH, Chretien D. Cryoelectron microscopy of microtubules. J Struct Biol 1993;110:1-27.
    9. Pommier Yves, Sordet Olivier , Antony Smith,et al. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 2004;23:2934-2949.
    10. HyunJoo Park, MahnWon Kim, Deborah K. Fygenson. Tau-isoform dependent enhancement of taxol mobility through microtubules. Archives of Biochemistry and Biophysics 2008;478: 119–126.
    11. Hyman AA, Chretien D, Arnal I, et al. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(a,)-methylene-diphosphonate.J Cell Biol 1995; 128:117-125.
    12. Mukaiyama T, Sakoh H, Nishimura K, et al. The total synthesis of Taxol. Chem Eur J 1999;45:121-161.
    13. Martin Franssona, Henrik Green. Comparison of two types of population pharmacokinetic model structures of paclitaxel. European journal of pharmaceutical sciences 2008;33:128-137.
    14. David G.I. Kingston. The shape of things to come: Structural and synthetic studies of taxol and related compounds. Phytochemistry 2007;68:1844-1854.
    15. Akehiro Kawashiria, Nobuaki Egashiraa, Yoshinori Itohb. Neurotropin reverses paclitaxel-induced neuropathy withoutaffecting anti-tumour efficacy. European journal of cancer 2009;33:154-163.
    16. Tsing-Fen Ho a,b, Yu-Ta Peng a, Show-Mei Chuang. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in humanbreast carcinoma cell lines. Toxicology and Applied Pharmacology 2009;235: 253-260.
    17. Gerl Robert, Vaux David L. Apoptosis in the development and treatment of cancer. Carcinogenesis 2005;26:263-270.
    18. El-Rayes Basil,Shields Anthony, Zalupski Mark, et al. A Phase II Study of Carboplatin and Paclitaxel in Adenocarcinoma of Unknown Primary. American Journal of Clinical Oncology 2005; 28:152-156.
    19. Castedo Maria, Perfettini Jean-Luc, Roumier Thomas, et al. Cell death by mitotic catastrophe: a molecular definition.Oncogene 2004;23:2825-2837.
    20. Shah Nilay D., Hoffman James M., Vermeulen, Lee C., et al. Projecting future drug expenditures-2003. American Journal of Health-System Pharmacy 2003;60:137-149.
    21. Kenneth M. Wiesen, Shujun Xia, Chia-Ping Huang Yang, et al.Wild-type class I b-tubulin sensitizes Taxol-resistant breast adenocarcinoma cells harboring aβ-tubulin mutation. Cancer Letters 2007;257;227-235.
    22. Ruth A. Entwistlea, Robert D. Winefielda, Travis B. Folanda. The paclitaxel site in tubulin probed by site-directed mutagenesis of baccharomyces cerevisiae b-tubulin. FEBS Letters 2008;582;2467-2470.
    23. Orr George A , Verdier-Pinard Pascal, McDaid Hayley, et al. Mechanisms of Taxol resistance related to microtubules. Oncogene 2003;22:7280-7295.
    24. Isabelle Arnal, Richard H. Wade. How does taxol stabilize microtubules? CurrentBiology 1995;54:900-908.
    25. Gavin Ray H. Synergy of Cytoskeleton Components. Bioscience 1999;49:641-655.
    26. Winder B. S., Strandgaard C. S., Miller M. G. The Role of GTP Binding and Microtubule-Associated Proteins in the Inhibition of Microtubule Assembly by Carbendazim .Toxicological Sciences 2001;59:138-146.
    27. Yanru Wang,Roger Duncan, David K. Ann, et al.Identification of a Novel Taxol-Sensitive Kinase Activity Associated with the Cytoskeleton. Biochemical and Biophysical Research Communications 2000;277: 525–530.
    28. Lea Glass-Marmor, Rivka Beitner. Taxol paclitaxel induces a detachment of phosphofructokinase from cytoskeleton of melanoma cells and decreases the levels of glucose1,6-bisphosphate, fructose 1,6-bisphosphate and ATP. European Journal of Pharmacology 1999;370:195–199.
    29. Zile MR,Green GR,Schuyler GT, et al.Cardiocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy. J Am Coll Cardiol 2001;37:1080-1084.
    30. Ingber Donald E. Mechanical Signaling and the Cellular Response to Extracellular Matrix in Angiogenesis and Cardiovascular Physiology. Circulation Research 2002;91:877-887.
    31. Kevin Kit Parker, L. Katherine Taylor, Bruce Atkinson. The effects of tubulin-binding agents on stretch-induced ventricular arrhythmias. European Journal of Pharmacology 2001;417:131–140.
    32. Christian Herdeg, Martin Oberhoff, Andreas Baumbach. Local Paclitaxel Delivery for the Prevention of Restenosis: Biological Effects and Efficacy In Vivo.Journal of the American College of Cardiology 2000;35:1969-1976.
    33. Skobel E. Kammermeier H. Relation between enzyme release and irreversible cell injury of the heart under the influence of cytoskeleton modulating agents. Biochimica et Biophysica Acta 1997;1362:128-134.
    1. Yuesheng Huang, Zhiqing Li, Zongcheng Yang. Roles of ischemia and hypoxia and the molecular pathogenesis of post-burn cardiac shock. Burns. 2003; 29:828-833.
    2. Yuesheng Huang, Z. Jiaping, L. Xiaohui. A serial studies on post-burn shock heart. Burns. 2007; 33: S14-S15.
    3. DANG Yong-ming, HUANG Yue-sheng, ZHOU Jun-li, ZHANG Jia-ping, YAN Hong, ZHANG Ming. An experimental study on the influence of hypoxia induction factor-1αon the glycolysis of the rat myocardial cell under hypoxic condition. Chinese Journal of Burns. 2005;21: 339-342.
    4. Jia-Ping Zhang, Wan-Yi Liang, Zhong-Hua Luo, Zong-Cheng Yang, Hsiao-Chang Chan, Yue-Sheng Huang. Involvement of P38 MAP kinase in burn-induced degradation of membrane phospholipids and upregulation of cPLA2 in cardiac myoctes. Shock. 2007; 28: 86-93.
    5. Elisabeth Ehler, Jean-Claude Perriard. Cardiomyocyte Cytoskeleton and Myofibrillogenesis in Healthy and Diseased Heart. Heart Failure Reviews. 2000;5:259-269.
    6. Asangi R.K. Kumarapeli, XuejunWang. Genetic modification of the heart: chaperones and the cytoskeleton. Journal of Molecular and Cellular Cardiology. 2004; 37:1097–1109.
    7. Paul A. O'Connell, Devanand M. Pinto, Ken A. Chisholm, Thomas H. MacRae. Characterization of the microtubule proteome during post-diapause development of Artemia franciscana. Biochimica et Biophysica Acta. 2006;176:4920–4928.
    8. David Vandroux, Céline Schaeffer, Cindy Tissier, Alain Lalande, Sandrine Bès, Luc Rochette. Microtubule alteration is an early cellular reaction to the metabolic challenge in ischemic cardiomyocytes. Molecular and Cellular Biochemistry. 2004;258: 99–108.
    9. Young LH, Renfu Y, Russell R, Hu X, Caplan M, Ren J. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation. 1997;95:415-422.
    10. Nicola J. Mabjeesh, Daniel Escuin, Theresa M. LaVallee, Victor S. Pribluda, Glenn M. Swartz, Michelle S. Johnson. 2ME2 inhibits tumor growth and angiogenesis bydisrupting microtubules and dysregulating HIF. Cancer Cell. 2003; 3:363-375.
    11. Daniel Escuin, Erik R. Kline, Paraskevi Giannakakou. Both Microtubule-Stabilizing and Microtubule-Destabilizing Drugs Inhibit Hypoxia-Inducible Factor-1A Accumulation and Activity by Disrupting Microtubule Function. Cancer Res. 2005; 65: 9021-9028.
    12. Monique C.A. Duyndam, Maria P.A. van Berkel, Josephine C. Dorsman,Davy A.P. Rockx, Herbert M. Pinedo, Epie Boven. Cisplatin and doxorubicin repress Vascular Endothelial Growth Factor expression and differentially down-regulate Hypoxia-inducible Factor I activity in human ovarian cancer cells. Biochemical pharmacology. 2007;74:191-201.
    13. Lea Glass-Marmor, Rivka Beitner. Taxol paclitaxel induces a detachment of phosphofructokinase from cytoskeleton of melanoma cells and decreases the levels of glucose 1,6-bisphosphate, fructose 1,6-bisphosphate and ATP. European Journal of Pharmacology. 1999;370:195–199.
    14. Daniel R. Webster. Regulation of Post-translationally Modified Microtubule Populations During Neonatal Cardiac Development. Journal of Molecular and Cellular Cardiology. 1997;29:1747–1761.
    15. Gilla Lilling and Rivka Beitner. Altered allosteric properties of cytoskeleton-bound phosphofructokinase in muscle from mice with X chromosome-linked muscular dystrophy (mdx). Biochemical Medicine and Metabolic Biology. 1991;45: 319-325.
    16. Bae SN, Kim J, Lee YS, Kim JD, Kim MY, Park LO. Cytotoxic effect of zinc–citrate compound on choriocarcinoma cell lines. Placenta. 2007; 28: 22-30.
    17. Michael J. Napolitano, Daniel H. Shain. Quantitating adenylate nucleotides in diverse organisms. J. Biochem. Biophys. Methods. 2005; 63:69–77.
    18. Joseph Sambrook, David W.Russell. Molecular Cloning: A Laboratory Mannal, 3rd ed, Cold Spring Harbor Laboratory Press, 2001.
    19. Mohammad Rubayet Hasan, Sayaka Koikawa, Susumu Kotani, Shigeaki Miyamoto, Hiroyuki Nakagawa. Ferritin forms dynamic oligomers to associate with microtubules in vivo: Implication for the role of microtubules in iron metabolism. Experimental Cell Research. 2006; 312:1950– 1960.
    20. Kenneth A. Myers, Jerome B. Rattner, Nigel G. Shrive, David A. Hart. Osteoblast-likecells and fluid flow: Cytoskeleton-dependent shear sensitivity. Biochemical and Biophysical Research Communications. 2007;364:214–219.
    21. Daniel R. Webster. Neonatal Rat Cardiomyocytes Possess a Large Population of Stable Microtubules that is Enriched in Post-Translationally Modified Subunits. Journal of Molecular and Cellular Cardiology. 1997;29: 2813–2824.
    22. Giuseppina Raspaglio, Flavia Filippetti, Silvia Prislei, Roberta Penci, Ilaria De Maria, Lucia Cicchillitti. Hypoxia induces class III beta-tubulin gene expression by HIF-1αbinding to its 3' flanking region. Gene. 2008;409:100–108.
    23. Lionel H. Opie. The heart physiology, from cell to circulation, Third Edition, Published by arrangement with Lippincott Williams & Wilkins Inc., U.S.A.,1998.
    24. Wang X, Li F, Campbell SE, Gerdes AM. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: II. Cytoskeletal remodeling. Journal of Molecular and Cellular Cardiology. 1999;31:319–331.
    25. Tagawa H, Koide M, Sato H, Zile MR, Carabello BA, Cooper 4th G.. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circulation Res. 1998;82:751–761.
    26. Sato H, Nagai T, Kuppuswamy D, Narishige T, Koide M, Menick DR. Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol. 1997;139: 963–973.
    27. Susan L. Mooberry.Mechanism of action of 2-methoxyestradiol: new developments. Drug Resistance Updates. 2003;6: 355-361.
    28. Emanuela Bonfoco, Sanda Ceccatelli, Luigi Manzo, Pierluigi Nicotera. Colchicine induces apoptosis in cerebellar granule cells. Experimental Cell research. 1995; 218:189-200.
    29. A. Purohit, A. Singh, M. W. Ghilchik, M. J. Reed. Inhibition of tumor necrosis factor a-stimulated aromatase activity by microtubule-stabilizing agents, paclitaxel and 2-methoxyestradiol. Biochemical and biophysical research communications. 1999;261: 214–217.
    30. Masaru Harada, Shotaro Sakisaka, Masao Yoshitake, Masahito Ohishi, Satoshi Itano, Satoshi Shakado. Role of cytoskeleton and acidification of endocytic compartment in asialoglycoprotein metabolism in isolated rat hepatocyte couplets. Hepatology. 1995;21:1413-1421.
    31. Ka′roly Liliom, Ga′bor Wa′gner, Ja′nos Kova′, Begon? a Comin, Marta Cascante, Ferenc Orosz. Combined Enhancement of Microtubule Assembly and Glucose Metabolism in Neuronal Systems in Vitro: Decreased Sensitivity to Copper Toxicity. Biochemical and Biophysical Research Communications. 1999; 264:605–610.
    32. K. Warren Volker, Catharine A. Reinitz, Harvey R. Knull. Glycolytic enzymes and assembly of microtubule networksComp. Biochem. Physiol. 1995:l12B: 503-514.
    33. A-S. Marsin, L. Bertrand, M.H. Rider, J. Deprez, C. Beauloye, M.F. Vincent. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biology. 2000:10:1247–1255.
    34. Takahashi M, Shiraishi H, Ishibashi Y, Blade KL, McDermott PJ, Menick DR. Phenotypic consequences of beta1-tubulin expression and MAP4 decoration of microtubules in adult cardiocytes. Am J Physiol Heart Circ Physiol. 2003;285:H2072–H2083.
    35. Ergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol. 2003;5:64-70.
    36. Keun-Ho Lee, Eun-Kyoung Yim, Chan-Joo Kim, Sung-Eun Namkoong, Soo-Jong Um, Jong-Sup Park. Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecologic Oncology. 2005;98: 45– 53.
    37. Agneás Mailloux, Karine Grenet, Arnaud Bruneel, Be?ne?dicte Be?ne?teau-Burnat, Michel Vaubourdolle, Bruno Baudin. Anticancer drugs induce necrosis of human endothelial cells involving both oncosis and apoptosis. European Journal of Cell Biology. 2001;80:442– 449.
    38. Kanu Chatterjee, Jianqing Zhang, Norman Honbo, Uschi Simonis, Robin Shaw, Joel S. Karliner. Acute vincristine pretreatment protects adult mouse cardiac myocytes from oxidative stress. Journal of Molecular and Cellular Cardiology. 2007;43:327–336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700