c-Myc在噪声条件下对耳蜗毛细胞的作用及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     随着工业化进程的加快,感音神经性耳聋已逐渐成为影响公众健康的重要社会问题之一。过度的噪音暴露可导致内耳机械性和代谢性损伤,严重影响了人类的生活质量,并且最终可导致噪声诱导的听力降低甚至缺失。然而,哺乳动物耳蜗毛细胞为特化终末细胞,损失后其再生能力十分有限,这也是导致永久性听力损失的原因。因此,发现新的哺乳动物内耳调控基因,阻止诱导毛细胞凋亡的信号分子很可能为感音神经性耳聋的治疗带来曙光。
     原癌基因c-myc是快速早期反应基因,其编码的细胞核蛋白调控细胞周期由G1期进入S期。通常认为c-myc基因在许多生物过程中发挥了重要作用,包括胚胎发育、细胞增殖、分化及凋亡等。此外,据报道静止细胞重返细胞周期过程中,c-myc基因起到募集转录因子的重要功能。该基因虽然如此重要,但在哺乳动物耳蜗中的研究却未见报道。因此,阐明c-myc基因在耳蜗中的作用为哺乳动物耳蜗毛细胞再生提供新的思路。
     【目的】
     探讨c-myc基因在噪声条件下对豚鼠听功能及耳蜗毛细胞形态的作用及其可能的分子机制。
     【方法】
     构建含c-myc基因的腺病毒表达载体(Ad.c-myc-EGFP),并通过耳蜗冰冻切片观察报告基因表达和Western blot方法鉴定转染后c-Myc表达量的变化。于噪声暴露前4天通过耳蜗显微注射术将Ad.c-myc-EGFP注射入豚鼠耳蜗鼓阶内,并以空白腺病毒载体(Ad. EGFP)做对照。将各组豚鼠暴露于110 dB SPL的白噪声,频谱分析能量集中在0.25-6.4kHz,主要集中在4 kHz左右,8 h/day,连续7天。分别在噪声暴露前及噪声暴露后的第7天通过听性脑干反应(ABR)检测豚鼠听功能的情况,并利用基底膜铺片和扫描电镜等方法观察耳蜗毛细胞形态及超微结构的变化。通过基因芯片和生物信息学分析进一步探讨噪声对哺乳动物内耳基因表达谱的影响,并利用实时定量PCR验证基因芯片的结果;通过Tunel染色评估凋亡在噪声性损伤中的作用;利用免疫组化方法观察筛选到的目标基因在耳蜗中的表达与定位,从而推测c-myc基因在噪声条件下可能发挥作用的分子机制。
     【结果】
     成功构建了Ad.c-myc-EGFP腺病毒载体,并证明它可以有效干预耳蜗内c-Myc蛋白的表达水平。通过体内实验观察了c-myc基因对耳蜗的作用,主要表现为:相同噪声暴露后,Ad.c-myc-EGFP注射组听阈提高显著低于Ad.EGFP组;Ad.c-myc-EGFP注射组外毛细胞形态改变及纤毛缺失率明显低于Ad.EGFP注射组;扫描电镜观察亦表明Ad.c-myc-EGFP注射组外毛细胞超微结构损伤程度明显小于Ad.EGFP对照组。本实验进一步利用基因芯片探讨噪声所致内耳分子的变化:噪声可以导致539个基因发生变化,其中279个基因上调,260个基因下调。通过生物信息学分析:这些差异基因主要涉及免疫系统、应激、生物代谢、节律调节及凋亡等相关基因。实时定量PCR鉴定了差异基因倍数大于5倍以上以及与免疫调节相关的基因,结果表明9种基因与基因芯片的趋势相一致,上调的有Reg3b,Lcn2,Nob1,Serpina3n,Hamp,Lbp,C3;下调的为Myh4,F2。Tunel染色观察表明:噪声可以诱导耳蜗内、外毛细胞及螺旋神经节细胞发生凋亡。因此,我们推测c-myc基因在噪声条件下对豚鼠听力及耳蜗毛细胞损伤的推迟作用很可能是由于c-myc基因上调了保护性基因而下调了诱导耳蜗细胞凋亡基因的表达而发挥作用,但c-myc基因与这9种分子在耳蜗细胞内的具体调节方式及作用关系还有待进一步阐明。此外,我们进一步利用免疫组化观察到Nob1基因编码蛋白在噪声暴露后大鼠耳蜗内呈阳性表达,阳性细胞主要集中在螺旋神经节和内、外毛细胞;血管纹细胞也有少量表达;而噪声暴露前耳蜗内未见Nob1蛋白的明显表达。因此,推测Nob1基因作为转录因子可能参与耳蜗内基因的调控,是一个新的内耳调控基因,其作用及功能有待深入研究。
     【结论】
     c-myc基因减弱了噪声诱导的豚鼠听功能损伤及毛细胞形态的改变,并可能通过调节Reg3b,Lcn2,Nob1,Serpina3n,Hamp,Lbp,C3,Myh4,F2基因及凋亡相关分子发挥作用。
【Background】
     With industrialization of our society, acoustic trauma is becoming an important public health problem. Excessive noise exposure inflicts both mechanical and metabolic damage to the inner ear, which has a significant impact on the quality of life and may lead to noise induced hearing loss (NIHL). In humans, loss of cochlear hair cells is permanent, because the auditory cells are considered as terminal cells, without the ability of regeneration. One strategy for preventing NIHL might be to develop therapeutics that block the cellular signaling leading to cell death following trauma. Therefore, manipulating related molecules in mammalian cochleae could provide a new avenue to restore hearing.
     The proto-oncogene c-myc, an immediate-early gene, encodes a nuclear protein that is known to be a major regulator for the G1 to S transition. It is genenrally accepted that this gene has a major role in multiple processes, including embryonic development, cell proliferation, differentiation, and apoptosis. In addition, it was reported that c-myc might recruit transcription factors when quiescent cells were stimulated to reenter the cell cycle. However, the funtion of c-myc gene in the mammalian cochlea is still unclear. Therefore, it may provide insights into the regeneration of hair cells in mammalian. It is necessary to clarify the function of this gene in the cochlea.
     【Aims】
     The study was designed to investigate the function and mechanisms of c-myc gene under noise condition, from the aspect of cochlear morphological changes and auditory function.
     【Methods】
     We had established the adenoviral vector of c-myc gene (Ad.c-myc-EGFP), and western blot and frozen section were used to detecte the expression of c-Myc in inner ear. Four days before noise exposure, the adenovirus suspension was delivered into the scala tympani of guinea pigs. The empty adenoviral vector (Ad. EGFP) was injected as control. Then, all subjects were exposed to 110 dB SPL white noise, mainly concentrated on about 4-kHz frequency, for 8 h/day, 7 days consecutively. Auditory thresholds were assessed by auditory brainstem response (ABR), prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. Then, microarray and bioinformatics were used to investigate the mechanisms underlying this gene’s role on noise induced hearing loss, and real-time PCR was used to identify the results of genechip. Tunel staining was used to clarify the role of apoptosis in NIHL. The expression and location of significant genes in the cochlea were examined by immunohistochemistry. Thus, we speculated the molecular mechanism of c-myc gene in the cochlea under noisy condition.
     【Results】
     We had successfully established the adenoviral vector of c-myc gene, and it could efficiently upregulate the expression of c-Myc protein. The roles of c-myc gene in the cochlea indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Aslo, the ultrastructure changes were severe in the Ad. EGFP group, but were not obvious in the Ad.c-myc-EGFP group. As the results of microarray showed, noise might mediate 539 kinds of genes, including 279 kinds of genes significantly upregulated and 260 kinds of genes significantly downregulated. These genes mainly involved in immune system, stress, homeostatic process, rhythm and apoptosis. As identified by real time PCR, noise may upregulate Reg3b,Lcn2,Nob1,Serpina3n,Hamp,Lbp,C3 genes, and downregulated Myh4,F2 genes. The result of tunel staining indicated noise could induce apoptosis of IHCs, OHCs and SGCs. Therefore, we speculated the roles of c-myc gene in the guinea pig’s cochlea maybe due to upregulate protective genes or downregulate apoptosis related genes. However, the definite mechnisims had yet to be further clarified. Especially, NOB1 expression was detected mainly in spiral ganglion cells (SGCs), inner hair cells (IHCs) and outer hair cells (OHCs) after noise exposure, but the expression of NOB1 was not detected in normal ones. We speculated that nob1 gene as a transcription factor is likely involved in the regulation of genes within the cochlea, and it is a new regulatory gene of inner ear, its roles need further investigation.
     【Conclusions】
     c-Myc might play an unexpected protective roles in hearing functional and morphological protection from acoustic trauma, through regulation of Reg3b,Lcn2,Nob1,Serpina3n,Hamp,Lbp,C3,Myh4,F2 and apoptosis related genes.
引文
1. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY. Math1: an essential gene for the generation of inner ear hair cells. Science. 1999 Jun ; 284(5421): 1837-41.
    2. Zheng JL, Gao WQ. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci. 2000 Jun;3(6): 580-6.
    3. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF,Brough DE, Raphael Y. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med. 2005 Mar;11(3):271-6.
    4. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature. 2008 Sep 25;455(7212):537-41.
    5. Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, Kelley MW.Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet. 1999 Mar;21(3):289-92.
    6. Kiernan AE, Cordes R, Kopan R, Gossler A, Gridley T. The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development. 2005 Oct;132(19):4353-62.
    7. Li H, Corrales CE, Wang Z, Zhao Y, Wang Y, Liu H, Heller S. BMP4 signaling is involved in the generation of inner ear sensory epithelia. BMC Dev Biol. 2005 Aug 17;5:16.
    8. Stevens CB, Davies AL, Battista S, Lewis JH, Fekete DM. Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev Biol. 2003 Sep 1;261(1):149-64.
    9. Edge AS, Chen ZY. Hair cell regeneration. Curr Opin Neurobiol. 2008 Aug;18(4):377-82.
    10. L?wenheim H, Furness DN, Kil J, Zinn C, Gültig K, Fero ML, Frost D, Gummer AW, Roberts JM, Rubel EW, Hackney CM, Zenner HP. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of Corti. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4084-8.
    11. Kanzaki S, Beyer LA, Swiderski DL, Izumikawa M, St?ver T, Kawamoto K, Raphael Y. p27(Kip1) deficiency causes organ of Corti pathology and hearing loss. Hear RES. 2006 Apr;214(1-2):28-36.
    12. Sage C, Huang M, Karimi K, Gutierrez G, Vollrath MA, Zhang DS, García-A?overos J, Hinds PW, Corwin JT, Corey DP, Chen ZY. Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. 2005 Feb 18;307(5712):1114-8.
    13. Liu Z, Zuo J. Cell cycle regulation in hair cell development and regeneration in the mouse cochlea. Cell Cycle. 2008 Jul 15;7(14):2129-3
    14. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY. Math1: an essential gene for the generation of inner ear hair cells. Science. 1999 Jun 11;284(5421): 1837-41.
    15. Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci. 2003 Jun 1;23(11):4395-400.
    16. Woods C, Montcouquiol M, Kelley MW. Math1 regulates development ofthe sensory epithelium in the mammalian cochlea. Nat Neurosci. 2004 Dec;7(12):1310-8.
    17. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF,Brough DE, Raphael Y. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med. 2005 Mar;11(3):271-6.
    18. Hildebrand MS, Newton SS, Gubbels SP, Sheffield AM, Kochhar A, de Silva MG, Dahl HH, Rose SD, Behlke MA, Smith RJ. Advances in molecular and cellular therapies for hearing loss. Mol Ther. 2008 Feb;16(2): 224-36.
    19. Weiss MA, Frisancho JC, Roessler BJ, Raphael Y. Viral-mediated gene transfer in the cochlea. Int J Dev Neurosci. 1997 Jul;15(4-5):577-83.
    20. Suzuki M, Yagi M, Brown JN, Miller AL, Miller JM, Raphael Y. Effect of transgenic GDNF expression on gentamicin-induced cochlear and vestibulartoxicity. Gene Ther. 2000 Jun;7(12):1046-54.
    21. Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006 Sep;14(3):316-27.
    22. Lalwani A, Walsh B, Reilly P, Carvalho G, Zolotukhin S, Muzyczka N, Mhatre A. Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus. Gene Ther. 1998 Feb;5(2):277-81.
    23. Bedrosian JC, Gratton MA, Brigande JV, Tang W, Landau J, Bennett J. In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol Ther. 2006 Sep;14(3):328-35.
    24. Vigna E, Naldini L. Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med. 2000Sep-Oct;2(5):308-16.
    25. St?ver T, Yagi M, Raphael Y. Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res. 1999 Oct;136(1-2):124-30.
    26. Jero J, Mhatre AN, Tseng CJ, Stern RE, Coling DE, Goldstein JA, Hong K, Zheng WW, Hoque AT, Lalwani AK: Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther 2001;12: 539–548.
    27. Ishimoto S, Kawamoto K, Kanzaki S, Raphael Y. Gene transfer into supporting cells of the organ of Corti. Hear Res. 2002 Nov;173(1-2): 187-97.
    28. Yamasoba T, Yagi M, Roessler BJ, Miller JM, Raphael Y. Inner ear transgene expression after adenoviral vector inoculation in the endolymphatic sac. Hum Gene Ther. 1999 Mar 20;10(5):769-74.
    29. Jero J, Mhatre AN, Tseng CJ, Stern RE, Coling DE, Goldstein JA, Hong K, Zheng WW, Hoque AT, Lalwani AK. Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther. 2001 Mar 20;12(5):539-48.
    30. Schacht J: Biochemistry and pharmacology of aminoglycoside-induced hearing loss. Acta Physiol Pharmacol Ther Latinoam 1999;49:251–256.
    31. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993 May 21;260(5111):1130-2.
    32. Ylikoski J, Pirvola U, Virkkala J, Suvanto P, Liang XQ, Magal E, Altschuler R, Miller JM, Saarma M. Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma. Hear Res. 1998 Oct;124(1-2):17-26.
    33. Nosrat CA, Tomac A, Lindqvist E, Lindskog S, Humpel C, Str?mberg I, Ebendal T, Hoffer BJ, Olson L. Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res. 1996 Nov;286(2):191-207.
    34. Keithley EM, Ma CL, Ryan AF, Louis JC, Magal E. GDNF protects the cochlea against noise damage. Neuroreport. 1998 Jul 13;9(10):2183-7.
    35. Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K, Unsicker K. Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci. 1998 Dec 1;18(23):9822-34.
    36. Fritzsch B, Pirvola U, Ylikoski J. Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications.Cell Tissue Res. 1999 Mar;295(3):369-82.
    37. Lopez I, Honrubia V, Lee SC, Chung WH, Li G, Beykirch K, Micevych P. The protective effect of brain-derived neurotrophic factor after gentamicin ototoxicity. Am J Otol. 1999 May;20(3):317-24.
    38. Staecker H, Kopke R, Malgrange B, Lefebvre P, Van de Water TR. NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. Neuroreport. 1996 Mar 22;7(4):889-94.
    39. Yagi M, Magal E, Sheng Z, Ang KA, Raphael Y. Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor. Hum Gene Ther. 1999 Mar 20;10(5): 813-23.
    40. Kawamoto K, Yagi M, St?ver T, Kanzaki S, Raphael Y. Hearing and hair cells are protected by adenoviral gene therapy with TGF-beta1 and GDNF. Mol Ther. 2003 Apr;7(4):484-92.
    41. Suzuki M, Yagi M, Brown JN, Miller AL, Miller JM, Raphael Y. Effect of transgenic GDNF expression on gentamicin-induced cochlear and vestibular toxicity. Gene Ther. 2000 Jun;7(12):1046-54.
    42. Kawamoto K, Sha SH, Minoda R, Izumikawa M, Kuriyama H, Schacht J, Raphael Y. Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Mol Ther. 2004 Feb;9(2):173-81.
    43. Yagi M, Kanzaki S, Kawamoto K, Shin B, Shah PP, Magal E, Sheng J, Raphael Y.Spiral ganglion neurons are protected from degeneration by GDNF gene therapy. J Assoc Res Otolaryngol. 2000 Dec;1(4):315-25.
    44. Webster M, Webster DB. Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res. 1981 May 11;212(1):17-30.
    45. Jyung RW, Miller JM, Cannon SC. Evaluation of eighth nerve integrity by the electrically evoked middle latency response. Otolaryngol Head Neck Surg. 1989 Dec;101(6):670-82.
    46. Nakaizumi T, Kawamoto K, Minoda R, Raphael Y. Adenovirus-mediated expression of brain-derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage. Audiol Neurootol. 2004 May-Jun;9(3): 135-43.
    47. Chikar JA, Colesa DJ, Swiderski DL, Di Polo A, Raphael Y, Pfingst BE. Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons. Hear Res. 2008 Nov;245(1-2):24-34.
    48. Hartshorn DO, Miller JM, Altschuler RA. Protective effect of electrical stimulation in the deafened guinea pig cochlea. Otolaryngol Head Neck Surg. 1991 Mar;104(3):311-9.
    49. Leake PA, Hradek GT, Snyder RL. Chronic electrical stimulation by acochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol. 1999 Oct 4;412(4):543-62.
    50. Kanzaki S, St?ver T, Kawamoto K, Prieskorn DM, Altschuler RA, Miller JM, Raphael Y. Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J Comp Neurol. 2002 Dec 16;454(3):350-60.
    51. Ryals BM, Rubel EW. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science. 1988 Jun 24;240(4860):1774-6.
    52. Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science. 1988 Jun 24;240(4860):1772-4.
    53. Lombarte A, Yan HY, Popper AN, Chang JS, Platt C. Damage and regeneration of hair cell ciliary bundles in a fish ear following treatment with gentamicin. Hear Res. 1993 Jan;64(2):166-74.
    54. Raphael Y. Evidence for supporting cell mitosis in response to acoustic traumain the avian inner ear. J Neurocytol. 1992 Sep;21(9):663-71.
    55. Raphael Y. Reorganization of the chick basilar papilla after acoustic trauma. J Comp Neurol. 1993 Apr 22;330(4):521-32.
    56. Hashino E, Salvi RJ. Changing spatial patterns of DNA replication in the noise-damaged chick cochlea. J Cell Sci. 1993 May;105 ( Pt 1):23-31.
    57. Presson JC, Lanford PJ, Popper AN. Hair cell precursors are ultrastructurally indistinguishable from mature support cells in the ear of a postembryonic fish. Hear Res. 1996 Oct;100(1-2):10-20.
    58. Wilkins HR, Presson JC, Popper AN. Proliferation of vertebrate inner ear supporting cells. J Neurobiol. 1999 Jun 15;39(4):527-35.
    59. Opas M, Dziak E. Direct transdifferentiation in the vertebrate retina. Int J Dev Biol. 1998 Mar;42(2):199-206.
    60. Rinkwitz S, Bober E, Baker R. Development of the vertebrate inner ear. Ann N Y Acad Sci. 2001 Oct;942:1-14.
    61. Fekete DM, Muthukumar S, Karagogeos D. Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci. 1998 Oct 1;18(19):7811-21.
    62. Zheng JL, Shou J, Guillemot F, Kageyama R, Gao WQ. Hes1 is a negative regulator of inner ear hair cell differentiation. Development. 2000 Nov;127(21):4551-60..
    63. Shou J, Zheng JL, Gao WQ. Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol Cell Neurosci. 2003 Jun;23(2):169-79.
    64. Izumikawa M, Batts SA, Miyazawa T, Swiderski DL, Raphael Y. Response of the flat cochlear epithelium to forced expression of Atoh1. Hear Res. 2008 Jun;240(1-2):52-6.
    65. Minoda R, Izumikawa M, Kawamoto K, Zhang H, Raphael Y. Manipulating cell cycle regulation in the mature cochlea. Hear Res. 2007 Oct;232(1-2):44-51.
    66. Staecker H, Praetorius M, Baker K, Brough DE. Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otol Neurotol. 2007 Feb;28(2):223-31.
    67.王国鹏,李泽文,龚树生。感音神经性耳聋基因治疗的新进展。中华医学杂志,2007, Vol 87, No.40。
    68. Stone IM, Lurie DI, Kelley MW, Poulsen DJ. Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol Ther. 2005 Jun;11(6):843-8.
    69. Shachaf CM, Felsher DW. Tumor dormancy and MYC inactivation:pushing cancer to the brink of normalcy. Cancer Res. 2005 Jun 1;65(11):4471-4.
    70. Jung KC, Rhee HS, Park CH, Yang CH. Determination of the dissociation constants for recombinant c-Myc, Max, and DNA complexes: the inhibitory effect of linoleic acid on the DNA-binding step. Biochem Biophys Res Commun. 2005 Aug 19;334(1):269-75.
    71. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, Cleveland JL, Tansey WP, Lowe SW. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature. 2005 Aug 11;436(7052):807-11.
    72. Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci. 1991;14:421-51.
    73. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991 Mar 8;251(4998):1211-7.
    74. Sauve S, Tremblay L, Lavigne P.The NMR solution structure of a mutant of the Maxb/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors[J]. J Mol Biol, 2004, 342(3): 813-832.
    75. Rama S,Suresh Y,Rao A J.TGF betal induces multiple independent signals to regulate human trophoblastic differentiation : mechanistic insights[J].Mol Cell Endocrinol,2003。206(1-2):123-136.
    76. Xiao Q, Claassen G, Shi J, Adachi S, Sedivy J, Hann SR. Transactivation-defective c-MycS retains the ability to regulate proliferation and apoptosis. Genes Dev. 1998 Dec 15;12(24):3803-8.
    77. O'Donnell KA, Yu D, Zeller KI, Kim JW, Racke F, Thomas-Tikhonenko A, Dang CV. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol. 2006 Mar;26(6):2373-86.
    78. Kim S J,Letterio J.Transforming growth factor-beta signaling in normal and malignant.hematopoiesis[J].Leukemia,2003,17(9):1731-1737.
    79. Staller P, Peukert K, Kiermaier A, et a1. Repression of pl5INK4b expression by Myc through association with Miz-1 [J].Nat Cell Biol。2001,3(4):392-399.
    80. Li JM, Brooks G. Cell cycle regulatory molecules (cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors) and the cardiovascular system: potential targets for therapy? Eur Heart J Mar. 1999, 20: 406-421.
    81. Lemaitre, J. M., R. S. Buckle, and M. Mechali. c-Myc in the control of cell proliferation and embryonic development. Adv. Cancer Res, 1996,70: 95–144.
    82. Amati B, Alevizopoulos K, Vlach J. Myc and the cell cycle. Front Biosci. 1998 Feb 15;3:d250-68.
    83. Pelengaris S, Khan M. The many faces of c-MYC. Arch Biochem Biophys. 2003 Aug 15;416(2):129-36.
    84. Daksis JI, Lu RY, Facchini LM, Marhin WW, Penn LJ. Myc induces cyclin D1 expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle. Oncogene. 1994 Dec;9(12):3635-45.
    85. Philipp A, Schneider A, V?srik I, Finke K, Xiong Y, Beach D, Alitalo K, Eilers M. Repression of cyclin D1: a novel function of MYC. Mol Cell Biol. 1994 Jun;14(6):4032-43.
    86. Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol. 1993 Dec;13(12):7358-63.
    87. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O'Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW. Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2229-34.
    88. Hernández S, Hernández L, BeàS, Cazorla M, Fernández PL, Nadal A, MuntanéJ, MallofréC, Montserrat E, Cardesa A, Campo E. cdc25 cell cycle-activating phosphatases and c-myc expression in human non-Hodgkin's lymphomas. Cancer Res.1998 Apr 15;58(8):1762-7.
    89. You Z, Madrid LV, Saims D, Sedivy J, Wang CY. c-Myc sensitizes cells to tumor necrosis factor-mediated apoptosis by inhibiting nuclear factor kappa B transactivation. J Biol Chem. 2002 Sep 27;277(39):36671-7.
    90. Kalra N, Kumar V. c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J Biol Chem. 2004 Jun 11;279(24):25313-9.
    91. Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6175-8.
    92. Kim S, Li Q, Dang CV, Lee LA. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11198-202.
    93. Poon E, Harris AL, Ashcroft M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med. 2009 Aug 27;11:e26.
    94. Turaga RV, Paquet ER, Sild M, Vignard J, Garand C, Johnson FB, Masson JY,Lebel M. The Werner syndrome protein affects the expression of genes involved in adipogenesis and inflammation in addition to cell cycle and DNA damage responses.Cell Cycle. 2009 Jul 1;8(13):2080-92.
    95. Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M, Zupi G, Biroccio A. c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell. 2006 Feb 17;21(4):509-19.
    96. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth.Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6658-63.
    97. Bowen H, Biggs TE, Phillips E, Baker ST, Perry VH, Mann DA, Barton CH. c-Myc represses and Miz-1 activates the murine natural resistance- associated protein 1 promoter. J Biol Chem. 2002 Sep 20;277(38): 34997-5006.
    98. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8164-9.
    99. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663-76.
    100. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, ernstein BE, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007 Jul 19;448(7151):318-24.
    101. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R. Treatment ofsickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007 Dec 21;318(5858):1920-3.
    102. Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, Jaenisch R. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):157-62.
    103. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008 Nov 7;322(5903):945-9.
    104. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008 Nov 7;322(5903):949-53.
    105. Romand R, Hirning-Folz U, Ehret G. N-myc expression in the embryonic cochlea of the mouse. Hear Res. 1994 Jan;72(1-2):53-8.
    106.李华伟,汪吉宝。雏鸡听毛细胞损伤后c-myc mRNA及其产物的表达研究。临床耳鼻咽喉科杂志,1999,13:173。
    107. Ducket LG, Rubel EW. Ultrastructural observations on regenerating hair cells in the chick basilar papilla. Hear Res, 1990,48:161-182.
    108. Romand R, Hirning-Folz v, Ehret G. N-myc expression in the embryonic cochlea of the mouse. Hearing Res, 1994, 72(1-2):53.
    109.高春生,陈向东。人胎儿内耳c-myc、c-fos蛋白的定位表达。中山大学学报(医学科学版),2003, Vol.24, No.6。
    110. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 1998;95:2509–14.
    111.阮芳铭,高文元,王海明等。全耳蜗基底膜硬铺片法的改进和组化观察。海军医学杂志,2002;23(2):151-3。
    112.亓卫东,丁大连,蒋海燕,Richard J Salvi。全耳蜗毛细胞定量分析系统。听力学及言语疾病杂志,2007年第15卷第2期。
    113. Kunz D, Walker G, Bedoucha M, Certa U, M?rz-Weiss P, Dimitriades-Schmutz B, Otten U. Expression profiling and Ingenuity biological function analyses of interleukin-6- versus nerve growth factor-stimulated PC12 cells. BMC Genomics. 2009 Feb 24;10:90.
    114. Bahmani P, Halabian R, Rouhbakhsh M, Roushandeh AM, Masroori N, Ebrahimi M, Samadikuchaksaraei A, Shokrgozar MA, Roudkenar MH. Neutrophil Gelatinase-Associated Lipocalin induces the expression of heme oxygenase-1 and superoxide dismutase (1, 2). Cell Stress Chaperones. 2009 Nov 11.
    115. Roudkenar MH, Halabian R, Ghasemipour Z, Roushandeh AM, Rouhbakhsh M, Nekogoftar M, Kuwahara Y, Fukumoto M, Shokrgozar MA. Neutrophil gelatinase-associated lipocalin acts as a protective factor against H(2)O(2) toxicity. Arch Med Res. 2008 Aug;39(6):560-6.
    116. Zhang Y, Ni J, Zhou G, Yuan J, Ren W, Shan Y, et al. Cloning, expression and characterization of the human NOB1 gene. Mol Biol Rep 2005;32(3): 185-9.
    117. Hawkins RD, Bashiardes S, Helms CA, Hu L, Saccone NL, Warchol ME, Lovett M. Gene expression differences in quiescent versus regenerating hair cells of avian sensory epithelia: implications for human hearing and balance disorders. Hum Mol Genet. 2003 Jun 1;12(11):1261-72.
    118. Hong L, Piao Y, Han Y, Wang J, Zhang X, Du Y, et al. Zinc ribbon domain-containing 1 (ZNRD1) mediates multidrug resistance of leukemia cells through regulation of P-glycoprotein and Bcl-2. Mol Cancer Ther 2005;4(12):1936-42.
    119. Han Y, Hong L, Zhong C, Xue T, He Y, Chen J, Chunyu X, Qiao L, Qiu J. The expression of NOB1 in spiral ganglion cells of guinea pig. Int J Pediatr Otorhinolaryngol. 2009 Feb;73(2):315-9.
    120. Sipione S, Simmen KC, Lord SJ, Motyka B, Ewen C, Shostak I, Rayat GR, Dufour JM, Korbutt GS, Rajotte RV, Bleackley RC. Identification of a novel human granzyme B inhibitor secreted by cultured sertoli cells. J Immunol. 2006 Oct 15;177(8):5051-8.
    121. Gesase AP, Kiyama H. Peripheral nerve injury induced expression of mRNA for serine protease inhibitor 3 in the rat facial and hypoglossal nuclei but not in the spinal cord. Ital J Anat Embryol. 2007 Jul-Sep;112(3): 157-68.
    122. Raszeja-Wyszomirska J, ?awniczak M, Milkiewicz P. [Novel aspects of pathogenesis of hereditary hemochromatosis]. Pol Merkur Lekarski. 2008 Jan;24(139):54-8.
    123. Sun AH, Wang ZM, Xiao SZ, Li ZJ, Ding JC, Li JY, Kong LS. Idiopathic sudden hearing loss and disturbance of iron metabolism. A clinical survey of 426 cases. ORL J Otorhinolaryngol Relat Spec. 1992;54(2):66-70.
    124. Schr?der NW, Schumann RR. Non-LPS targets and actions of LPS binding protein (LBP). J Endotoxin Res. 2005;11(4):237-42.
    125. Gan H, Yang J,Sun P.Sect Clin Biochem &Lab Med Foreign Med Sci, November 2004, Vol 25, No.6
    126. Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Riazuddin S, Friedman TB. Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet. 2006 Dec;79(6):1040-51.
    127. Thirumangalakudi L, Rao HV, Grammas P. Involvement of PGE2 andPGDH but not COX-2 in thrombin-induced cortical neuron apoptosis. Neurosci Lett. 2009 Mar 13;452(2):172-5.
    128. Zajtchuk JT, Falor WH Jr, Rhodes MF. Hypercoagulability as a cause of sudden neurosensory hearing loss. Otolaryngol Head Neck Surg. 1979 Mar-Apr;87(2):268-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700