盾壳霉产孢相关基因的克隆及腺苷脱氨酶(CMADA)基因的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了发挥盾壳霉的生防作用,有必要深入研究盾壳霉的分子生长发育、生理代谢途径及产孢调控。本研究以盾壳霉ZS-1菌株为出发菌株,在前期基础上进一步优化农杆菌介导的转化条件,将转化效率提高至50转化子/培养皿,既保证了转化效率,又可避免两个单孢萌发的菌丝长到一起,保证了转化子的纯度。通过这种方法构建了含5000个转化子的盾壳霉T-DNA标记插入突变体库。以期获得大量突变体克隆相关基因,研究基因功能。
     随后我们自盾壳霉的插入突变体库中共筛选到了23株表型异常突变体,其中8株突变体在PDA平皿上完全不能产生分生孢子,10株产孢明显减少,6株产生色素异常,3株生长迅速,3株生长缓慢,2株菌丝塌陷。其中产孢缺陷型突变体在菌丝生长速度、产抗生物质、寄生菌核能力和菌落形态等方面存在差异显著性。利用反向PCR、cDNA文库等克隆基因的技术平台,克隆了5株突变体的相关基因,包括ZS-1TN29、ZS-1TN289、ZS-1TN5012、ZS-1TN5498和ZS-1TN6222,利用NCBI保守结构域数据库比较分析,编码蛋白分别推定为CMARGJ、CMGAL、CMHMGR、CMPurD、CMMAPKKK。
     对突变体ZS-1TN250进行了详细研究,发现该突变体生长速度迅速,但在PDB中的生物产量比野生菌株低;产孢明显减少,后期有少量孢子产生,显微观察发现大部分孢子没有黑色素化;该突变体能寄生核盘菌,但在菌核上不产生分生孢子,致腐菌核能力显著下降;可以正常产生抗生物质。采用反向PCR技术对ZS-1TN250中T-DNA标记插入位点的侧翼基因组DNA进行克隆,获得了大小为902bp的DNA片段,结合盾壳霉基因组序列分析,利用DNA MANagement软件进行全长序列拼接,得到该基因全长1522bp,包含4个外显子和3个内含子,cDNA全长为996 bp,推定编码含332个氨基酸的蛋白,T-DNA插入到第二个外显子上191nt的位置。通过NCBI BLASTP数据库,对推定编码的氨基酸序列进行分析,与adenosine/AMP deaminase family protein (Pyrenophora tritici-repentis)具有最高相似度,在蛋白水平上相似性达61%,故命名该基因为CMADA。进一步设计引物,自盾壳霉cDNA文库扩增得到3'末端。Southern杂交证实T-DNA标记在ZS-1TN250中为单拷贝。RT-PCR检测到CMADA基因在野生菌株中的积累,但在突变体ZS-1TN250中没有检测信号。用腺苷脱氨酶试剂盒测定ADA的活性,在野生菌株中可检测到该酶的活性,而突变体ZS-1TN250中未能检测到该酶的活性。因此,推定突变体表型的变化是由于T-DNA插入造成的,CMADA基因与盾壳霉的菌丝生长和孢子形成相关。
In this study, the efficient Agrobacterium tumefacies mediated transformation system was established to transform Coniothyrium minitans. Conidia from 14-18 dpi colony developed on PDA slant of ZS-1 were collected after centrifuge, and then the conidial concentration was adjusted and resuspended to bacterial liquid. The results showed that fifty transformants per plate were obtained. A T-DNA insertional library with 5000 transformants of ZS-1 was constructed using the method described above.
     From this library,23 mutants were screened out, and among them 8 mutants could not produce any conidia on PDA plate,10 mutants could produce a few conidia,6 mutants produced abnormal pigment as compared with ZS-1,3 mutants grew faster on PDA than ZS-1,3 mutants grew slower than ZS-1, and hyphae of two mutant collapsed and then degraded. These mutants were significantly different in hyphal growth rate, antibiotics production, parasite of sclerotia, colony morphology and so on. Genomic DNA fragment flanking the insertional T-DNA were cloned from six mutants using Inverse-PCR technique, including ZS-1 TN29、ZS-1TN28、ZS-1TN5012、ZS-1TN5498 and ZS-1TN6222. Putative protein were CMARGJ, CMGAL、CMHMGR、CMPurD、CMMAPKKK respectively by conserved domain analysising.
     Mutant ZS-1TN250 was studied in detail. The growth rate of mutant ZS-1TN250 was significantly faster than ZS-1, but the biomass in PDB was less. Sporulation was declined significantly and could produce a few conidia on PDA plate. The pycnidia could not break to release conidia, and most of the spores could not mature. This mutant could parasitize sclerotia of Sclerotinia sclerotiorum, but could not produce conidia on sclertia and rotting capacity was decreased significantly. Just like ZS-1, ZS-1TN250 could secrete antibiotic substances. Genomic DNA fragment flanking the insertional T-DNA of ZS-1TN250 was obtained by Inverse-PCR. Based on the flanking DNA, the sequence of a gene was abtained. The full length gene included 1522bp with 4 exons and 3 introns, and cDNA length was 996 bp, encoding a protein with 332 aa. The T-DNA inserted into the second exon, insertion point was at the 191nt position. The deduced amino acid sequence shared 61% identity with adenosine/AMP deaminase family protein of Pyrenophora tritici-repentis. Therefore, we named the gene as CMADA. Further primers were designed, and 3'end was amplified from the cDNA library of C. minitans. Southern blot analysis confirmed that single T-DNA was inserted in the ZS-1TN250. RT-PCR showed that CMADA gene was expressed in the wild strain ZS-lbut not in ZS-1TN250. This indicates that T-DNA insertion induced the mutant phenotype. The protein activity was detected with ADA activity determination kit. The enzyme activity could be detected in the wild strain, whereas could not in mutant ZS-1TN250. The results suggested that CMADA gene is related to mycelial growth and conodia formation of Coniothyrium minitans.
引文
1. 傅廷栋,油菜的品种改良,作物研究,2007,3:159-162.
    2.宫晓艳.盾壳霉T-DNA插入体库的构建及两个分生孢子形成相关基因的克隆.[博士学位论文].武汉:华中农业大学图书馆,2007.
    3. 郭育林.硕士学位论文.武汉:华中农业大学,2008.
    4. 韩志勇,王新其,沈革志.反向PCR克隆转基因水稻的外源基因旁侧序列.上海农学报,2001,17(2):27-32.
    5. 洪宇植,肖亚中,房伟,童品贵,袁琛,孙芹英.长距离反向PCR技术高效扩增已知DNA片断的侧翼序列.激光生物学报,2006,15(1):46-49.
    6. 姜道宏.核盘菌寄生菌盾壳霉(Coniothyrium minitans)的生物学及其寄生生态学研究.[硕士学位论文].武汉:华中农业大学图书馆,1995.
    7. 姜道宏,李国庆,易先宏,付艳平,王道本.盾壳霉所产抗细菌物质的特性.植物病理学报,1998,28:29-32.
    8. 姜道宏,李国庆,易先宏,王道本.影响盾壳霉寄生核盘菌菌核的几个生态因子的分析.植物病理学报,1997,27(1):47-52.
    9. 罗宽,任新国,周必文等.油菜菌核病(Sclerotinia sclerotiorum)菌核上寄生真菌的研究.Crops of China,1987,3:40-45.
    10.李竹红,刘德培,梁植权.改进的反向PCR技术克隆转移基因的旁侧序列.生物化学与生物物理进展,1999,26(6):600-602.
    11.李国庆,王道本.拮抗细菌的筛选及其对油菜菌核病的防治效果.华中农业大学学报,1991,10:30-35.
    12.李荣禧,杨宝胜,严人沛等.小盾壳霉防治向日葵菌核病的初步研究.植物病害研究与防治,1998,520-522.
    13.李金秀,陈文瑞,秦芸.油菜土壤中与核盘菌菌核存活有关的真菌.四川农业大学学报,1997,15:1-5.
    14.李子钦,曹丽霞,白全江,张庆平,徐丽敏.内蒙古向日葵主要病害及其防治对策.内蒙古农业科技,2004,S1:63-64.
    15.刘胜毅,周必文,余琦.毒寨法筛选油菜抗茵核病材料的效果及其影响因素研究.植物保护学报,1998,26(1):36-40.
    16.刘博,苏乔,汤敏谦,袁晓东,安利佳.应用于染色体步移的PCR扩增技术的研究进展.遗传,2006,28(5):587-595.
    17.陆合,朱钰,黄尤田.反向PCR克隆黑根霉R306Δ62脂肪酸脱饱和酶基因.微生物学杂志,2006,28(1):24-27
    18.罗宽,任新国,周必文等.油菜菌核病(Sclerotinia sclerotiorum)菌核上寄生真菌的研究Crops of China,1987,3:40-45.
    19.萨姆布鲁克J,弗里奇E.F,曼尼阿蒂斯.分子克隆实验指南.北京:科学出版社,1992.
    20.师俊玲,堵国成,陈坚.盾壳霉在油菜菌核病菌生物防治中的应用.中国生物工程杂志,2003,23:27-31.
    21.韦善君,陈学章,李国庆,姜道宏,王道本.盾壳霉在油菜花瓣上萌发的影响因子分析.华中农业大学学报,1999,18(6):554-557.
    22.王虹,胡先文,姜道宏,付艳苹,董元彦.盾壳霉代谢抗白叶枯病菌活性物质的分离.华中农业大学学报,2009,148-150.
    23.王勇,王万立,刘春艳,郝永娟.保护地蔬菜菌核病的发生及防治技术.植物保护,2008,03:211.
    24.尹晓艳.硕士学位论文.武汉,华中农业大学,2007.
    25.张宏梅,石磊,李琳.反向PCR法扩增沙门菌第一类整合子旁翼基因序列.中国抗生素杂志,2008,33(2):111-113.
    26. Abawi G S, Grogan R G. Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 1979,69:899-904.
    27. Adams P B, Ayers W A. Sclerotinia sclerotiorum:ecology of Sclrotinia species. Phytopathology, 1979,69:896-899.
    28. Ali M. Elshafei, Latifa A. Mohamed and Nadia H. Ali. Purification and Characterization of Adenosine Deaminase is subject to a unique regulatory pattern. Journal of Applied Sciences Research,2007,3(10):1010-1016.
    29. Anita Pocwierz-Kotus, Artur Burzynski, Roman Wenne. Identification of a Tcl-like transposon integration site in the genome of the flounder. Marine Genomics,2010,3(001):1-6.
    30. Anjana Challa, Salynn Johnson, Kesha Robertson, M Gunasekaran. Properties of adenosine deaminase from Candida albicans. J. Basic Microbiol,1999,39(2):97-101.
    31. Autumn L. Sutherlina, Cynthia V. Stauffachera, Daniel A. Bocharb, Lydia Taberneroc, Matija Hedla and Victor W. Rodwelld. Hydroxymethylglutaryl-CoA Reductase. The Comprehensive Pharmacology Reference,2008,1-10.
    32. Barrasa J M, Gutierrez A, Escaso V, Guillen F, Martinez M J, Martinez A T. (1998) Electron and fluorescence microscopy of extracellular glucan and aryl-alcohol oxidase during wheat straw degradation by Pleurotus eryngii. Applied and Environmental Microbiology,1998,64:325-332.
    33. Bernhard, F., Benkel, Ying Fong. Long range-inverse PCR (LR-IPCR):extending the useful range of inverse PCR. Genetic Analysis:Biomolecular Engineering,1996,13:123-127.
    34. Blaise, F., Remy, E., Meyer, M., Zhou, L., Narcy, J.P., Roux, J., Balesdent, M.H., Rouxel, T. A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathpgenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans. Fungal Genet Biol,2007,44(2):123-38.
    35. Bo Li, Yanping Fu, Daohong Jiang, Jiatao Xie, Jiasen Cheng, Guoqing Li, MahammadImran Hamid, Xianhong Yi. Cyclic GMP as a Second Messenger in the NitricOxide-Mediated Conidiation of the Mycoparasite Coniothyrium minitans. APPLIEDAND ENVIRONMENTAL MICROBIOLOGY,2010,76(9):2830-2836.
    36. Bolton M D, Thomma B P H J and Nelson B D. Sclerotinia sclerotiorum (Lib.) de Bary:biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology,2006,7:1-16.
    37. Bundock, P., Dulk-Ras, A.D., Beijersbergen, A. Trans-kingdom T-DNA transfer from Agrobacte--rium tumefaciens to Saccharomyce scerevisiae.The EMBO journal,1995,14:3206-3214.
    38. Campbell, W. A. A new species of Coniothyrium parasitic on sclerotia. Mycologia,1947,39: 90-195.
    39. Castano F, Hemerytardin M C, delabrouhe D T, Vear F. The inheritance biochemistry of resistance to Scerotina sclerotiorum leaf infectionsin sunflower. Euphytica,1991,58(3):209-219.
    40. Chen, X, Stone, M, Schlagnhaufer, C., Romaine, C.P. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl. Environ. Microbiol,2000,66: 4510-4513.
    41. Chiariello M, Marinissen M J, Gutkind J S. Multiple mitogen-acti-vated protein kinase signaling pathways connect the Cot protein to the coJ promoter and to cellular transformation. Mol Cell Biol,2000,20(20):1747-1758.
    42. Ciro Indolfi, Angelo Cioppa, Eugenio Stabile, Emilio Di Lorenzo, Giovanni Esposito, Alfonso Pisani, Antonio Leccia, Luigi Cavuto, Angela Maria Stingone, Alaide Chieffo, Claudia Capozzolo, Massimo Chiariello. Effects of hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin on smooth muscle cell proliferation in vitro and neointimal formation in vivo after vascular injury, Journal of the American College of Cardiology,2000,35, (1):214-221.
    43. Ciruela F., Saura C., Canela E.I. Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett,1996,380(3):219-23.
    44. D. A. Carbonaro, X. Jin, D. Cotoi, T. Mi, X.-J. Yu, D. C. Skelton, F. Dorey, R. E. Kellems, M. R. Blackburn, and D. B. Kohn. Neonatal bone marrow transplantation of ADA-deficient SCID mice results in immunologic reconstitution despite low levels of engraftment and an absence of selective donor T lymphoid expansion. Blood,2008,111(12):5745-5754.
    45. David Schildt, Anthony J, Braket, Michael C. Kiefert, Daru Youngt, Philip J. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations. Genetics,1990,87:2916-2920.
    46. Devrije, T., Antoine, N., Buitelaar, R. M. The fungal biocontrol agent Coniothyrium minitans production by solid-state fermentation, application and marketing. J Applied Microbiology and Biotechnology,2001,56:58-68.
    47. Enea Sancho-Vaello, Maria L, Fernandez-Murga, Vicente Rubio. Mechanism of arginine regulation of acetylglutamate synthase, the first enzyme of arginine synthesis. FEBS Letters,2009, 583(1):202-206.
    48. FANG Jin, ZHAI WenXue, WANG WenMing, LI SuWen, ZHU LI. Amplification and analys is of T-DNA flanking sequences in transgenic rice. Acta Genetica Sinica,2001,28(4):345-351.
    49. Francesca Magnani, Yoko Shibata. Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. PNAS,2008,105:31.
    50. Gerlagh, M., Goossen-van de Geijn, H.M., Fokkema, N.J., Vereijken, P.F.G. Long-term bio--sanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum infected crops. Phytopathology,1999,89 (2):141-147.
    51. Gorordonc, Mills, Frank, C. Purine metabolism in adenosine deaminase deficiency. PNAS,1976, 73(8):2867-2871.
    52. Grimaldi, B., de Raaf, M. A., Filetici, P., Ottonello, S., Ballario, P. Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii:a first step towards truffle genetics. Curr Genet,2005,48(1):69-74.
    53. Huang, H. C., Erickson, R. S. Ulocladium afrum as a biological control agent for white mold of bean caused by Sclerotinia sclerotiorum. Phytoparasitica,2007,35 (1):15-22.
    54. Huang, H.C, Kokko, E.G. Ultrastructure of hyperparasitism of Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum. Can. J. Bot,1988,65:2483-2489.
    55. Huang, H.C. Distribution of Coniothyrium minitans in Manitoba sunflower fields. Can. J. Plant Pathol,1991,3:219-222.
    56. Huang, H.C. Importance of Coniothyrium minitans in survival of sclerotia of Sclerotinia sclerotiorum in wilted sunflower. Canadian Journal of Botany,1976,55:285-295.
    57. Jones, E E., Whipps, J. M. Effect of inoculum rates and sources of Coniothyrium minitans on control of Sclerotinia sclerotiorum disease in glasshouse lettuce. Europen journal of plant pathology,2002,108 (6):527-538.
    58. Jones, E. E., Mead, A., Whipps, J. M. Evaluation of different Coniothyrium minitans inoculum sources and application rates on apothecial production and infection of Sclerotinia sclerotiorum sclerotia. Soil Biology and Biochemistry,2003,35:409-419.
    59. Jurgen J. Heinisch, Anja Lorberg. Hans-Peter Schmitz, Jorg J. Jacoby. The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellula rintegrity in Saccharomyces cerevisiae. Molecular Microbiology,1999,32(4):671-680.
    60. Kemppainen M, Circosta A, Tagu D, Martin F, PardoA G. Agrobacterium-mediated transformation of the ectomycorrhizal symbiont Laccaria bicolor S238N. Mycorrhiza,2005,16: 19-22.
    61. Kemppainen, M., Circosta, A., Tagu, D., Martin, F., Pardo, A.G. Agrobacterium-mediated transformation of the ectomycorrhizal symbiont Laccaria bicolor S238N. Mycorrhiza,2005,16: 19-22.
    62. Khang, C.H., Park, S.Y., Rho, H.S., Lee, Y.H., Kang, S. Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum). Methods Mol Biol,2006,344:403-420.
    63. Kim JE, Myong K, Shim WB, Yun SH, Lee YW. Curr Genet. Functional characterization of acetylglutamate synthase and phosphoribosylamine-glycine ligase genes in Gibberella zeae.2007 51(2):99-108.
    64. Koichi, J., Homma, Yasuhiro Tanaka, Kuniko Yokoyama, Hitoshi Matsui, Shunji Natori. Adenosine Deaminase Activity of Insect-derived Growth Factor Is Essential for Its Growth Factor Activity. J. Biol. Chem,2001,276(47):43761-43766.
    65. Lengeler, K.B., Davidson, R.C., D'souza, C., Ashima, T., Shen, W.C., Wang, P., Pan, X., Waugh, M., Heitman, J. Signal transduction cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews,2000,64:746-785.
    66. Li Ren, Guoqing Li, Yong Chao Han, Dao Hong Jiang, Hung-Chang Huang. Degradation of oxalic acid by Coniothyrium minitans and its effects on production and activity ofβ-1,3-glucanase of this mycoparasite. Biological Control,2007,43:1-11.
    67. Lima, I.G., Duartel, R.T., Furlaneto, L., Circosta, A. Transformation of the entomopathogenic fungus Paecilomyces fumosoroseus with Agrobacterium tumefaciens. Letters in Applied Microbiology,2006,42:631-636.
    68. Marc F, Weigel P, Legrain C, Almeras Y, Santrot M, Glansdorff N, Sakanyan V. Characterization and kinetic mechanism of mono-and bifunctional ornithine acetyltransferases from thermophilic microorganisms. Eur J Biochem.2000,267(16):5217-26.
    69. Maria, Susana, Feliu. Adenosine deaminase:As indicator of nutritional status. FASEB Journal, 2008,22:1102.2.
    70. Mark, J. Wall, Alison Atterbury. Control of basal extracellular adenosine concentration in rat cerebellum. J Physiol,2007,582(1):137-151.
    71. Martin, V.J.J., Mohn, W.W. An alternative inverse PCR(IPCR) method to amplify DNA seque-nces flanking Tn5 transposon insertion. J.Microbiol,1999,35:163-166.
    72. McKenzie, R., Schuchert P, Kilbey, B. Sequence of the bifunctional ade1 gene in the purine biosynthetic pathway of the fission yeast Schizosaccharomyces pombe. Curr. Genet.1987.
    73. McLaren, DL; Huang, HC; Rimmer, SR. Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. PLANT DISEASE,1996,80 (12):1373-1378.
    74. McQuilken, M. P., Budge, S. P., Whipps, J. M. Effects of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans. Mycological Research,1997,101 (1):11-17.
    75. McQuilken, M. P., Budge, S. P., Whipps, J. M. Effects of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans. Mycological Research,1997,101 (1):11-17.
    76. McQuilken, M. P., Gemmell, J., Hill, R. A., Whipps, J. M. Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiol Lett,2003,219(1):27-31.
    77. McQuilken, M. P., Gemmell, J., Hill, R. A., Whipps, J. M. Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiol Lett,2003,219(1):27-31.
    78. McQuilken, M. P., Whipps, J. M. Production, survival and evaluation of solid-substrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. Eur J Plant Pathol,1995,101:101-110.
    79. Merriman, P. R. Survival of sclerotia of Sclerotinia sclerotiorum in soil. Soil Biol Biochem,1976, 8:385-389.
    80. Michal Zurovec, Tomas Dolezal, Michal Gazi, Eva Pavlova, Peter J. Bryant. Adenosine deaminase-related growth factors stimulate cell proliferation in Drosophila by depleting extracellular adenosine. PNAS,2002,99 (7):4403-4408.
    81. Miklns P N, Grafton K F. Inheritance of partial resistance to white mold in inbred populations of dry bean. Crop Science,1992,32(4):943-948.
    82. Minet, M., Lacroute, F. Curr. Genet. Cloning and sequencing of a human cDNA coding for a multifunctional polypeptide of the purine pathway by complementation of the ade2-101 mutant in Saccharomyces cerevisiae.1990
    83. Mitchell, T. K., Craven, K., Schadel, K. Randal, et al. A. tumefaciens based transformation of mycelial fragments of Ophiosphaerella herpotricha. Phytopathology,2003,93:S62.
    84. Moxiao Li, Xiaoyan Gong, Jin Zheng, Daohong Jiang, Yanping Fu, Mingsheng Hou. Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agroba--cterium tumefaciens. FEMS Microbiology Letters,2005,243:323-329.
    85. Muthumeenakshi, S., Sreenivasaprasad, S., Rogers, C.W., Challen, M.P., Whipps, J.M. Analysis of cDNA transcripts from Coniothyrium minitans reveals a diverse array of genes involved in key processes during sclerotial mycoparasitism. Fungal Genet Biol,2007,44:1262-1284 Aug 10.
    86. Nathalie Oestreicher, Carin Ribard, Claudio Scazzocchio. The nadA geneof Aspergillus nidulans, encoding adenine deaminase. Fungal Genetics and Biology,2008,45(2008):760-775.
    87. P A Fantes, C F Roberts. (3-Glactosidase Activity and Lactose Utilization in Aspergillus nidulans. Journal of General Microbiology,1973,77:471-486.
    88. Pang, K.M., Knecht, D.A. Partial inverse PCR:A technique for cloning flanking sequences. Biotechniques,1997,23(6) 1046-1048.
    89. Park Y J,Song E S, Kim Y T.Analysis of virulence and growth of a purine auxotrohic mutant of Xanthomonas oryzaepathovar oryzae.FEMS Microbiol Lett,2007,276(1):55-59.
    90. Rafael Franco, Josefa Mallol. Ecto-adenosine deaminase:An ecto-enzyme and a costimulatory protein acting on a variety of cell surface receptors. Drug Development Research,1999,45(3-4): 261-268.
    91. Rafael Franco, Vicent Casado.Cell surface Adenosine Deaminas:much more than an ecoenzyme. Progress in Neurobiology,1997,52:283-294.
    92. Rahim Mehrabi, Theovander Lee, Cees Waalwijk, Gert H. J. Kema. MgSlt2, a Cellular Integrity MAP Kinase Gene of the Fungal Wheat Pathogen Mycosphaerella graminicola, Is Dispensable for Penetration but Essential for Invasive Growth. Molecular plant-microbe interactions,2006, 19(4):389-398.
    93. Raymond E., Jeremy Thorner. Function and regulationin MAPK signaling pathways:Lessons learned from the yeast Saccharo mycescerevisiae.Biochimica et Biophysica Acta,2007, 1773:1311-1340.
    94. Rho, H.S., Kang, S., Lee, Y.H. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus Magnaporthe grisea. Mol Cells,2001,12(3):407-411.
    95. Rocio Esteban, Emilia Labrador, Berta Dopico. A family of β-galactosidase cDNAs related to development of vegetative tissue in Cicer arietinum. Plant Science,2005,168(2):457-466.
    96. Rodriguez-Tovar, A.V, Ruiz-Medrano, R., Herrera-Martinez, A., Barrera-Figueroa, B.E., Hidalgo-Lara, M. E., Reyes-Marquez, B. E., Cabrera-Ponce, J. L., Valdes, M., Xoconostle Cazares. Stable genetic transformation of the ectomycorrhizal fungus Pisolithus tinctorius. J Microbiol Methods, 2005,63:45-54.
    97. Rosa Elena Cardoza, Maria Rosa Hermosa, Juan Antonio Vizcaino, Fran Gonzalezd, Antonio Llobell, Enrique Monte,Santiago Gutierrez. Partial silencing of a hydroxy-methylglutaryl-CoA reductase-encodinggenein Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and lower antifungal activity. Fungal Genetics and Biology,2007, 44:269-283.
    98. Ryoko Iijima, Takekazu Kunieda. The Extracellular Adenosine Deaminase Growth Factor, ADGF/CECR1, Plays a Role in Xenopus Embryogenesis via the Adenosine/P1 Receptor. J. Biol. Chem,2008,283(4):2255-2264.
    99. Sakanyan V, Petrosyan P, Lecocq M. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum:enzyme evolution in the early steps of the arginine pathway[J]. Microbiology,1996,142:99-108.
    100. Saura C, Ciruela F. Adenosine deaminase interacts with A1 adenosine receptors in pig brain cortical membranes. J. Neurochem,1996,66(4):1675-82.
    101.Scudder P, Uemura K, Kolby J, Fukuda M N, Feizi T. Isolation and characterization of an endo-b-galactosidase from Bacterioides fraglis. Biochem.J,1983,213:485-494.
    102. Sharma K.K, Gupta S, Kuhad R C. Agrobacterium-mediated delivery of marker genes to Phanerochaete chysosporium mycelial pellets:a model transformation system for white-rot fungi. Biotechnol. Appl. Biochem,2006,43:181-186.
    103. Sugui J A, Chang Y C, Kwon-Chung K.J. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus:an efficient tool for insertional mutagenesis and targeted gene disruption. Appl. Environment Microbiol,2005,71(4):798-802.
    104. Sumathi Balasubramaniam, Heng Chin Lee, Hamid Lazan, Roohaida Othman, Zainon Mohd. Ali. Purification and properties of a (3-galactosidase from carambola fruit with significant activity towards cell wall polysaccharides. Phytochemistry,2005,66(2):153-163.
    105.Susann Jezewskil, Monika vonder Heide, Sophia Poltermann, Albert Hartl, Waldemar Kunkel, Peter F. Zipfell and Raimund Eck2. Role of the Vps34p-interacting protein Ade5,7p in hyphal growth and virulence of Candida albicans. Microbiology,2007,153:2351-2362
    106.Takahashi S, Kuzuyama T, Seto H. Purification characterization and cloning of aeubacterial 3-hydroxy-3-methylglutaryl Coen-zyme A reductase, akey enzyme involved in biosynthesis of terpenoids. J.Bacteriol,1999,181:1256-1263.
    107.Takekawa M, Tatebayashi K, Saito H. Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Mol Cell,2005, 18:295-306.
    108.Tomas Dolezal, Michal Gazi, Michal Zurovec, Peter J. Bryant. Genetic Analysis of the ADGF Multigene Family by Homologous Recombination and Gene Conversion in Drosophila. Genetics, 2003,165:653-666.
    109. Triglia T, Peterson M Q Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res,1988,16(16):81-86.
    110.Vito Valiante, Radhika Jain, Thorsten Heinekamp, Axel A.Brakhage. The MpkA MAP kinase module regulates cell wall integrity signalingAnd pyomelanin formation in Aspergillus fumigatus. Fungal Genetics and Biology,2009,08(005):1-10.
    111.Wan-chun SUN, Yan CAO. Modulating effect of adenosine deaminase on function of adenosine A1 receptors. Acta.Pharmacol Sin,2005,26 (2):160-165.
    112. Wang YingChao; Li GuoQing; Fang Yuan; Jiang DaoHong Production of conidia by the mycoparasite Coniothytium minitans on stubbles of oilseed rape. Chinese Journal of Biological Control,2006,22 (4):308-312.
    113.Whipps J M, Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycology Resure,1992,96 (11):897-907.
    114.Willets H J, Bullock S. Developmental biology of Sclerotinia.Mycol.Res,1992,96:801-816.
    115.Willets H J, Wong J A. The biology of Sclerotinia sclerotiorum S. trifoliorum and S. minor with emphasis on special We nomenclature. Bot. Rev,1980,46:101-165.
    116.Xiaoyan Gong, Yanping Fu, Daohong Jiang, Guoqing Li, Xianhong Yi, Youliang Peng. L-Arg--inine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Geneticsand Biology,2007,44:1368-1379.
    117.Xiufen Zou, Tao Peng, Zishu Pan. Modeling specificity in the yeast MAPK signaling networks. Journal of Theoretical Biology,2008,250(1):139-155.
    118.Zwiers L H, De Waard M A. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet,2001,39(5-6):388-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700