硫化氢缓解铝、镉和盐胁迫及硫营养影响大麦生长与品质的生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫是植物生长必需元素,硫缺乏抑制作物生长,降低产量和品质。近二十年来,作物硫缺乏在世界范围内呈增长趋势,其主要原因是工业排放二氧化硫减少,低含硫肥料的持续增加使用及含硫杀菌剂和杀虫剂的持续减少使用。另一方面,酸(铝)、盐咸及重金属等环境胁迫正严重制约着作物产量与品质。大麦是全球各地普遍栽培的禾谷类作物,是重要的粮食、饲料以及工业原料作物。硫缺乏也可能影响大麦生长和品质。本研究旨在探讨硫营养对大麦生长、产量及籽粒品质的影响及基因型差异。同时,探讨了外源H2S缓解大麦铝、镉和盐胁迫的生理机制,为通过化学调控手段减轻作物铝、镉和盐胁迫及减少铝、镉积累提供理论与技术指导。主要研究结果如下:
     1.外源H2S对大麦铝毒害的缓解效应
     温室水培试验,探讨了外源H2S缓解大麦Al毒害的机理。试验设5个处理:(1)对照,0.5mM CaCl2溶液:(2)Pre-S,Al处理前1d用0.5mM CaCl2溶液+200μM NaHS预处理24h,次日更换为0.5mM CaCl2溶液;(3) Al,0.5mM CaCl2处理24h,次日更换为0.5mM CaCl2+100μM AlCl3溶液;(4) Pre-S+Al,0.5mM CaCl2+200μM NaHS预处理24h,次日更换为0.5mM CaCl2+100μM AlCl3溶液;(5) Pre-Na2SO4+Al,0.5mM CaCl2+200μM Na2S04预处理24h,次日更换为0.5mM CaCl2+100μ M AlCl3溶液。结果表明,外源H2S(Pre-S+Al处理)显著缓解大麦A1毒害,增加幼苗根长,显著减少A1诱导膜脂过氧化物产物MDA积累,降低根系电解液渗透和根Al含量,激活Na+K+-ATPase and H+-ATPase活性。不同浓度NaHS处理(100、200、400μMNaH)对Al毒害缓解效应的比较研究结果显示,H2S对铝诱导毒害的缓解作用也存在时间和剂量依赖效应,与对照仅有Al毒害的幼苗相比,100μM AlCl3溶液中添加200和400μM NaHS,有效缓解铝毒害,显著减少铝诱导产生的MDA积累,增加叶绿素含量、净光合速率及最大光化学效率。外源H2S显著提高根、地上部茎叶CAT活性及根POD活性,促进S、P、Ca、Mg及Fe吸收。
     2.外源H2S对镉胁迫下大麦生长、光合特性和抗氧化能力的影响
     水培试验,探讨了外源H2S缓解大麦Cd毒害的机理。试验设6个处理:(1)对照,基本培养液;(2)S,200μM NaHS;(3) Cd5,5μMCd;(4) Cd25,25μMCd;(5) Cd5+S,5μM Cd+200u M NaHS;(6) Cd25+S,25μ M Cd+200u M NaHS。结果表明,5μM和25μMCd处理显著降低幼苗株高、根长和生物量。外源添加200μM NaHS(H2S)(Cd5+S或Cd25+S)显著缓解镉毒害,处理40d后,Cd5+S处理的株高、根长和生物量分别比Cd5处理(5μM Cd)显著增加24%、26%和43%;Cd25+S分别比Cd25处理(25μM Cd)增加29%、24%和118%。外源H2S显著降低叶和根中MDA含量,增加根和茎叶中SOD活性及根POD活性,增加叶绿素含量,提高净光合速率。外源H2S显著抑制植株对Cd的吸收与转移,降低根和茎叶中Cd含量。
     3.外源H2S对盐胁迫下大麦生长、光合特性和活性氧代谢的影响
     温室水培试验,研究了外源H2S对大麦盐毒害的缓解作用。结果表明,100mM NaCl显著降低株高、根长、地上部和地下部干重。外源H2S能够显著缓解盐胁迫引起的生长抑制;与NaCl处理相比,株高和地上部干重分别增加14%和12%。H2S显著降低茎中Na的积累,提高根中K-的积累,显著降低Na-/K-比。H2S能够显著降低MDA含量,提高根SOD、CAT和APX及叶和根中POD活性。外源H2S能够显著提高气孔导度和净光合速率。结果显示,外源H2S能够显著提高盐胁迫下大麦的耐性,表现在降低氧化胁迫、提高抗氧化能力,促进K-进入根中,提高光合能力。
     4.硫营养对大麦生长、养分吸收和籽粒组成的影响及基因型差异
     水培试验研究了不同浓度硫(S)处理对大麦生长、产量和籽粒组成的影响及基因型差异。结果表明,S-缺乏降低成熟期植株的株高和生物量和开花期旗叶叶绿素含量;从产量性状分析,Gairdner比ZD-9对S缺乏更为敏感,与正常S水平(S1)相比,无硫(S0)条件下穗数、穗粒数和千粒重显著减少,其中Gairdner更为严重。开花期,S-缺乏条件下2个大麦品种的根、茎、旗叶和穗部等组织中S含量均明显低于正常S1处理。S-缺乏降低ZD-9茎和旗叶中P含量;显著降低2品种成熟种子中Ca和Zn含量,及ZD-9P、 Mg和B含量。硫营养影响籽粒N和蛋白质含量,ZD-9籽粒N和蛋白含量以S0.5处理最高,其含量分别较S0和S2.0处理高15%和10%;而Gairdner以S1.0和S2.0处理最高,其含量分别比无S处理高21%和30%。
     5.硫营养对大麦籽粒氨基酸组成和蛋白表达谱的影响
     利用蛋白质组学技术研究了硫营养对大麦籽粒蛋白表达谱的影响及基因型差异,蛋白双向电泳结果显示,0、1.0和2.0mM硫处理,引起2个大麦品种成熟籽粒蛋白质谱发生变化。每张胶图检测到超过1500个蛋白点。与1.0mM硫对照相比,缺硫条件下,ZD-9和Gairdner籽粒蛋白分别检测到58和73个蛋白点发生了变化。缺硫条件下,Gairdner和ZD-9分别检测到12、10个蛋白点下调,其中6个蛋白在两个品种中均下调。利用质谱分析和数据库检索发现,与缺S相比,正常施硫(1.0mMS)2个品种均表现上调表达的6个蛋白分别为β-淀粉1、α-淀粉酶抑制剂、β-淀粉酶、胞内谷氨酰胺合成酶α、胚胎球蛋白;仅在ZD-9正常施硫条件下上调表达的蛋白分别为丝氨酸苏氨酸激酶、胰蛋白抑制剂及Z-型丝氨酸蛋白酶抑制剂。籽粒氨基酸组成分析结果显示,硫缺乏籽粒中,富N氨基酸如精氨酸、赖氨酸、脯氨酸和甘氨酸含量增加,但含硫半胱氨酸和蛋氨酸含量下降。
Sulfur (S) is an essential macronutrient for plant growth and development. Sulfur deficiency reduces crop yield and affects the quality of harvested products. Sulfur deficiency is increasing seriously over the past two decades worldwide, mainly because of the reduction of sulfur dioxide emission from power plants and various industrial sources, increasing use of low-S-containing fertilizers and decreasing use of S-containing fungicides and pesticides. In addition, intensive agriculture is facing low yields, poor quality of products and inadequacy of crop plants to cope with environmental hazards. Barley is an important cereal crop grown mainly for feed, malt and food. Sulfur deficiency may also have impacts on growth and quality of barley. The central theme of this study was to investigate the role of S on barley growth, nutrient uptake capacity and grain quality. Moreover, ameliorating affects of hydrogen sulfide (H2S, a sulfur containing defense compound) on aluminum (Al), cadmium (Cd) and salinity stresses in barley were also examined. A series of experiments were performed and the following useful findings were achieved.
     1. Alleviation effects of exogenous H2S on Al toxicity in barley
     Greenhouse hydroponic experiments were performed to evaluate potential role of H2S on Al toxicity in barley seedlings. Seedlings pretreated with200μM NaHS as a donor of H2S for24h and subsequently exposed to100μM AICl3for24h had significantly longer roots than those without NaHS. The promoted root elongation was correlated with a substantial decrease in Al-induced overproduction of lipid peroxidation, electrolyte leakage and Al accumulation in roots, and a marked increase in Al-induced depress activities of Na+K+-ATPase and H+-ATPase. The alleviating role of H2S on Al-induced toxicity was also found in a time-and dose dependent experiment. Addition of200and400uM NaHS to100μM AICl3effectively alleviated Al-toxicity, markedly diminished Al-induced MDA accumulation, and increased chlorophyll content, net photosynthetic rate (Pn) and maximal photochemical efficiency (Fv/Fm) compared with Al alone. Exogenous H2S significantly elevated depressed CAT activities, and further improved root POD activity. Moreover, NaHS decreased Al accumulation, but elevated concentrations of S, P, Ca, Mg and Fe in plants. These data suggest that H2S-induced alleviation in Al toxicity is attributed to reduced A1uptake and MDA accumulation, improved uptake of P, Ca, Mg and Fe, and elevated ATPase and photosynthetic performance.
     2. Effect of exogenous H2S on growth, photosynthesis and antioxidative capacity of barley plants under cadmium stress
     Effect of exogenous H2S on Cd toxicity in barley was studied through a long term (25and40d) hydroponic experiment. Seedlings exposed to5and25μM Cd markedly reduced plant height, root length and biomass. Addition of200μM NaHS (as H2S-donor) to5or25μM Cd (Cd5+S or Cd25+S) significantly alleviated Cd-toxicity, and markedly increased plant height, root length, shoot biomass by24%,26%,43%in Cd5+S compared with5μM Cd alone, and by29%,24%,118%in Cd25+S over25μM Cd, respectively, after40d exposure. H2S-based increased tolerance was associated with decrease in MDA contents, increase in Cd-suppressed SOD in leaves and roots and POD activity in roots, Moreover, improved photosynthesis with improved chlorophyll content, photosynthetic rate (Pn) and stomatal conductance (Gs) parameters were also characteristics of exogenous application of H2S. Addition of H2S also reduced Cd concentrations in roots, stems and leaves, i.e. inhibited Cd uptake and further declined its translocation from roots to aboveground portions.
     3. Effect of exogenous hydrogen sulfide on growth, photo synthesis and antioxidative system of barley under salinity stress
     Green house hydroponic experiment was performed to evaluate the potential alleviation of exogenous H2S on salinity stress in barley. Plants grown in100mM NaCl were showed severe reduction in plant height, root length and shoot and root dry biomass. Exogenous H2S (NaCl+S, addition of200μM NaHS in100mM NaCl solution) significantly alleviated salt stress induced growth inhibition, yielding14%and12%increase in plant height and shoot dry weight as compared with NaCl alone. H2S significantly reduced Na+accumulation in stems, elevated K+in roots and resulted in significant lower Na+/K+ratio, especially in roots. HhS-mediated salinity alleviation was correlated with decline in MDA content, and elevation of salinity-depressed SOD, CAT and APX activities in roots and POD in leaves and roots. Exogenous H2S also improved photosynthesis with significant increase in stomatal conductance and net photosynthetic rate. It was deduced that H2S is an excellent candidate for salinity tolerance in barley, which lowered oxidative stress, enhanced antioxidative system, catalyzed K+entry into roots, improved photosynthesis and yielded91%tolerance index compared with76%of salinity alone treatment, after40days exposure.
     4. Effect of sulfur nutrition on growth, nutrient uptake and grain composition of barley
     Growth and yield responses of two hydroponically grown barley cultivars (Gairdner and ZD-9) to various sulfur (S) levels were studied via evaluating nutrient status of different plant tissues, grain composition and yield components. S-deprivation resulted in reduced plant heights and biomass at maturity decreased chlorophyll content in flag leaves at anthesis. Gairdner was more sensitive to S deficiency than ZD-9in terms of yield components, i.e. compared with normal S level, SO (no sulfur) induced much more reduction in spikes per plant, grains per spike and thousand grain weight (TGW) in Gairdner than that in ZD-9. At anthesis, S-deficient plants had lower S concentration in flag leaves, shoots, spikes and roots of both cultivars over the normal S treatment. S-deprivation (S0, no sulfur) reduced P concentration in flag leaves and shoots of ZD-9and accumulated more P in roots of both cultivars. S-free grown medium severely declined Ca and Zn concentration in mature grains of both cultivars, and P, Mg and B in ZD-9. The highest grain N and protein concentrations were recorded in SO.5applied solution in ZD-9(being15%and10%higher than that in SO and S2.0), while in S1.0and S2.0in Gairdner (being21%and30%higher than that in SO). The lowest N:S ratio was found in S1.0and S2.0treatments of both cultivars with ZD-9lower than Gairdner. Rational S fertilization was found effective, especially in ZD-9in maintaining growth, improving nutrient status of plant tissues and lowering undesirable higher-N:S (malting purpose) ratio in grains.
     5. Proteome and amino acid profile in mature barley grains as affected by sulfur fertilization
     Mature barley grains of two cultivars, grown hydroponically with0,1.0and2.0mM sulfur were analyzed for identification of S-responsive proteins through2-DE coupled with MS (mass spectrometry). More than1500spots were reproducibly detected on each gel. Overall,58and73protein spots were found to be altered by S-deprivation in ZD-9and Gairdner over the control, respectively. Total of26proteins were identified using MS and data bank analysis, out of which12,10and6proteins were suppressed in S-deprivation treatment relative to normal-S in Gairdner and ZD-9, respectively; while6proteins were suppressed in both cultivars. Sulfur starvation depressed Beta-Amy1, Alpha-amylase flour inhibitor, beta-amylase, cytosolic glutamine synthetase alpha and embryo globulin in both cultivars. Putative serine threonine kinase, trypsin inhibitor cme precursor and z-type serpin were down-regulated by SO over control in ZD-9only. Similarly, N-rich amino acids like arginine, lysine, proline and glycine were increased in S-deficient grains, while S-containing Cys and Met were decreased.
引文
Ahmad, A., Khan, I., Anjum, N.A., Diva, I., Abdin, M.Z., Iqbal, M.,2005. Effect of timing of sulfur fertilizer application on growth and yield of rapeseed. J. Plant Nutr.28,1049-59.
    Ahmad, S., Fazli, I.S., Jamal, A., Iqbal, M., Abdin, M.Z.,2007. Interactive effect of sulphur and nitrogen on nitrate reductase and ATP-Sulphurylase activities in relationto seed yield from Psoralea corylifolia L. J. Plant Biol.50,351-357.
    Ahn, S.J., Rengel, Z., Matsumoto, H.,2004. Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytol.162,71-79.
    Ahn, S.J., Sivaguru, M., Osawa, H., Chae Chung, G., Matsumoto, H.,2001. Aluminum inhibits the H+ -ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol.126,1381-1390.
    Al-Aghabary, K., Zhu, Z., Shi, Q.,2004. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and anti-oxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr.27,2101-2115.
    Ali, S., Zeng, F., Qiu, L., Zhang, G.P.,2011. The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biol. Plantarum 55,291-296.
    Alvarez, C., Calo, L., Romero, L.C., Garcia, I., Gotor, C.,2010. An o-acetylserine(thiol)lyase homolog with 1-cysteine desulfhydrase activity regulates cysteine homeostasis in arabidopsis. Plant Physiol.152,656-669.
    Amtmann. A., Armengaud, P.,2009. Effects of N, P, K, and S on metabolism:new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol.12,275-283.
    Anjum, N.A.,2006. Effect of abiotic stresses on growth and yield of Brassica campestris L. and [Vigna radiata (L.) Wilczek] under different sulfur regimes. Ph. D. thesis. Jamia Hamdard, New Delhi
    Apel, K., Hirt, H.,2004. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.55, 373-399.
    Archer, M.J.,1974. A sand culture experiment to compare the effects of sulphur on five wheat cultivars (Triticum aestivum L.). Aust. J. Agric. Res.25,369-80.
    Aulakh, M.S., Chhibba, I.M.,1992. Sulphur in soils and responses of crops to its application in Punjab. Fert. News 37,33-45.
    Aulakh, M.S., Pasricha, N.S.,1998. The effect of green manuring and fertilizer N application on enhancing crop productivity in mustard-rice rotation in semiarid subtropical regions. Euro. J. Agron.8,51-8.
    Aydin, G., Ali, I., Esra, B., David, P.,2007. Silicon-mediated changes of some physiologicaland enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil, Plant Soil 290,103-114.
    Badenes-Perez F.R., Reichelt, M., Heckel, D.G.,2010. Can sulphur fertilisation improve the effectiveness of trap crops for diamondback moth, Plutella xylostella (L.) (Lepidoptera:Plutellidae)? Pest Manag. Sci.66,832-838.
    Badruddin, M., Karmoker, J.L.,2001. The effect of sulphur deficiency on ion accumulation with special references to 15N and 35S transport in chickpea. Develop. Plant Soil Sci.92,116-117.
    Barber, S. A.,1995. Soil Nutrient Availability. A Mechanistic Approach.2nd edn., John Wiley & Sons, Inc., New York.
    Barney, Jr. P.E., Bush, L.P.,1985. Interaction of nitrate and sulphate reduction in tobacco.I. Influence of availibility of nitrate and sulphate. J. Plant. Nutr.8,507-515.
    Beauchamp, R.O., Bus, J.S., Popp, J.A., Boreiko, C.J., Andjelkovich, D.A.,1984. A critical review of the literature on hydrogen sulfide toxicity.Crit. Revi. Toxicol.13,25-97.
    Benavides, M.P., Gallego, S.M., Tomaro, M.L.,2005. Cadmium toxicity in plants. Braz. J. Plant Physiol.17,21-34.
    Benning, C.,1998. Biosynthesis and function of the sulpholipid sulphoquinovosyl diacylglycerol. Ann. Rev. Plant Physiol. Plant Mol. Biol.49,53-75.
    Berthon, G.,1996. Chemical speciation studies in relation to aluminium metabolism and toxicity. Coord. Chem. Rev.149,241-280.
    Bloem. E., Haneklaus, S., Schnug, E.,2010. Influence of fertilizer practices on S-containing metabolites in garlic (AUium sativum L.) under field conditions. Agric. Food Chem.58,10690-10696.
    Brunold, C, Suter M (1984) Regulation of sulphate assimilation by nitrogen nutrition in the duckweek Lemna minor L. Plant Physiol.76,579-583
    Calvert, J.W., Elston, M., Nicholson, C.K., Gundewar, S., Jha, S., Elrod, J.W., Ramachandran, A., Lefer, D.J.,2010. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122,11-19.
    Cao, Z., Huang. B., Wang, Q., Xuan, W., Ling, T., Zhang, B., Chen, X., Nie, L., Shen, W.,2007. Involvement of carbon monoxide produced by heme oxygenase in aba-induced stomatal closure in Vicia faba and its proposed signal transduction pathway. Chin. Sci. Bullet.52,2365-2373.
    Cargnelutti, D., Tabaldi, L.A., Spanevello, R.M., Jucoski, G.O., Battisti, V., Redin, M., Linares, C.E.B., Dressier, V.L., Flores, E.M.M., Nicoloso, F.T., Morsch, V.M., Schetinger, M.R.C.,2006. Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65,999-1006.
    Castellano, S. D., Dick, R. P.,1990. Cropping and sulfur fertilization influence on sulfur transformations in soils. Soil Sci. Soc. Am. J. 54,114-121.
    Chen, L., Ren, F., Zhong, H., Jiang, W., Li, X.2010. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochi et Biophy. Sini.42,154-164.
    Chen. Z.H., Pottosin,I.I., Cuin, T.A.,2007b. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol.145,1714-1725.
    Chen, Z.H., Shabala, S., Mendham. N., Newman. I., Zhang, G.P. and Zhou. M.X.,2008. Combining ability of salinity tolerance on the basis of NaCl induced K+ flux from roots of barley. Crop Sci.48,1382-1388.
    Chen, Z.H., Zhou, M.X., Newman, I.A., Mendham, N.J., Zhang, G.P., and Shabala, S.,2007 Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct. Plant Biol.34,150-162.
    Clarkson, D.T., Saker, L.R., Purves, J.V., Lee, R.B.,1989. Depration of nitrate and ammonium transport in barley plant with diminished sulphate status. Evidence of co-regulation of nitrogen and sulphate intake. J. Expt. Bot.40.953-963.
    Cobbett, C., Goldsbrough, P.,2002. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol.53,159-182.
    Cram, W.J.,1990. Uptake and transport of sulphate. In:Rennenberg H (ed.) Sulphur Nutrition and Assimilation inHigher Plants. SPB Acadmic Publishing, The Hague, The Netherlands, pp,3-11.
    Darko, E., Ambrus, H., Stefanovits-Banyai, E., Fodor, J., Bakos, F., Bamaba, B.,2004. Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci. 166,583-591.
    Dattagupta, S., Redding, M., Luley, K., Fisher, C.,2009. Comparison of proton-specific ATPase activities in plume and root tissues of two co-occurring hydrocarbon seep tubeworm species Lamellibrachia luymesi and Seepiophila jonesi. Mar. Biol.156, 779-786.
    Davies, J.P., Grossman, A.R.,1998. Responses to deficiencies in macronutrients. In:M Goldschmidt Clermont, S Merchant, eds, The Molecular Biology of Chloroplast and Mitochondria in Chlamydomonas. Kluwer Academic Publishers, Amsterdam, the Netherlands, pp 613-633.
    Dawood, M., Cao, F.B., Jahangir, M.M., Zhang, G.P., Wu. F.B.,2012. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. J. Hazard.Mater.30,209-210.
    Desikan, R., Cheung, M.K.. Bright, J., Henson. D., Hancock, J.T., Neill, S.J.,2004. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells, J. Exp. Bot.55,205-212.
    Dixit, V., Pandey, V.. Shyam, R.,2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot.52,1101-1109.
    Dixon, D.P.2002. Plant glutathione transferases. Genome Biol. REVIEWS3004
    Eppendorfer, W.H.,1971. Effects of sulfur, nitrogen and phosphorous on amino acid composition of field beans (Vicia faba) and responses of the biological value of the seed protein and sulfur-amino acid content. J. Sci. Food Agric.22,501-505.
    Eriksen, J.1996. Incorporation of soil organic matter in the field as determined by the abundance of stable isotopes. Biol. Fertil. Soils 22,149-155.
    Eriksen, J., Thorup-Christensen, K., Askegard, M.,2004. Plant availability of catch crop sulfur following spring incorporation. J. Plant Nutr. Soil Sci.167,609-615.
    Ezaki, B., Suzuki, M., Motoda, H., Kawamura, M., Nakashima, S., Matsumoto, H.,2004. Mechanism of gene expression of Arabidopsis glutathione S-transferase, AtGST1, and AtGST11 in response to aluminum stress. Plant Physiol.134,1672-1682.
    Farquhar, G.D., Sharkey, T.D.,1982. Stomatal conductance and photosynthesis. J. Ann. Rev. Plant Physiol.33,317-345.
    Finnie, C., Steenholdt, T., Noguera O.R., Knudsen, S., Larsen, J., Brinch-Pedersen, H., Holm, P.B., Olsen, O., Svensson B.,2004. Environmental and transgene expression effects on the barley seed proteome Phytochemistry,65,1619-1627.
    Fork, D.C., Satoh, K.,1986. The control by state transitions of the distribution of excitation energy in photosynthesis. Ann. Rev. Plant Physiol.37,335-361.
    Gallego, S.M., Benavides, M.P., Tomaro, M.L.,1996. Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress. Plant Sci.121,151-159.
    Garcia-Mata, C, Lamattina, L.,2010. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signaling. New Phytol.188, 97-984.
    Ghani, A., McLaren, R. G., Swift, R. S.,1990. Seasonal fluctuations of sulfur and microbial biomass-S in the surface of a Wakanui soil. N. Z. J. Agric. Res.33,467-472.
    Gill, S.S., Tuteja, N.,2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem.48,909-930.
    Girma, K., Mosali, J., Freeman, K. W., Raun, W. R., Martin, K. L.,Thomason, W. E.,2005. Forage and grain yield response to applied sulfur in winter wheat as influenced by source and rate. J. Plant Nutr.28,1541-1553.
    Glawischnig, E.,2004. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A.101,8245-8250.
    Goncalves, J.F., Becker, A.G, Cargnelutti, D., Tabaldi, L.A., Pereira, L.B., Battisti, V., Spanevello, R., Morch, V.M., Nicoloso, F.T., Schetinger, M.R.C.,2007. Cadmium toxicity causes oxidative stress and induces response to the antioxidant system in cucumber seedlings. Braz. J. Plant Physiol.19,24-26.
    Grando, S., Macpherson. H.G.,2005. Food Barley:Importance, uses and local knowledge. ICARDA, Aleppo, Syria
    Hajheydari, M., Eivazi, A., Buchman, B.B., Wong. J.H., Majidi I., Salekdeh, GH.,2007. Proteomics uncovers a role for redox in drought tolerance in wheat. J. Prote. Res.6,1451-1460.
    Hawkesford, M.J.,2000. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J. Exp. Bot.51,131-138.
    Hell R, Hillebrand H,2001. Plant concepts for mineral acquisitionand allocation. Curr. Opi. Biotechnol.12,161-168.
    Hesse, H., Hoefgen, R.,2003. Molecular aspects of methionine biosynthesis. Trends Plant Sci.8,259-262
    Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., Saito, K,2004. Integration of transcriptomics and metabolomics for understanding of global responses to nut ritional stresses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101.10205-10210.
    Horst, W.J., Wang, Y.X., Eticha, D., 2010. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann. Bot. -London 106, 185-197.
    Hosoki, R., Matsuk, N., Kimura, H., 1997. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biocbem. Biophys. Res. Commun. 237, 527-531.
    Hsu, Y.T, Kao, C.H., 2004. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul. 42, 227-238.
    Hsu,Y.T.,Kao, C.H., 2003. Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regulat. 40, 147-155.
    Hu. Z. Y., Zhao, F. J., McGrath, S. P., 2005. Sulphur fractionation in calcareous soils and bioavailability to plants. Plant Soil 268, 103-109.
    Inostroza-Blancheteau, C., Reyes- Diaz, M., Aquea, F., Nunes-Nesi, A., Alberdi, M, Arce-Johnson, P., 2011. Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium coiymbosum L.). Plant Physiol. Biochem. 49, 1005-1012.
    Islam, M.R., Islam, M.S., Jahiruddin, M, Hoque, M.S., 1999. Effects of sulfur, zinc and boron on yield, yield components and nutrient uptake of wheat. Pak. J. Sci. Ind. Res. 42, 137-40.
    Jamal, A., Ko, K., Kim, H.S., Cho, Y.K., Joung, H., Ko, K., 2009. Role of genetic factors and environmental conditions in recombinant protein production for plant molecular biofarming. Biotech. Advan. 27, 914-923.
    Jamal, A., Moon, Y.S., Abdin, M.Z., 2010a. Enzyme activity assessment of peanut (Arachis hypogea) under slow-release sulphur fertilization. Aust. J. Crop Sci. 4,169-174.
    Jamal, A., Moon, Y.S., Malik, Z.A., 2010b. Sulphur -a general overview and interaction with nitrogen. Aust. J. Crop Sci. 4, 523-529.
    Jamme, F., Robert, R.. Bouchet, B., Saulnier, L., Dumas, P., Guillon, F., 2008. Aleurone cell walls of wheat grain: high spatial resolution investigation using synchrotron infrared microspectroscopy. Applied Spectroscopy 62, 895-900.
    Jez, J., 2008 Sulfur: a missing link between soils, crops and nutrition, Agronomy Monograph no.50 Am Soc. Agron. Crop Ssc. Soc. Am. Soil Sci. Soc. Am. p 323.
    Kaiser, W.M.,1997. Regulatory interaction of carbonand nitrogen metabolism. Prog. Bot. 58, 150-163.
    Kellogg, E.A., 2001. Evolutionary history of the grasses. Plant Physiol. 125, 1198-1205.
    Khan, T.A., Mazid. M., 2011. Nutritional significance of sulphur in pulse cropping system. Biol. Medic. 3, 114-133.
    Kochian, L.V., 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 237-260.
    Kriz, A.L., 1989. Characterization of embryo globulins encoded by the maize G1b genes. Bioch. Genet. 27, 239-251.
    Kukreja, S., Nandwal, A.S., Kumar, N., Sharma, S.K., Sharma, S.K., Unvi, V., Sharma, P.K., 2005. Plant water status, H2O2, scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietimtm roots as affected by salinity. Biol. Plant. 49, 305-308.
    Lakkineni, K.C., Abrol. Y.P., 1992. Sulfur requirement of rapeseed-mustard. groundnut and wheat: A comparative assessment. J. Agron. Crop Sci. 169, 281-285.
    Lamattina, L., Polacco, J.C., 2007. Nitric oxide in plant growth. development and stress physiology. In: LamattinaL, PolaccoJC eds. Nitric oxide in plant growth, development and stress physiology. Heidelberg, Germany: Springer-Verlag GmbH.
    Larsson, M., Olsson, T, Larsson, C.M., 1985. Distribution of reducing power between photosynthetic carbon and nitrogen assimilation in Scenedesmus. Planta,164, 246-253.
    Laspina. N.V., Groppa, M.D., Tomaro, M.L., Benavides. M.P.. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci. 169,323-330.
    Leustek, T., Martin, M.N., Bick, J.A., Davies, J.P., 2000. Pathways and regulation of sulphur metabolism revealed through molecular and genetic studies. Ann. Rev.of Plant Physiol. Plant Mol. Biol.51, 141-165.
    Lindberg, S., Griffiths. G., 1993. Aluminum effects on ATPase activity and lipid-composition of plasma-membranes in sugar-beet roots. J. Exp. Bot. 44, 1543-1550.
    Lisjak, M., Srivastava, N., Teklic, T., Civale, L., Lewandowski, K., Wilson, I., Wood, M.E., Whiteman, M., Hancock, J.T., 2010. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol. Biochem. 48, 931-935.
    Mascagni, H. J. Jr., Harrison, S. A., Padgett, G B., 2008. Influence of sulfur fertility on wheat yield performance on alluvial and upland soils. Commun. Soil Sci. Plant Anal. 39, 2133-2145.
    Matysik, J., Bhalu, A.B., 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 82, 525-532.
    McGrath, S. P., Zhao, F. J., Blake-Kalff, M. M. 2002. History and outlook for sulphur fertilisers in Europe. Proc. No. 497, International Fertiliser Society, York, U.K.
    McGrath, S.P., Zhao, F.J., 1996. Sulphur uptake, yield response and the interactions between N and S in winter oilseed rape (Brassica napus L.) J. Agric. Sci. 126, 53-62.
    McLaren, R. G., Cameron, K. C., 2004. Soil Science. 2nd edn., Oxford University Press, Victoria, Australia.
    McNeil, S.D., Nuccio., M.L., Hanson, A.D., 1999. Betaines and related osmoprotectants: targets for metabolic, engineering of stress resistance. Plant Physiol. 120, 945-949
    Meriga, B., Reddy, B.K., Rao, K.R., Reddy, L.A., Kishor, P.B.K., 2004. Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J. Plant Physiol. 161, 63-68.
    Mishra, S., Srivastava, S., Tripathi, R.D., Dwivedi, S., Shukla, M.K., 2008. Response of antioxidant enzymes in coontail (Ceratophyllum demersum L.) plants under cadmium stress. Environ. Toxicol. 23, 294-301.
    Moore, P.K., Bhatia, M., Moochhala, S., 2003. Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends in Pharmacological Sciences 24, 609-611.
    Munns, R., Rebetzke, G. J., Husain, S., James, R. A., Hare, R. A. 2003. Genetic control of sodium exclusion in durum wheat. Austr. J. Agric. Res. 54, 627-635.
    Mustafa, A.K., Gadalla, M.M., Snyder, S.H., 2009. Signaling by gasotransmitters. Science Signal. 2, 72.
    Mustafa, M. G., 1990. Biochemical basis of ozone toxicity. Free Rad. Bio.and Med. 9, 245-265.
    Nikiforova, V.J., Gakiere, B., Kempa, S., Adamik, M., Willmitzer, L., Hesse, H., Hoefgen, R., 2004. Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J. Exp. Bot. 55, 1861-1870.
    O'Conner, K.F., Vartha, E.W., 1969. Responses of grasses to sulfur fertilizers. Plant and Soil 60, 451-459.
    Olmos, E., Martinez-Solano, J.R, Piqueras, A., Hellin, E., 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cell (BY-2 line). J. Exp. Bot. 54, 291-301.
    Ortega-Villasante, C, Rellan-Alvarez, R., Del Campo, F.F., Carpena-Ruiz, R.O., Hernandez, L.E., 2005. Cellular damage induced by cadmium and mercury in Medicago sativa. J. Exp. Bot. 56, 2239-2251.
    Papenbrock, J., Riemenschneider, A., Kamp, A., Schulz-Vogt, A., Schmidt, H.N., 2007. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants — from the field to the test tube and back. Plant Biol. 9,582-588.
    Papenbrock, J., Riemenschneider, A., Kamp, A., Schulz-Vogt, H.N., Schmidt, A., 2007. Characterization of cysteine-degrading and h2s-releasing enzymes of higher plants - from the field to the test tube and back. Plant Biol. 9, 582-588.
    Parida, A.K., Das, A.B., 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 60, 324-349.
    Pasricha, N.S., Aulakh, M.S., Bahl,GS.,Baddesha, H.S., 1987. Nutritional Requirements of Oilseed and Pulse Crops in Punjab. Res Bull 15. PAU. Ludhiana.
    Poschenrieder, C., Gunse, B., Corrales, I., Barcelo, J., 2008. A glance into aluminum toxicity and resistance in plants. Sci. Total Environ. 400, 356-368.
    Rahnama, H., Ebrahimzadeh, H., 2005. The effect of NaCl on antioxidant enzyme in potato seedlings. Biol. Plant. 49,93-97.
    Rausch, T., Wachter, A., 2005. Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci. 10, 503-509.
    Riemenschneider, A., Nikiforova, V., Hoefgen, R., De Kok, L.J., Papenbrock, J., 2005. Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol. Biochem. 43, 473-483.
    Rodriguez-Serrano, M., Romero-Puertas, M.C.,Zabalza, A., Carpas, F.J., Comez, M., Del-Rio. L.A., Sandalio, L.M., 2006. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 29, 1532—1544.
    Ruan, H.H., Shen, W.B., Ye, M.B., Xu, L.L., 2001. Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat (Triticum aestivum L.) leaves. Chinese Sci. Bull. 46, 1993-1997.
    Sairam, R.K., Srivastava, GC, Agarwal, S., Meena, R.C. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49, 85-91.
    Saito K., 2000. Regulation of sulphate transport and synthesis of sulphur-containing amino acids. Curr. Opin. Plant Biol. 3,188-195.
    Saito, K., 2004. Sulfur assimilatory metabolism.The long and smelling road. Plant Physiol. 136, 2443-2450.
    Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., del Rio, L.A., 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52.2115-2126.
    Scherer, H. W., 2001. Sulphur in crop production- invited paper. Eur. J. Agron. 14, 81-111.
    Scherer, H.W., 2009. Sulfur in soils. J. Plant. Nutr. Soil Sci. 172, 326-335.
    Scherer, H.W., Pacyna, S., Spoth, K.R., Schulz, M., 2008. Low levels of ferredoxin, ATP, and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago saliva L.) under S deficiency conditions. Biol. Fert. Soils 44, 909-916.
    Schonhof, I., Blankenburg, D., Muller, S., Krumbein, A., 2007. Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J. Plant Nutr. Soil Sci. 170, 65-72.
    Schulte, D., Close, T.J., Graner. A., Langridge. P., Matsumoto,T., Muehlbauer,G., Sato,K., Schulman,A.H., Waug, R., Wise R.P., Stein, N. 2009. The international barley sequencing consortium-At the threshold of efficient access to the barley genome. Plant Physiol. 149, 142-147.
    Shan, C.J., Zhang, S.L., Li, D.F., Zhao, Y.Z., Tian, X.L., Zhao, X.L., Wu, Y.X., Wei, X.Y., Liu, R.Q., 2011. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol. Plant. 33, 2533-2540.
    Sharma, P., Dubey, R.S., 2007. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell 26, 2027-2038.
    Shen, H., He, L.F., Sasaki, T., Yamamoto, Y., Zheng, S.J., Ligaba, A., Yan, X.L., Ahn, S.J., Yamaguchi, M., Hideo, S., Matsumoto, H., 2005. Citrate Secretion Coupled with the Modulation of Soybean Root Tip under Aluminum Stress. Up-Regulation of Transcription, Translation, and Threonine-Oriented Phosphorylation of Plasma Membrane FT-ATPase. Plant Physiol. 138, 1 287-296.
    Simonovicova, M., Huttova, J., Mistrik, I., Siroka, B., Tamas, L., 2004. Root growth inhibition by aluminum is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production. Protoplasma 224, 91-98.
    Singh, H.P., Batish, D.R., Kaur, G., Arora, K., Kohli, R.K. 2008. Nitric oxide (as Sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ. Exp. Bot. 63, 158-167.
    Sivaguru, M., Horst, W.J., 1998. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol. 116, 155-163.
    Smolinska, U., Morra, M. J., Knudsen, G. R., James, R. L.,2003. Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis.87,407-412.
    Song, X.S., Hu, W.H., Mao, W.H., Ogweno, J.O., Zhou, Y.H., Yu, J.Q.,2005. Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis salivus L. Plant Physiol. Biochem.43,1082-1088.
    Syers, J.K., Skinner, R.J., Curtin, D.,1987. Soil and fertilizer sulphur in UK agriculture. Proc Fertilizer Society No.379, The Fertilizer Society, Peterborough
    Tandon, H.L.S.,1991. Sulphur Research and Agricultural Production in India,3Rd Edition. The Sulphur Institute, Washington DC.
    Tang, Q.Y., Feng, M.G.,2002. DPS data processing system for practical statistics. Science, Beijing.
    Tisdale, S. L., Nelson, W. L., Beaton, J. D., Havlin, U.,1993. Soil Fertility and Fertilizers. Prentice Hall, New Jersey.
    Tiwari, K.M.,1997. Sulphur in balanced fertilisation in Northern India. Proc. TSI/PM/IFA symposium on sulphur in balanced fertilisation. New Delhi, pp:SII/I-SI-1/15.
    Uraguchi, S., Kiyono, M., Sakamoto, T., Watanabe, I., Kuno, K.,2009. Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat (Avena strigosa Schreb). Planta 230,267-276.
    Uraguchi, S., Watanabe, I., Yoshitomi, A., Kiyono, M., Kuno, K.,2006.Characteristics of cadmium accumulation and tolerance in novel Cd accumulating crops, Avena strigosa and Crotalaria juncea. J. Exp. Bot.57,2955-2965.
    van Wees, S.C.2003. Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol.132,606-617.
    vonUexkull, H.R., Mutert, E.,1995. Global extent, development and economic-impact of acid soils. Plant Soil 171,1-15.
    Wan, X.Y., Liu, J.Y.,2008. Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol.Cell Proteomics.7,1469-1488.
    Wang, B.L., Shi, L., Li, Y.X., Zhang, W.H.,2010a. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta 231,1301-1309.
    Wang, H.H., Huang, J.J., Bi, Y.R.,2010b. Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots. Plant Sci.179,281-288.
    Wang, R.,2002. Two's company, three's a crowd:can H2S be the third endogenous gaseous transmitter? FASEB J.16,1792-1798.
    Wang, R.,2002. Two's company, three's a crowd:Can H2S be the third endogenous gaseous transmitter? FASEB Journal 16, 1792-1798.
    Wang, Y.S., Yang, Z.M.,2005. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol.46,1915-1923.
    Westerman, S., Stulen, I., Suter, M., Brunold, C., De Kok, L.J.,2001. Atmospheric H2S as sulphur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway. Plant Physiol. Biochem.39, 425-432.
    White, P.J; Brown, P.H; 2010. Plant nutrition for sustainable development and global health. Ann Bot.105,1073-1080.
    Williams, J.S., Cooper, R.M.,2004. The oldest fungicide and newest phytoalexin-a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol.53,263-279.
    Wirtz, M., Hell, R.,2006. Functional analysis of the cysteine synthase protein complex from plants:structural, biochemical and regulatory properties. J. Plant Physiol.163,273-286.
    Wittstock, U., Halkier, B.A.,2002. Glucosinolate research in the Arabidopsis era. Trends Plant Sci.7,263-270.
    Wu, F.B., Dong, J., Cai, Y., Chen, F., Zhang, G.P.,2007. Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity. Sci. Total Environ.385,228-234.
    Wu, F.B., Zhang, G.P., Dominy, P., 2003. Four barley genotypes respond differently to cadmium, lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot. 50,67-78.
    Y. Mano., K. Takeda., 1997. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.), Euphytica 94, 263-272.
    Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., Meng, Q., Mustafa, A.K., Mu, W., Zhang, S., Snyder, S.H., Wang, R., 2008. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine y-lyase. Science 322, 587-590.
    Yoshimura, K., Y. Yabute, T. Ishikawa, S. Shigeoka, 2000, Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses, Plant Physiol. 123, 223-233.
    Zhang, H., Hu, L.Y., Hu, K.D., He, Y.D., Wang, S.H., Luo, J.P., 2008. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J. Integr. Plant Biol. 50, 1518-1529.
    Zhang, H., Tan, Z.Q., Hu, L.Y., Wang, S.H., Luo, J.P., Jones, R.L., 2010. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J. Integr. Plant Biol. 52, 556-567.
    Zhang, H., Ye, Y.K., Wang, S.H., Luo, J.P., Tang, J., Ma, D.F., 2009. Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul. 58, 243-250.
    Zhang, H., Tan, Z.Q., Hu, L.Y., Wang, S.H.,Luo, J.P., Jones, R.L., 2010. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. Journal of lntegrative Plant Biol. 52, 556-567.
    Zhang, H.,Tang, J., Liu, X.P., Wang, Y., Yu, W., Peng, W.Y., Fang, F.. Ma, D.F.,Wei, Z.J., Hu, L.Y.,2009. Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J. Integ. Plant Biol.51, 1086-1094.
    Zhang, H., Ye, Y.K., Wang, S.H., Luo. J.P., Tang, J., Ma, D.F., 2009. Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul. 58. 243-250.
    Zhao, F.J., Evans, E.J., Bilsborrow, P.E., Syers, J.K., 1993. Influence of S and N on seed yield and quality of low glucosinolate oilseed rape (Brassica nepus L.). J. Sci. Food Agric.63: 29-37.
    Zhu, J.K., 2001. Plant salt tolerance. Trends Plant Sci. 6, 66-71.
    Zohary. D., Hopf, M., 2001. Domestication of Plants in the Old World, Ed 3. Oxford University Press, Oxford, UK, pp: 1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700