组蛋白乙酰转移酶CBP/p300对人白细胞介素-5基因表达调控的影响及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IL-5主要由Th2类细胞产生,在过敏性哮喘等过敏性疾病的发生过程中起着关键的作用。转录辅因子CBP/p300本身具有组蛋白乙酰转移酶(HAT)活性,参与许多基因的转录调控过程。腺病毒E1A癌蛋白能与CBP/p300蛋白结合并抑制其活性。本文中,我们分析了E1A蛋白在IL-5基因启动子/荧光素酶报告基因表达调控中的作用,结果表明E1A蛋白能抑制PMA/离子霉素激活的和转录因子C/EBPβ介导的IL-5基因启动子/荧光素酶报告基因的活性。而突变体E1AA2-36蛋白因不能与CBP/p300蛋白结合而不能抑制IL-5基因启动子/荧光素酶报告基因的表达。我们发现CBP/p300不仅能促进IL-5启动子报告基因质粒的活性,而且还能提高内源IL-5 mRNA的表达水平。另外,转录辅因子CBP/p300可分别和转录因子C/EBPB、NF-AT和AP-1协同地激活IL-5基因启动子/荧光素酶报告基因的表达。在CBP/p300促进IL-5启动子报告基因表达的过程中CBP/p300的HAT活性发挥了十分重要的作用。通过染色质免疫沉淀实验,我们还发现CBP/p300能够使IL-5启动子处的组蛋白高乙酰化。这样产生一个相对开放的染色质构型,从而促进转录机器与DNA的结合,进而促进转录。另外,CBP/p300还能将促进IL-5基因表达的转录因子C/EBP乙酰化,从而改变其反式激活能力。我们的结果第一次揭示了组蛋白乙酰转移酶CBP/p300参与IL-5基因的表达调控,并对其机制进行了初步的探讨,为深入研究IL-5基因表达调控的机制奠定了基础。
Interleukin-5 (IL-5), expressed primarily by type-2 T helper (Th2) cells, plays an essential role in the development of allergic diseases includeing allergic asthma. Histone acetyltransferase CBP/p300 remodels chromatin by acetylating histones resulting in open structure of chromatin and active transcription. Adenovirus protein E1A inhibits the activity of CBP/p300. In this study, we analyzed the effects of E1A on IL-5 gene promoter/luciferase reporter activity. The results showed that El A protein inhibited the activity of PMA/ionomycin-stimulated IL-5 gene promoter/luciferase reporter construct. In contrast, overexpression of the CBP/p300-binding defective El A A2-36 protein did not inhibit IL-5 gene promoter activity. El A protein can modulate CBP/p300 function to activate the transcription of IL-5 gene promoter/luciferase reporter plasmid. Transcriptional coactivator CBP/p300 and transcription factors C/EBPp, NF-AT, and c-Fos synergistically activated IL-5 promoter. Furthermore, we found that ectopic exp
    ression of p300 increased endogenous IL-5 mRNA expression. The histone acetyltransferase activity of CBP/p300 was required to activate IL-5 expression. In chromatin immunoprecipitation assay (ChIP), we found that CBP/p300 could acetylate histones on IL-5 promoter, resulting in increased accessibility of the open chromatin to the transcriptional machinery and therefore promoted gene transcription. Moreover, we showed that CBP/p300 acetylated the transcription factor C/EBP, resulting in an increased transactivation activity of the C/EBP. These data demonstrated for the first time that histone acetyltransferase CBP/p300 was involved in the activation of IL-5 gene expression and the HAT activity was important in regulation of IL-5 expression. This study provides further insight into the mechanisms of transcriptional regulation of IL-5 gene.
引文
1. Pollard KJ, Peterson CL. Chromatin remodeling: a marriage between two families? BioEssays 1998, 20: 771-780.
    2. Kingston RE, Bunker CA, Imbalzano AN. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev 1996, 10: 905-920.
    3. Bum LG and Peterson CL. Protein complexes for remodeling chromatin. Biochim Biophys Acta 1997, 1350: 159-168.
    4. Moreira JM, Holmberg S. Transcriptional repression of the yeast CHA1 gene requires chromatin-remodeling complexes RSC. EMBO J 1999, 18: 2836-2844.
    5. Tsukiyama T, Daniel C, Tamkun J, et al. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140kDa subunit of the nucleosome remodeling factor. Cell 1995, 83: 1021-1026.
    6. Varga-Weisz PD, Wilm M, Bonte E, et al. Chromatin remodeling factor CHRAC contains the ATPase ISWI and topoisomerase. Nature 1997, 388: 598-602.
    7. Ito T, Bulger M, Pazin MJ, et al. ACF, an ISWI-containing and ATP-Utilizing chromatin assembly and remodeling factor. Cell 1997, 90: 145-155.
    8. Xue Y, Wong, J, Mereno GT, et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 1998, 2: 851-861.
    9. Zhang Z, Buchman AR. Identification of a member of a DNA-dependent ATPase family that causes interference with silencing. Mol Cell Biol 1997, 17: 5461-5472.
    10. Logie C and Peterson CL. Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J 1997, 16: 6772-6782.
    11. Roth SY, Denu JM, and Allis CD. Historic Acetyltransferases. Annu Rev Biochem 2001, 70: 81-120.
    
    
    12. Brownell JE, Allis CD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 1996, 6:176-184.
    13. Ruiz-Carrillo A, Aangh LJ, Allfrey VG. Processing of newly synthesized histone molecules. Science 1975, 190:117-28.
    14. Sterner DE and Berger SL. Acetylation of Histones and Transcriptlon-Related Factors. Microbiology and Molecular Biology Reviews 2000, 64:435-459.
    15. Chen HW, Tini M and Evans RM. HATs on and beyond chromatin. Curr Opin Cell Bio 2001, 13: 218-224.
    16. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998, 12: 599-606.
    17. Brown CE, Lechner T, Howe L and Workman JL. The many HATs of transcription coactivators. Trends Biochem Sci 2000 25:15-19.
    18. Schiltz RL, Mizzen CA, Vassilev A, et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 1999, 274: 1189-1192.
    19. Schiltz RE and Nakatani Y. The PCAF acetylase complex as a potential tumor suppressor. Biochimica Biophysica Acta 2000, 1470: 37-53.
    20. Krumm AL, Madisen XJ, Yang R, et al. Long-distance transcriptional enhancement by the histone acetyltransferase P/CAF. Pro Natl Acad Sci USA 1998, 95: 13501-13506.
    21. Giles RH, Peters DJ and Breuning MH. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 1998, 14: 178-183.
    22. Ogryzko W, Schlitz V, Russanova BH, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferase. Cell 1996, 87: 953-959
    23. Korzus E, Torchia J, Rose DW, et al. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 1998, 279:703-707.
    24. Bannister AJ and Miska EA. Regulation of gene expression by
    
    transcription factor acetylation. CMLS Cell Mol Life Sci 2000, 57: 1184-11192.
    25. Otero G, Fellows J, Li Y, et al. Elongator, a multisubunit component of a novel RNA polymerase Ⅱ holoenzyme for transcriptional elongation. Mol Cell 1999, 3: 109-118.
    26. Wittschieben BO, Otero G, de Bizemont T, et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase Ⅱ holoenzyme. Mol Cell 1999, 4: 123-128.
    27. Orphanides G and Reinberg D. RNA polymerase Ⅱ elongation through chromatin. Nature. 2000, 407: 471-475.
    28. Burley SK and Roeder RG. Biochemsitry and structural biology of transcription factor ⅡD (TFⅡD). Annu Rev Biochem 1996, 65: 769-799.
    29. Mizzen CA, Yang XJ, Kokubo T, et al. The TAFⅡ250 subunit of TFⅡD has histone acetyltransferase activity. Cell 1996, 87:1261-1270.
    30. O'Brien T and Tjian R. Funtional analysis of the human TAFⅡ250 N-terminal kinase domain. Mol Cell 1998, 1:905-911.
    31. O'Brien T and Tjian R. Different functional domains of TAFⅡ250 modulate expression of distinct subsets of mammalian genes. Proc Natl Acad Sci USA 2000, 97: 2456-2461.
    32. Sterner DE and Berger SL. Acetylation of histones and transcription-related factors. Microbiology and Molecular Biology Reviews 2000, 435-459.
    33. Allard S, Utley RT, Savard J, et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esalp and the ATM-related cofactor Tralp. EMBO J 1999, 18:5108-5119.
    34. Smith ER, Eisen A, Gu W, et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Pro Natl Acad Sci USA 1998, 95: 3561-3565.
    35. Clarke AS, Lowell JE, Jacobson SJ and Pillus L. Esalp is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol 1999, 19: 2515-2526.
    
    
    36. Ramanathan B and Smerdon MJ. Enhanced DNA repair synthesis in hyperaeetylated nueleosomes. J Biol Chem 1989, 264:11026-11034.
    37. Kamine J, Elangovan B, Subramanian T, et al. Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1Tat transactivator. Virology 1996, 216: 357-366.
    38. Kimura A and Horikoshi M. Tip60 acetylate six lysines of a specific class in core histones in vitro. Genens Cells 1998, 3: 789-800.
    39. Ikura T, Ogryzko VV, Grigoriev M, et al. Involvement of the Tip60 histone acetylase complex in DNA repair and apoptosis. Cell 2000, 102: 463-473.
    40. Golding A, Chandler S, Ballestar E, et al. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J 1999, 18: 3712-3723.
    41. McMurry MT and Krangel MS. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 2000, 287: 495-498.
    42. McBlane F and Boyes J. Stimulation of V(D)J recombination by histone acetylation. Curr Biol 2000, 10: 482-486.
    43. Iizuka M and Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 1999, 274: 23027-23034.
    44. Fox CA, Loo S, Dillin A and Rine J. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev 1995, 9:911-924.
    45. Verreault A. De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev 2000, 14: 1430-1438.
    46. Parthun MR, Widom J and Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 1996, 87: 85-94.
    47. Sobel RE, Cook RG, Perry CA, et al. Conservation of deposition-related acetylation sites in newly synthesized histone H3 and H4. Pro Natl Acad Sci USA 1995, 92: 1237-1241.
    
    
    48. Ruiz-Garcia AB, Sendra R, Galiana M, et al. HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4. J Biol Chem 1998, 273: 12599-12605.
    49. Ehrenhofer-Murray AE, Rivier DH and Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 1997, 145: 923-934.
    50. Reifsnyder C, Lowell J, Clarke A and Pillus L. Yeast SAS silencing genes and human genes associated with AML and HIV-1Tat interactions are homologous with acetyltransferase. Nat Genet 1996, 14: 42-49.
    51. Takechi S and Nakayama T. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem Biophys Res Commun 1999, 266: 405-410.
    52. Onate SA, Tsai SY, Tsai MJ and O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfhmily. Science 1995, 270: 1354-1357.
    53. Spencer TE, Jenster G, Burcin MM, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997, 389: 194-198.
    54. Chen H, Lin RJ, Xie W, et al. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of acetylase. Cell 1999, 98: 675-686.
    55. Vogelauer M, Wu J, Suka N and Grunstein M. Global histone acetylation and deacetylation in yeast. Nature 2000, 408: 495-498.
    56. Berger SL. Local or Global? Nature 2000, 408: 412-414.
    57. Yang WM, Yao YL, Sun JM, et al. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 1997, 272: 28001-28007.
    58. Dangond F, Hafler DA, Tong JK, et al. Differential display cloning of a novel human histone deacetylase (HDAC3) cDNA from PHA-activated immune cells. Biochem Biophys Res Commun 1998, 242: 648-652.
    59. Emiliani S, Fischle W, Van Lint C, et al. Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci USA 1998, 95: 2795-2800.
    
    
    60. Hu E, Chen ZX, Fredrickson T, et al. Cloning and Characterization of a Novel HUman Class Ⅰ Histone Deacetylase That Functions as a Transcription Repressor. J Biol Chem 2000, 275:15254-15264.
    61. Zhou X, Marks PA, Rifkind RA, et al. Cloning and characterizeation of a histone deacetylase, HDAC9. 2001, 98: 10572-10577.
    62. Fischer DD, Cai R, Bhatia U, et al. Isolation and Characterization of a Novel Class Ⅱ Histone Deacetylase, HDAC10. J Biol Chem 2002, 277: 6656-6666.
    63. Frye R A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999, 260: 273-279.
    64. Pazin MJ and Kadonaga JT. What's Up and Down with Histone Deacetylation and Transcription? Cell 1997, 89: 325-328.
    65. Brehm A, Miska EA, McCance DJ, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998, 391: 597-601.
    66. Lin RJ, Nagy L, Inoue S, et al. Role of the histone deacetylase complex in acute promyelocytic leukaernia. Nature 1998, 391:811-814.
    67. Nan X, Huck-Hui Ng, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393: 386-389.
    68. Jones PL, Veenstra GCJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics 19: 187-191.
    69. Koipally J, Renold A, Kim J and Georgopoulos K. Repression by Ikaros and Aiolos is mediated through historic deacetylase complexes. EMBO J 1999, 18: 3090-3100.
    70. Rundlett SE, Carmen AA, Suka N, et al. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 1998, 392: 831-835.
    71. Olsson TG, Ekwall K, Allshire RC, et al. Genetic characterisation of
    
    hdal~+, a putative fission yeast histone deacetylase gene. Nucl Acids Res 1998, 26: 3247-3254.
    72. Gu W, Roeder RG. Activation of p53 Sequence-Specific DNA Binding by Acetylation of the p53 C-Terminal Domain. Cell 1997, 90: 595-606.
    73. Mahlknecht U. and Hoelzer D. Histone acetylation modifies in the pathogenesis of malignant disease. Molecular Medicine 2000, 6: 623-644.
    74. Stunnenberg HG, Garcia-Jimenez C and Betz JL. Leukemia: the sophisticated subversion of hematopoiesis by nuclear receptor oncoproteins. Biochim Biophys Acta 1998, 1423:15-33.
    75. Wang AH, Bertos NR, Vezmar M, et al. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol 1999, 19: 7816-7827.
    76. Lusser A, Brosch G, Loidl A, et al. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 1997, 277: 88-91.
    77. Dangond F, Hafler DA, Tong JK, et al. Differential display cloning of a novel human histone deacetylase (HDAC3) cDNA from PHA-activated immune cells. Biochem Biophys Res Commun 1998, 242: 648-652.
    78. Rundlett SE, Carmen AA, Kobayashi R, et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 1996, 93: 14503-14508.
    79. Razin A. CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J 1998, 17: 4905-4908.
    80. Scanlan NJ, Chen YT, Williamson B, et al. Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer 1998, 76: 652-658.
    81. Grozinger CM, Hassig CA and Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc Natl Acad Sci USA 1999, 96: 4868-4873.
    82. Goodman RH and Smolik S. CBP/p300 in cell growth, transformation,
    
    and development. Genes Dev 2000, 14: 1553-1577.
    83. Kung AL, Rebel VI, Bronson RT, et al. Gene dosage-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 1999, 14: 272-277.
    84. Janknecht R and Hunter T. Transcription control: versatile molecular glue. Curr Biol 1996, 6: 22-23.
    85. Chrivia JC, Kwok RP, Lamb N, et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 1993, 365: 855-859.
    86. Eckner R, Ewen ME, Newsome D, et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-KD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes DeV 1994, 8: 869-884.
    87. Giles RH, Dauwerse, HG, Van Ommen GB and Breuning MH. Do human chromosomal bands 16p13 and 22q11-13 share ancestral origins? Am J Hum Genet 1997, 63: 1240-1242.
    88. Arany Z, Sellers WR, Livingston DM and Eckner R. E1Aassociated p300 and CREB-associated CBP belong to a conserved family of co-activators. Cell 1994, 77: 799-800.
    89. Dallas PB, Cheney IW, Liao D, et al. p300/CREB binding protein-related protein p270 is a component of mammalian SWI-SNF complexes. Mol Cell Biol 1998, 18: 3596-3603.
    90. Kitabayashi I, Eckner R, Arany Z, et al. Phosphorylation of the adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1Aduring the differentiation of F9 cells. EMBO J 1995, 14: 3496-3509.
    91. Chakravarti D, LaMorte VJ, Nelson MC, et al. Role of CBP/p300 in nuclear receptor signalling. Nature 1996, 383: 99-103.
    92. Cho S, Tian Y and Benjamin TL. Binding ofp300/CBP coactivators by polyoma large T antigen. J Biol Chem 2001, 276: 33533-33539.
    93. Manning ET, Ikehara T, Ito T, et al. p300 forms a stable, template-c0mmitted complex with chromatin: role for the bromodomain. Mol Cell Biol 2001, 21: 3876-3887.
    
    
    94. Soutoglou E, Viollet B, Vaxillaire M, et al. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J 2001, 20: 1984-1992.
    95. Liu L, Scolnick DM, Trievel RC, et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 1999, 19: 1202-1209.
    96. Boyes J, Byfield P, Nakatani Y and Ogryzko V. Regualtion of activity of the transcription factor GATA-1 by acetylation. Nature 1998, 396: 594-598.
    97. Chan HM, Krstic-Demonacos M, Smith L, Demonacos C and L Thangue NB Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol 2001, 3: 667-674.
    98. Perkins ND, Felzien LK, Betts JC, et al. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 1997, 275: 523-527.
    99. Guo S, Cichy SB, He X, et al. Insulin Suppresses transactivation by CAAT/enhancer-binding proteins beta(C/EBPbeta). J Biol Chem 2001, 276: 8516-8523.
    100. Yao T, Oh SP, Fuchs M, et al. Gene dosagedependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 1998, 93: 361-372.
    101. Kung AL, Rebel VI, Bronson RT, et al. Gene dosage-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 1999, 14: 272-277.
    102. Kawasaki H, Eckner R, Yao TP, et al. Distinct role of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 1998, 393: 284-289.
    103. Sartorelli V, Puri PL, Hamamori Y, et al. Acetylation of MyoD directed by pCAF is necessary for the execution of the muscle program. Mol. Cell 1999, 4: 725-734.
    104. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH and Nakatani Y. (1996). A CBP/p300-associated factor that competes with the
    
    adenoviral oncoprotein E1A. Nature 382, 319-324.
    105. Shi Y and Mello C. A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev 1998, 12: 943-955.
    106. Grossman SR, Perez M, Kung AL, et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 1998, 2: 405-415.
    107. Chan HM and La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001, 114: 2363-2373.
    108. Xu L, Glass CK and Rosenfeld MG. Co-activator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 1999, 9: 140-147.
    109. Kim TK, Kim TH and Maniatis T. Efficient recruitment of TFⅡB and CBP-RNA polymerase Ⅱ holoeuzyme by an interferon-beta enhanceosome in vitro. Proc Natl Acad Sci USA 1998, 95: 12191-12196.
    110. Munshi N, Merika M, Yie J, et al. Acetylation of HMG I(Y) by CBP turns off IFN γ. expression by disrupting the enhanceosome. Mol Cell 1998, 2: 457-467.
    111. Durrin LK, Mann RK, Kayne PS and Grunstein M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 1991, 65: 1023-1031.
    112. Ito T, Ikehara T, Nakagawa T, et al. p300-mediated acetylation facilitates the transfer of histone H2AH2B dimers from nucleosomes to a histone Chaperone. Genes Dev 2000, 14:1899-1907.
    113. Oike Y, Hata A, Mamiya T, et al. Truncated CBP protein leads to classical Rubunsten-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum Mol Genet 1999, 8: 387-396.
    114. Panagopoulos I, Fioretos T, Isaksson M, et al. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 2001, 10: 395-404.
    115. Rowley JD, Reshmi S, Sobulo O, et al. All patients with the
    
    t(11; 16)(q23;p13.3) that invovles MLL and CBP have treatment-related hematologie disorders. Blood 1997, 90: 535-541.
    116. Chaffanet M, Gressin L, Prendhomme C, et al. MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 2000, 28: 138-144.
    117. Gauther SA, batley SJ, Linger L, et al. Mutations truncating the EP300 acetylase in human cancers. Nature Genet 2000, 24: 300-303.
    118. Evert BO, Wullner U and Kloekgether T. Cell death in polyglutamine diseases. Cell Tissue Res 2000, 301:189-204.
    119. Nucifora FC, Jr Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transeroption leading to cellular toxicity. Science 2001, 291: 2423-2428.
    120. Steffan JS, Bodai L, Pallos J, et al. Historic deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001, 431: 739-743.
    121. Mosmann TR, and Coffmann RL. TH1 and TH2 Cells: Different Patterns of Lymphokine Secretion Lead to Different Functional Properties. Annu Rev Immunol 1989, 7: 145-173.
    122. Corrigan CJ and Kay AB. T cells and eosinophils in the pathogenesis of asthma. Immunol Today 1992, 13: 501-506.
    123. Wolff CH, Hong SC, Grafenstein HV, and Janeway CA. TCR-CD4 and TCR-TCR interactions as distinctive mechanisms for the induction of increased intracellular calcium in T-cell signaling. J Immunol 1993, 151: 1337-1345.
    124. Naora H, Altin JG, and Young IG. TCR-dependent and -independent signaling mechanisms differentially regulate lymphokine gene expression in the murine T helper clone D10.G4.1. J Immunol 1994, 152: 5691-5702.
    125. Bohjanen PR, Okajima M, and Hodes RJ. Differential Regulation of Interleukin 4 and Interleukin 5 Gene Expression: A Comparison of T-Cell Gene Induction by Anti-CD3 Antibody or by Exogenous Lymphokines. Proc Nat Acad Sci USA 1990, 87: 5283-5287.
    
    
    126. Till S, Walker S, Dickason R, et al. IL-5 production by allergen-stimulated T cells following grass pollen immunotherapy for seasonal allergic rhinitis. Clin Exp Immunol 1997, 110:114-121.
    127. Gibson PG, Zlatic K, Scott J, et al. Chronic cough resembles asthma with IL-5 and granulocyte-macrophage colony-stimulating factor gene expression in bronchoalveolar cells. J Allergy Clin Immunol 1998, 101: 320-326.
    128. Sedgwick JB, Calhoun WJ, Gleich GJ, et al. Immediate and late airway response of allergic rhinitis patients to segmental antigen challenge: characterization of eosinophil and mast cell mediators. Am Rev Respir Dis 1991, 144: 1274-1281.
    129. Humbert M, Corrigan CJ, Kimmitt, et al. Relationship between IL-4 and IL-5 mRNA expression and disease severity in atopic asthma. Am J Respir Crit Care Med 1997, 156: 704-708.
    130. De Monchy JG, Kauffman HF, Venge P, et al. Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am Rev Respir Dis 1985, 131: 373-376.
    131. Bousquet J, Chanez P, Lacoste JY, et al. Eosinophilic inflammation in asthma. N Engl J Med 1990, 323: 1033-1039.
    132. Hamid Q, Azzawi M, Ying S, et al. Expression of mRNA for interleukin-5 in mucosal bronchial biopsies from asthma. J Clin Invest 1991, 87: 1541-1546.
    133. Walker C, Bode E, Boer L, et al. Allergic and non-allergic asthmatics have distinct pattern of T cell activation and cytokine production in peripherali blood and bronchoalveolar lavage. Am Rev Respir Dis 1992, 146: 109-115.
    134. Corrigan CJ, Haczku A, Gemou-Engeesaeth V, et al. CD4 Tlymphocyrte activation in asthma is accompanied by increased serum concentrations of interleukin-5. Am Rev Respir Dis 1993, 147: 540-547.
    135. Foster PS, Hogan SP, Ramsay AJ, et al. Interleukin-5 deficiency abolishes eosinophilia, airways hyperactivity, and lung damage in a mouse asthma model. J Exp Med 1996, 183: 195-201.
    
    
    136. Murata K, Yarnada Y, Kamihira S, et al. Frequency of eosinophilia in adult T cell leukemia/Lymphoma. Cancer 1992, 69: 966-971.
    137. Ogata M, Ogata Y, Kohno K, et al. Eosinophilia associated with adult T-cell leukemia: role of interleukin 5 and granulocyte-macrophage colony-stimulating factor. Am J Hematol 1998, 59: 242-245.
    138. Lopez AF, Elliott MJ, Woodcock J, et al. GM-CSF, IL-3 and IL-5: cross-competition on human haemopoietic cells. Immuno Today 1992, 13: 495-500.
    139. Danzig M and Cuss F. Inhibition of interleukin-5 with a monoclonal antibody attenuates allergic inflammation. Allergy 1997, 52: 787-794.
    140. Weltman JK and Karim AS. Interleukin-5: A proeosinophilic cytokine mediator of inflammation in asthma and a target for antisense therapy. Asthma and Allergy Proc 1998, 19: 257-261.
    141. Weltman JK and Karim AS. Inhibition of expression of Interleukin-5. Patent allowed, US Patent Office. 1998.
    142. Mori A, Sukom, Kaminuma O, et al. IL-15 promotes cytokine production of human T helper cells. J Immunol 1996, 156: 2400-2405.
    143. Stranick KS, Zambas DN, Uss AS, et al. Identification of Transcription Factor Binding Sites Important in the Regulation of the Human Interleukin-5 Gene. J Biol Chem 1997, 272: 16453-16465.
    144. Masuda ES, Tokumitsu H, Tsuboi A, et al. The granulocyte-macrophage colony-stimulating factor promoter cis-acting element CLE0 mediates induction signals in T cells and is recognized by factors related to AP1 and NFAT. Mol Cell Biol 1993, 13: 7399-7407.
    145. Lee HJ, O'Garra G, Arai K. & Arai N. Characterization of cis-regulatory elements and nuclear factors conferring Th2-specific expression of the IL-5 gene: a role for a GATA-binding protein. J Immunol 1998, 160: 2343-2352.
    146. Lee HJ, Masuda ES, Arai N, et al. Definition of cis-regulatory elements of the mouse interleukin-5 gene promoter. Involvement of nuclear factor of activated T cell-related factors in interleukin-5 expression. J
    
    Biol Chem 1995, 270: 17541-17550.
    147. Naora H, Van Leeuwen BH, Bourke PF & Young IG. Functional role and signal-induced modulation of proteins recognizing the conserved TCATTT-containing promoter elements in the murine IL-5 and GM-CSF genes in T lymphocytes. J Immunol 1994, 153: 3466-3475.
    148. Siegel MD, Zhang DH, Ray P & Ray A. Activation of the interleukin-5 promoter by cAMP in murine EL-4 cells requires the GATA-3 and CLE0 elements. J Biol Chem 1995, 270: 24548-24555.
    149. Stranick KS, Payvandi F, Zambas DN, et al. Transcription of the murine interleukin 5 gene is regulated by multiple promoter elements. J Biol Chem 1995, 270: 20575-20582.
    150. Karten S, D'Ercole M & Sanderson CJ. Two pathways can activate the interleukin-5 gene and induce binding to the conserved lymphokine element 0. Blood 1996, 88:211-221.
    151. Wedel A and Lms Ziegler-Heitbrock HW. The C/EBP family of transcription factors. Immunobiology 1995, 193: 171-185.
    152. Akira S, Isshiki H, Sugita T, et al. A nuclear factor for IL-6 expression (NF-IL-6) is a member of a C/EBP family. EMBO J 1990, 9: 1897-1906.
    153. Akira S and Kishimoto T. NF-IL6 and NF-κB in cytokine gene regulation. Adv Immunol 1997, 65: 1-47.
    154. Li-Weber M, Giaisi M and Krammer PH. Roles of CCAAT/enhancer-binding protein in transeriptional regulation of the human IL-5 gene Eur J Immunol 2001, 31: 3694-3703.
    155. Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family regulation and function. Ann Rev Immunol 1997, 15: 707-747.
    156. Zheng DH, Cohn L, Ray P, et al. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th-2 specific expression of the interleuldn-5 gene. J Biol Chem 1997, 272: 21597-21603.
    157. Zheng W and Flavell RA. The transcription factor GATA-3 is ecessary and sufficient for Th2 cytokine gene expression in CD4 T ells. Cell
    
    1997, 89: 587-596.
    158. Blumenthal SG, Aichele G, Wirth T, et al. Regulation of the Human Interleukin-5 Promoter by Ets Transcription Factors. J Biol Chem 1999, 274: 12910-12916.
    159. Yamashita M, Ukai-Tadenuma M, Kimura M, et al. Identification of a Conserved GATA3 Response Element Upstream Proximal from the Interleukin-13 Gene Locus. J Biol Chem 2002, 277: 42399-42408.
    160. Lee JS, Galvin KM, See RH, et al. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300 [published erratum appears in Genes Dev 1995, 9: 1948-9]. Genes Dev 1995, 9:1188-1198
    161. Guo S, Cichy SB, He X, et al. Insulin Suppresses Transactivation by CAAT/Enhancer-binding Proteins β(C/EBPβ). Signaling to p300/CREB-binding protein by protein kinase B disrupts interaction with the major activation domain of C/EBPβ. J Biol Chem, 2001, 276: 8516-8523.
    162. Sigrun M, Benedicte H, Karl-heinz K. Interaction and Functional Collaboration of p300 and C/EBPβ. Mol Cell Bio, 1997, 17: 6609-6617.
    163. Garcia-Rodriguez C, Rao A. Nuclear Factor of Activated T Cells (NFAT)-dependent Transactivation Regulated by the Coactivators p300/CREB-binding Protein (CBP). J Exp Med 1998, 187: 2031-2036.
    164. Lee JS, See RH, Deng T, Shi Y. Adenovirus E1A downregulates cJunand JunB-mediated transcription by targeting their coactivator p300. Mol Cell Biol 1996, 16: 4312-4326.
    165. Horvai AE, Xu L, Korzus E, et al. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci USA. 1997, 94: 1074-1079.
    166. Yang C, Shapiro LH, Rivera M, et al. A role for CREB binding protein and p300 transcriptional coactivators in Ets-1 transactivation functions. Mol Cell Biol. 1998, 18: 2218-2229.
    167. Jones N. Transcriptional modulation by the adenovirus E1A gene. Curr Too Microbiol Immunol 1995. 199:59-80.Moran E. DNA tumor virus
    
    transforming proteins and the cell cycle. Curr Opin Genet Dev 1993, 3: 63-70.
    168. Bannister AJ, Kouzarides T. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J 1995, 14: 4758-4762.
    169. Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA 1997, 94: 2927-293T2.
    170. Gu W, Shi XL, Roeder RG. Synergistic activation of transcription by CBP and p53. Nature 1997, 387: 819-823.
    171. Puri PL, Avantaggiati ML, Balsano C, Sang N, Graessmann A, Giordano A, Levrero M. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J 1997, 16: 369-383.
    172. Owen GI, Richer JK, Tung L, et al. Progesterone Regulates Transcription of the p21 ~(WAFI) Cyclin dependent Kinase Inhibitor Gene through Spl and CBP/p300. J Biol Chem, 1998, 273: 10696-10701.
    173. Shikama N, Lyon J, La Thangue NB. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 1997, 7: 230-236.
    174. Kawai H, Nie LH, Wiederschain D and Yuan ZM. Dual Role of p300 in the Regulation of p53 Stability. J Biol Chem 2001, 276: 45928-45932.
    175. Chakaravarti D, Ogryzko V, Kao HY, Nash A, Chen H, Nakatani Y, Evans RM. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 1999, 96: 393-403.
    176. Kevin S. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev, 1998, 12: 599-606.
    177. Van LC, Emiliani S, Ott M, Verdin E. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 1996, 15:1112-1120.
    178. Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL. Transcriptional activators direct histone acetyltransferase
    
    complexes to nucleosomes. Nature 1998, 394: 498-502.
    179. Kadonaga JT. Eukaryotic Transcription: An Interlaced Network of Transcription Factors and Chromatin-Modifying Machines. Cell 1998, 92:307-313.
    180. Bjorklund S, Almouzni G, Davidson I, Nightingale KP, Weiss K. Global Transcription Regulators of Eukaryotes. Cell 1999, 96: 759-767.
    181. Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG. Identity between TRAP and SMCC Complexes Indicates Novel Pathways for the Function of Nuclear Receptors and Diverse Mammalian Activators. Mol Cell 1999, 3: 361-370.
    182. Berger SL. Gene activation by histone and factor acetyltransferases. Curr Opin Cell Biol 1999, 11: 336-341.
    183. Brownell JE, Allis CD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 1996, 6: 176-184.
    184. Yuan ZM, Huang YY, Ishiko T. Role for p300 in Stabilization of p53 in the Response to DNA Damage. J Biol Chem 1999, 274: 1883-1886.
    185. Martinez-Balbas MA, Bauer U, Nielsen SJ, et al. Regulation of E2F1 activity by acetylation. EMBO J 2000, 19: 662-671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700