树胶脂毒素对人膀胱癌RT4细胞抑制作用的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:膀胱癌是泌尿外科最常见的恶性肿瘤之一,组织学类型主要为膀胱尿路上皮癌(urothelial cell carcinoma, UCC),又称移形细胞癌(transitional cell carcinoma, TCC)。大多数(70%-80%)膀胱癌病例为为非肌层浸润性膀胱癌(Non-muscle-invasive bladder cancer,NMIBC),手术治疗是目前NMEBC的首选的治疗方法,所有非肌层浸润性膀胱癌患者行TURBT术后均建议行膀胱腔内灌注化疗药物或免疫制剂,降低肿瘤复发率。但由于膀胱癌具有多发性原位癌不易通过膀胱镜检查发现等特点,TURBT术后行化疗药物灌注后,1年内的复发率仍高达15%-61%,而5年内更有31%-78%患者出现肿瘤复发。
     目前常用的灌注化疗药物包括:吡柔比星、丝裂霉素C、表柔比星、阿霉素、羟喜树碱。但这些常见药物均会产生化学性膀胱炎等副作用,并在TURBT术后即刻灌注化疗后更明显。卡介苗(BCG)是已知预防复发和进展最有效的灌注药物,但行BCG灌注治疗后,肿瘤复发率仍有30%-45%,大量患者出现严重膀胱刺激征,并有部分患者出现反应性前列腺炎、附睾炎、肝炎等严重副反应,无法耐受治疗,致其临床应用受到很大限制。为了寻找疗效更好、副作用更小的膀胱癌化疗药物,国内外学者都在进行不懈的努力。
     近年来,香草酸受体1(vanilloid receptor1,VR1)作为新的抗肿瘤药物的靶点进入了人们的视线。VR1是瞬时感受器电位亚家族成员之一,是一种非选择性的阳离子通道,广泛表达在初级传入感觉神经元及粘膜组织中,在多种恶性肿瘤组织中也有表达。使用香草酸类药物如树胶脂毒素(resiniferatoxin)、辣椒素(capsaisin)等,可以激活VR1通道,引起强烈的钙离子内流,引起细胞内钙超载导致明显的细胞毒作用,研究证明了这种钙超载可以激活线粒体凋亡途径诱导的肿瘤细胞凋亡。
     树胶脂毒素(resiniferatoxin, RTX)是一种从大戟类树胶植物的乳汁中分离出的刺激性香草酸类分子,对VR1的激动活性大大强于辣椒素,因此又被称为辣椒素类似物、超强辣素,是已知最强的VR1激动剂,可以诱发更强、持续时间更长的钙离子内流。已经在临床研究中应用于膀胱灌注治疗我科间质性膀胱炎及神经源性膀胱等疾病,无明显不良反应。在抗肿瘤领域,国外学者研究了树胶脂毒素对皮肤鳞状细胞癌细胞及胰腺癌细胞的体外抑制作用,并对作用机制进行了研究。而对膀胱癌细胞树胶脂毒素是否具有抗肿瘤活性,是否可以作为新的膀胱灌注化疗药物是我们感兴趣的地方。
     本研究应用了MTT、流式细胞术、倒置显微镜研究了树胶脂毒素对人膀胱癌RT4细胞的增殖的抑制作用、对细胞周期的阻滞作用、对细胞凋亡的诱导作用以及对RT4细胞形态学的影响。又应用荧光钙离子成像技术、Western-blot技术初步探讨了树胶脂毒素对RT4细胞抑制作用的分子生物学机制。
     实验目的:研究RTX干预对膀胱癌RT4细胞增殖、细胞周期、细胞凋亡的影响。
     实验方法:
     1.采用MTT法以0nmol/L RTX作为阴性对照组,观察不同浓度(50,100,200,500,1000,1500nmol/L)RTX作用不同时间(24h,48h,72h)对RT4细胞增殖的抑制作用。
     2.采用倒置相差显微镜观察不同浓度(0,50,100,200,500,1000nmol/L) RTX作用不同时间(8h,24h,48h)后RT4细胞形态学变化
     3.采用流式细胞术(PI染色)检测不同浓度(0,500,1000nmol/L)RTX作用48h后RT4细胞周期分布。
     4.采用流式细胞术(Annexin V/PI双染)分析不同浓度(0,500,1000nmol/L) RTX作用48h后RT4细胞凋亡情况.
     实验结果:
     1.MTT结果示,不同浓度(50,100,200,500,1000,1500nmol/L) RTX作用人膀胱癌RT4细胞不同时间(24h,48h,72h)后,抑制率为(3.48%-29.73%),(8.49%-50.23%),(13.54%-72.76%),呈剂量及时间依赖性;各浓度组抑制率与阴性对照组(Onmol/L)比较,均有显著性差异(P<0.01).
     2.倒置相差显微镜观察结果示:RTX干预后,显微镜下可见RTX干预后RT4细胞数量逐渐减少,并出现典型凋亡细胞特征。效应呈时间及剂量依赖性。
     3.流式细胞术(PI染色)结果示:不同浓度(500,1000nmol/L) RTX干预可诱导人膀胱癌RT4细胞G0/G1期细胞周期阻滞,RTX干预48小时后,各组均出现G0/G1期细胞比例增加,依次为:42.37%,48.79%。与阴性对照组(35.02%)比较,差异均具有统计学意义(P<0.05)
     4.流式细胞术(Annexin V/PI双染)结果示:RTX干预48小时后,早期凋亡细胞的比例升高,分别:3.21%,5.42%,与阴性对照组(0.65%)比较差异具有统计学意义(P<0.05),晚期凋亡细胞的比例升高,分别:10.23%,19.87%,与阴性对照组(2.34%)比较差异具有统计学意义(P<0.05)。总凋亡细胞细胞的比例也升高,分别:13.93%,25.29%±6.21%,与阴性对照组(2.99%)比较差异具有统计学意义(P<0.05),提示RTX干预诱导RT4细胞凋亡,并呈剂量依赖性。
     实验结论:
     1.RTX体外干预可抑制RT4细胞的体外增殖,其抑制作用呈剂量及时间依赖性
     2.RTX体外干预可诱导RT4细胞周期G0/G1期阻滞,呈剂量依赖性。
     3.RTX体外干预可诱导RT4细胞凋亡,呈剂量依赖性。
     实验目的:初步研究RTX对RT4细胞抑制作用的分子生物学机制。
     实验方法:
     1.采用荧光钙离子成像技术检测不同浓度(0,500,1000nmol/L) RTX作用不同时间(Oh,8h,24h)后RT4细胞内钙离子浓度变化。
     2.采用Western-blot技术检测RTX(1000nmol/L)干预4个时间点(Oh,8h,24h,48h)细胞周期调控蛋白P53、P21、细胞周期依赖性激酶(CDK)2表达变化。
     3.采用Western-blot技术检测RTX(1000nmol/L)干预4个时间点(Oh,8h,24h,48h)细胞凋亡相关蛋白caspase-8, caspase-3、以及胞浆内细胞色素C的表达变化。
     实验结果:
     1.荧光钙离子成像结果证明细胞内钙离子水平在RTX干预后明显提高,效果呈浓度依赖性及时间依赖性。
     2.P53蛋白在RTX干预早期(8h)出现表达高峰,随后逐渐下降。P21在8h后表达升高并维持。CDK2结果显示随时间推移,表达逐渐降低。
     3. caspase-8在RTX干预后随时间的推移,表达逐渐升高,caspase-3结果显示随时间推移表达逐渐增高,细胞色素C在干预后随时间推移表达升高。
     实验结论:
     1.RTX干预可造成膀胱癌RT4细胞内钙超载并呈时间依赖性及浓度依赖性。
     2.RTX干预可通过激活P53-P21-CDK2通路造成膀胱癌RT4细胞G0/G1期细胞周期阻滞。
     3.RTX干预可通过激活caspase-8-caspase-3通路并激活细胞凋亡的线粒体途径诱发膀胱癌RT4细胞凋亡。
Abstract:Bladder cancer (BC) is the most common malignant tumor of urinary system,about90%of which is comprised of urothelial cell carcinoma (UCC)(also known as transitional cell carcinoma, TCC).About70%-80%bladder cancer cases are Non-muscle-invasive bladder cancer (NMIBC).At present,all the patients with NMIBC are suggested to have surgical resection.But the recurrence rate is still above60%in3-5years after the surgery. So it is important to have intravesical chemotherapy drugs or immunomodulating agents,which can kill the epibiotic tumor cells and reduce the risk of relapses of the tumor.Because of NMIBC always are multiple malignant tumor and the tumor in Tis stage can hardly be diagnosed, about15%-61%of the patients presented to us with recurrent tumors after received intravesical therapy in the first year after operation and31%-78%in five years.
     Now the most common chemotherapy drugs are pirarubicin, mitomycin, pharmorubicin, doxorubicine, hydroxycamptothecine.All those drugs lead to side effect such as chemical cystitis, which is obvious at the time of the immediate postoperative intravesical. Bacillus Calmette-Guerin (BCG) is considered to be the most effective intravesical drug.But tumor recurrence in30%-45%of the patients received intravesical BCG therapy.Some of the patients have severe irritation symptoms of bladder, prostatitis, epididymitis, hepatitis. So its usage is greatly limited. Doctors among the world are making unremitting efforts to search new drug or new drug targets.
     In recent years,VR1(vanilloid receptor1) is rediscovered as a antineoplastic drug target. Vanilloid receptor1, a non-selective cation channel belonging to the transient receptor potential family of ion channels, is expressed in the spinal cord, brain and a wide-range of non-neuronal cells such as urothelium and some tumor tissue.Vanilloids (capsaicin and resiniferatoxin),as the VR1agonists can strongly activates VR1producing a large influx of calcium, resulting in calcium-induced inactivation and cytotoxicity lead to mitochondrial damage.
     Resiniferatoxin, a diterpine derived from the latex of the plant Euphorbia resinifera used by the ancient physicians of Roman times, was found to share structural similarity to capsaicin by containing a common vanilloid moiety essential for activity. In the anti-tumor field Hail investigate the inhibitory effect of resiniferatoxin on SCC cell line.Hartel investigate the inhibitory effect of resiniferatoxin on human pancreatic cancer line. What we interested in is if RTX has antineoplastic activity against the UCC cell line.
     Object:To investigate the inhibitory effect of resiniferatoxin on growth inhibition cell cycle and induction on apoptosis of human bladder carcinoma RT4cell.
     Methods:
     1.The inhibitory effect of RTX on human bladder carcinoma RT4cells was determined with varying concentration of RTX (50,100,200,500,1000,1500nmol/L) treatment for24,48and72hours by MTT assay taking0nmol/L RTX as a negtive control.
     2.Morphologic changes of RT4cells were studied with inverted phase contrast microscope with different concentration (0,50,100,200,500,1000nmol/L) of RTX at different time (Oh,8h,24h,48h)
     3.The cell cycle of RT4cells treated by RTX (0,500,1000nmol/L) for48hours were detected by flow cytometiy (FCM) with PI staining method.
     4.The extent of apoptosis of RT4cells treated by RTX (0,500,1000nmol/L) for48hours were detected by (FCM) with annexin V and PI staining method.
     Results:
     1. Using the human bladder carcinoma RT4cell line, we found that RTX treatment resulted in dose-dependent (50,100,200,500,1000,1500nmol/L) inhibition of cellular proliferation and cell viability. The inhibition rate of cellular proliferation with RTX treatment at concentrations of (50,100,200,500,1000,1500nmol/L) treatment after24hours ranged from3.48%to29.73%respectively. The inhibition rate of cellular proliferation with RTX treatment was significantly different compared with negative control group(P<0.01). The inhibition of cellular proliferation with RTX treatment at concentrations of (50,100,200,500,1000,1500nmol/L) after48and72hours ranged from8.49%to50.23%,13.54%to72.76%respectively in a time-dependent manner.
     2. In lower concentrations (50,100nmol/L) treatment of RTX for8hours, it shows a moderate apoptotic effect, while in higher concentrations1000nmol/L it showed more apoptotic cells observed with inverted phase contrast microscope.After24hours in higher concentrations(1000nmol/L), more typical apoptosis body was observed,while after48hours a large number of apoptotic cells was observed.
     3.As shown by FCM with PI staining method, RTX treatment (500,1000nmol/L) of the RT4cells resulted in significant G0/G1-phase cell arrest ranging from42.37to48.79%, and each concentration of RTX group was significantly different compared with negative control group35.02%(P<0.05).
     4. As shown by FCM with PI and Annexin V staining method, we found that RTX caused a dose-dependent increase in RT4cell apoptosis. It was observed that treatment of RT4cells with varying concentration of RTX (0,500,1000nmol/L) for48hours increased the number of early apoptotic cells from3.21%to5.42%, and total apoptotic cells from13.93%to25.29%in a dose-dependent manner, and significantly different compared with negative control group0.65%and2.99%respectively (P<0.05).
     Conclusion:
     1.Resiniferatoxin (RTX) can inhibit the proliferation of human bladder carcinoma RT4cells effectively in a dose and time-dependent manner in vitro.
     2. RTX can arrest the RT4cells in G0/G1phase at a dose-dependent manner.
     3. RTX induces human bladder carcinoma RT4cells apoptosis at a dose-dependent manner.
     Object:to investigate the mechnism of the inhibitory effect of resiniferatoxin on human bladder carcinoma RT4cell.
     Methods:
     1. After treated by RTX (0,500,1000nmol/L) for different time (Oh,8h,24h) the concentration of Ca2+in RT4cells is determined with fluoreacent labeling method.
     2.After treated by RTX (1000nmol/L) for different time (Oh,8h,24h,48h),detect three proteins of apoptosis related proteins caspase-8, caspase-3and evaluate cytochrome c release with the approsch of western-blot analysis.
     3.After treated by RTX (1000nmol/L) for different time (Oh,8h,24h,48h),detect three cell cycle regulatory protein p53, p21, CDK2with the approsch of western-blot analysis.
     Results:
     1. After a48hour treatment with RTX, the expressions of P53and P21were up-regulated in contrary to the expression of CDK2.
     3.RTX induced caspase-8activation at8h that increased at24-48h. Caspase-3activation occurred at12h and persisted until24h after treatment.8hours after treatment, a band of12kDa corresponding to cytochrome c was observed and declined at later time points
     Conclusion:
     1. RTX can arrest the RT4cells in G0/G1phase by modulating the expression of P53, P21and CDK2.
     2.Treatment of cells with RTX induced apoptosis accompanied by activation of caspase-8,caspase-3.and increased mitochondrial cytochrome c release.
引文
[1]Babjuk, M., et al., [EAU guidelines on non-muscle-carcinoma of the bladder]. Actas Urol Esp,2009.33(4):p.361-71.
    [2]Garcia, J.A. and R. Dreicer, Adjuvant and neoadjuvant chemotherapy for bladder cancer:management and controversies. Nat Clin Pract Urol,2005.2(1):p.32-7.
    [3]Sylvester, R.J., et al., Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables:a combined analysis of 2596 patients from seven EORTC trials. Eur Urol,2006.49(3):p.466-5; discussion 475-7.
    [4]Kalogris, C., et al., Expression of transient receptor potential vanilloid-1 (TRPV1) in urothelial cancers of human bladder:relation to clinicopathological and molecular parameters. Histopathology,2010.57(5):p.744-52.
    [5]Amantini, C., et al., Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis,2009.30(8):p.1320-9.
    [6]Szallasi, A. and P.M. Blumberg, Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience, 1989.30(2):p.515-20.
    [7]Ursu, D., et al., Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity. Eur J Pharmacol,2010.641(2-3):p.114-22.
    [8]Raisinghani, M., R.M. Pabbidi and L.S. Premkumar, Activation of transient receptor potential vanilloid 1 (TRPV1) by resiniferatoxin. J Physiol,2005.567(Pt 3):p. 771-86.
    [9]Takahashi, S., et al., [Intravesical instillation of resiniferatoxin for the patients with interstitial cystitis]. Hinyokika Kiyo,2006.52(12):p.911-3.
    [10]Liu, T.J., et al., [Clinical study of resiniferatoxin on neurogenic bladder]. Zhonghua Yi Xue Za Zhi,2010.90(26):p.1827-9.
    [11]Hartel, M., et al., Vanilloids in pancreatic cancer:potential for chemotherapy and pain management. Gut,2006.55(4):p.519-28.
    [12]Sanchez, M.G., et al., Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. Eur J Pharmacol,2005.515(1-3):p.20-7.
    [13]Neubert, J.K., et al., Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia. Mol Pain,2008.4:p.3.
    [14]Vercelli, C., et al., Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells. Vet Comp Oncol,2013.9999(9999).
    [15]Lazzeri, M., et al., Intravesical vanilloids and neurogenic incontinence:ten years experience. Urol Int,2004.72(2):p.145-9.
    [16]Ziglioli, F., et al., Vanilloid-mediated apoptosis in prostate cancer cells through a TRPV-1 dependent and a TRPV-1-independent mechanism. Acta Biomed,2009.80(1):p. 13-20.
    [17]Hail, N.J. and R. Lotan, Examining the role of mitochondrial respiration in vanilloid-induced apoptosis. J Natl Cancer Inst,2002.94(17):p.1281-92.
    [18]Amantini, C., et al., Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis,2009.30(8):p.1320-9.
    [19]Kadenbach, B., et al., The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim Biophys Acta,2004.1655(1-3):p.400-8.
    [20]Breckenridge, D.G., et al., Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol,2003.160(7):p.1115-27.
    [21]Apati, A., et al., Effects of intracellular calcium on cell survival and the MAPK pathway in a human hormone-dependent leukemia cell line (TF-1). Ann N Y Acad Sci, 2003.1010:p.70-3.
    [22]Deng, X., et al., The apoptotic effect of brucine from the seed of Strychnos nux-vomica on human hepatoma cells is mediated via Bcl-2 and Ca2+ involved mitochondrial pathway. Toxicol Sci,2006.91(1):p.59-69.
    [23][Lamb, H.K., et al., The affinity of a major Ca2+ binding site on GRP78 is differentially enhanced by ADP and ATP. J Biol Chem,2006.281(13):p.8796-805.
    [24]Frey, M.R., et al., Cell cycle- and protein kinase C-specific effects of resiniferatoxin and resiniferonol 9,13,14-ortho-phenylacetate in intestinal epithelial cells. Biochem Pharmacol,2004.67(10):p.1873-86.
    [25]Thomas, K.C., et al., Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J Pharmacol Exp Ther, 2007.321(3):p.830-8.
    [26]Kim, S.R., et al., Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+- mediated mitochondrial damage and cytochrome c release. J Immunol,2006.177(7):p.4322-9.
    [27]Sugimoto, K., I. Kissin and G. Strichartz, A high concentration of resiniferatoxin inhibits ion channel function in clonal neuroendocrine cells. Anesth Analg,2008.107(1):p. 318-24.
    [28]Zhao, Y., et al., Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Wafl/Cipl). Mol Cell Biol,2006.26(7):p. 2782-90.
    [29]Zilfou, J.T. and S.W. Lowe, Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol,2009.1(5):p. a001883.
    [30]Eddy, A. A., Expression of genes that promote renal interstitial fibrosis in rats with proteinuria. Kidney Int Suppl,1996.54:p. S49-54.
    [31]Obaya, A.J. and J.M. Sedivy, Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci,2002.59(1):p.126-42.
    [32]Squatrito, M., et al., Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell,2010. 18(6):p.619-29.
    [1]BABJUKM O, OSTERLINCK W, SYLVESTER R, et al. Eauguidelines on non-muscle-carcinoma of the bladder[J]. EAU guidelines,2009,33(4):361-371.
    [2]Oddens JR, van der M eijden AP, Sylvester R, et al. One immediate post operative instillation of chemotherapy in low risk Ta, T1 bladder cancer patients. Is it always safe[J]. EurUro,12004,46(3):336-338.
    [3]Au JL, Bada lament RA,W ientjes M G,etal. Methods to improve efficacy of intravesical mitomycin C:results of a randomized phaseO trial[J]. JN at 1C ancer Inst, 2001,93(8):597-604.
    [4]Bouffioux CH, Kurth KH, Bono A, et al. Intravesical adjuvant chemotherapy for superficial transitional cell bladder carcinoma:results of 2 European Organization for Research and Treatment of Cancer randomized trails with mitomycin C and doxorubicin comparing early versus delayed Instillations and short-term versus long-term treatment[J]. JU ro,l 1995,153(3 Pt 2):934-941.
    [5]Koga H, Kuroiwa K, Yam aguchi A, et a 1. A randomized controlled trial of short-term versus long-term prophylactic intravesical instillation chemotherapy for recurrence after transurethral resection of Ta/T1 transitional cell carcinoma of the bladder[J].JU rol 2004,171(1):153-157.
    [6]肖振东,李长岭,马建辉等.吡柔比星膀胱灌注预防膀胱癌术后复发的长期疗效观察[J].临床泌尿外科杂志,2009,24(4):271-273.
    [7]Clarke NS, Basu S, Prescott S, et a 1. Chemo-prevention in superficial bladder cancer using mitomycin C:a survey of the practice patterns of British urologists[J]. BJU In t,2006,97(4):716-719.
    [8]Friedrich MG, Pichlmeier U, Schwaibold H, et al. Long-term intravesical adjuvant chemotherapy further reduces recurrencerate compared with short-term intravesical chem otherapy and short-term therapy with Bacillus Calmette-Guerin (BCG) in patients with non-mu scle-invasive bladder carcinoma [J]. EurUro,l 2007,52 (4):1123-1129.
    [9]荆孝东,赵积晔,李猛,等.羟基喜树碱膀胱灌注预防膀胱癌术后复发的疗效分析[J].临床外科杂志,2010,18(2):131-132.
    [10]Dalbagni G, Russo P, Bochner B, et a 1. Phase O trial of intravesical gemcitabine in bacille Calmette-Guerin-refractory transitional cell carcinoma of the bladder [J]. J Clin Onco,12006,24 (18):2729-2734.
    [11]Hendricksen K, vander Heijden AG, Cornel EB, et a 1. Two-year follow-up of the phase II m arker lesion study of intravesical apaziquone for patients with non-muscle invasive bladder cancer[J]. W orld JU ro,l 2009,27(3):337-342.
    [12]McKiernan JM, Masson P, Murphy AM, et a 1. Phase I trial of intravesical docetaxel in the management of superficial bladder cancer refractory to standard intravesical therapy [J]. J ClinOnco.l 2006,24(19):3075-3080.
    [13]Uchida A, Yonou H, Hayash i E, etal. Intravesical instillation of bacille Calmette-Guerin for superficial b ladder cancer:cost effectiveness analysis [J]. Urology, 2007,69 (2):275-279.
    [14]Bohle A, Bock PR. Intravesical bacille Calmette-Guerin versus mitomycin C in superficial b ladder cancer:form alm eta-analysis of comparative studies on tumor progression [J]. Urology,2004,63(4):682-686.
    [15]Ojea A, Nogueira JL, Solsona E, et al. Amulticentre, randomized prospective trial comparing three intravesical adjuvant therapies for intermediate-risk superficial b ladder cancer:low-dose bacillus Calmette-Guerin(27mg) versus very low-dose bacillus Calmette-Guerin (13.5 m g) versus mitomycin C [J]. EurUro,l 2007,52(5):1398-1406.
    [16]Okamura T, Akita H, Imura M, etal. Efficacy of bacillus Calmette-Guerin in the treatment of superficial bladder cancer:the impact of previous intravesical treatment [J] In t J U ro,12008,15(11):976-980.
    [17]ColombelM, Saint F, Chopin D,et a 1. The effect of ofloxacin on bacillus calmette-guerin induced toxicity in patients with superficial bladder cancer:results of a randomized, prospective, double-blind, placebo controlled, multicenter study [J]. J Uro,12006,176(3):935-939.
    [18]Pan CW, Shen ZJ, Ding GQ. The effect of intravesical instillation of antifibrinolytic agents on bacillus Calmette-Guerin treatment of superficial bladder cancer: apilot study [J]. J U ro,l 2008,179 (4):1307-1311.
    [19]Kostakopoulos A, Deliveliotis C, Mavromanolak is E, et a 1.Intravesical interferon alfa-2b administration in the treatment of superficial bladder tumors [J]. Eur Urol 1990, 18(3):201-203.
    [20]Halachmi S, Moskovitz B, Maffezzini M, etal. Intravesical mitomycin C combined with hyperthermia for patients with T1G3 transitional cell carcinoma of the bladder [J]. UrolOncol,2011,29 (3):259-264.
    [21]Witjes JA, Hendricksen K, Gofrit O, eral. Intravesical hyperthermia and mitomycin-C for carcinoma in situ of the urinary bladder:experience of the European Synergo working party [J]. World J Urol,2009,27 (3):319-324.
    [22]Colombo R, Salonia A, Leib Z, etal. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle invasive bladder cancer (NMIBC) [J]. BJU Int,2011,107 (6):912-918.
    [23]Griffiths G, Hall R, Sylvester R, et al. International phase Ⅲ trial assessing neoadjuvant cisplatin, methotrexate and vinblastine chemotherapy for muscle-invasive bladder cancer:long-term results of the BA0630894 trial [J]. J Clin Oncol,2011,29(16): 2171-2177.
    [24]Sherif A, Holmberg L, Rintala E, et al. Neoadjuvant cisplatinum based combination chemotherapy in patients with invasive bladder cancer:a combined analysis of two Nordic studies [J]. Eur Urol,2004,45(3):297-303.
    [25]Loehrer PJ, Einhorn LH, Elson PJ, et al. Arandomized comparison of cisplatin. alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma:a cooperative group study [J]. J Clin Oncol,1992,10(7): 1066-1073.
    [26]Bellmunt J, von der Maase H, Mead GM, et al. Randomized? phase III study comparing paclitaxel/cisplatin/gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy:EORTC intergroup study 30987 [J]. J Clin Oncol,2012,30(10):1107-1113.
    [27]WUXR. Urothelial tumorigenesis:A tale of divergent pathways[J]. Nat Rev Cancer,2005,5:713-725.
    [28]ESWARAKUMARV P, LAX I, SCHLESSINGER J. Cellular signaling by fibroblast growth factor receptors[J]. Cytokine Growth Factor Rev,2005,16:139-149.
    [29]LHOTE C G, KNOWLES M A. Cell responses to FGFR3 signaling:Growth, differentiation, and apoptosis[J]. Exp Cell Res,2005,304:417-431.
    [30]RIEGER C K M, MOURTZINOS A, LEE P J, et al. Ident-ification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection[J]. Cancer,2003,98:737-744.
    [31]VANRHIJN B W, VANDERKWAST T H, VISAN, et al. FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma[J]. Cancer Res,2004,64:1911-1914.
    [32]BAKKAR A A, WALLERAND H, RADVANYI F, et al. FGFR3 and TP53 genemutations define two distinct pathways in urothelial cell carcinoma of the bladder[J]. Cancer Res,2003,63:8108-8112.
    [33]MAKITOM, MASAZUMII. PD173074, a selective tyrosine kinase inhibitor of FGFR3, inhibits cell proliferation of bladder cancer carrying the FGFR3 gene mutation along with up-regulation of p27/Kipl and G1/G0[J]. J Pharmacol ExpTher,2010,332(3): 795-802.
    [34]ZHANG Z T, PAK J, HUANG HY, et al. Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation[J]. Oncogene,2001,20:1973-1980.
    [35]DINNEY C P, MCCONKEY D J, MILLIKAN R E, et al. Focus on bladder cancer[J]. Cancer Cell,2006,6:111-116.
    [36]JEBAR A H, HURST C D, TOMLINSON D C, et al. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma[J]. Oncogene, 2005,24:5218-5225.
    [37]WU X R. Urothelial tumorigenesis:A tale of divergent pathways [J]. Nat Rev Cancer,2005,5:713-725.
    [38]KASSOUF W, BLACK P C, TUZIAK T, et al. Distinctive expression patterns of ErbB family receptors signify an aggressive variant of bladder cancer[J]. J Urol,2007 179:353-358
    [39]KASSOUF W, DINNEY C P, BROWN Q et al. Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of gefitinibin bladder cancer cells[J]. Cancer Res,2005,65:10524-10535.
    [40]SHEPHERD F A, RODRIGUES P J, CIULEANU T, et al. Erlotinib in previously treated non-smal-1 cell lung cancer[J].N Engl J Med,2005,353:123-132.
    [41]MOORE M J, GOLDSTEIN D, HAMM J, et al. Erlotinib plus gemcitabine compared to gemcitabine alone in patients with advanced pancreatic cancer. A Phase Ⅲ trial of the National Cancer Institute of Canada Clinical Trials Group[NCIC-CTG[J]]. J Clin Oncol,2005,23:31.
    [42]BONNER J A, HARARI PM, GIRALT J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck[J]. N Engl J Med,2006,354:567-578.
    [43]GOMEZ H L, DOVAL D C, CHAVEZ M A, et al. Efficacy and safety of lapatinib as firs-t line therapy for ErbB2-amplified locally advanced or metastatic breast cancer[J]. J Clin Onco,2008,26:2999-3005.
    [44]SANTOS L, COSTA C, PEREIRA S, et al. Neovascularization is a prognostic factor of early recurrence in T1PG2 urothelial bladder tumours[J]. Ann Oncol,2003,14: 1419-1424.
    [45]唐建武,朱逢春. 激光-血卟啉肿瘤光动力学疗法的生物医学机制[J]. 国外医学(肿瘤学分册),1991,17:14-16.
    [46]孟斌,温博贵,李冠武,等. 肿瘤光动力疗法诱导细胞凋亡机制研究进展[J]. 生理科学进展,2002,33:269-272.
    [47]黄正,强永刚,陈伟.光动力学疗法诱导抗肿瘤免疫反应研究的进展[J].中国激光医学杂志,2006,15:121-124.
    [48]Huang Z. Photodynamic therapy in China:Over 25 years of unique clinical experience:Part One-History and domestic photosensitizers [J]. Photodiagnosis Photodyn Ther,2006,3:3-10.
    [49]许德余. 光动力治癌药物的历史、现状、进展、问题和前景[J]. 中国激光医学杂志,2001,10b:44-47.
    [50]许德余,陈文晖,张浩,等. 光动力治癌新药血卟啉单甲醚(HMME)的研究[J]. 中国激光医学杂志,1993,2:3-7.
    [51]顾瑛,李峻亨,许德余,等. 新型光敏剂-血卟啉单甲醚临床应用研究的初步报道[J]. 中国激光医学杂志,1993,2:235-236.
    [52][52]Ying Gu, Huang NY, Liang J, et al. Clinical study of 1949 cases of port wine stains treated with vascular photodynamic photodynamic therapy (Gu's PDT) [J]. Ann Dermatol Venereol,2007,134:241-244.
    [53]张玉海,于惠元,哈献文,等.应用光敏反应治疗膀胱癌初步报告[J]. 中华泌尿外科杂志,1983,4:327-328.
    [54]王秀丽,王宏伟,黄正.5-氨基酮戊酸光动力疗法在皮肤科的应用[J]. 中华皮肤科杂志,2009,42:368-370.
    [55]焦志友,张大岐,陈山,等.光动力治疗膀胱癌117例报告[J]. 中华外科杂志,1992,30:415-416.
    [56]刘树硕,杨永华,王泽时.叶绿素光敏剂光动力疗法预防浸润性膀胱癌术后复发的临床研究[J]. 中国中西医结合杂志,1998,18:15-17.
    [57]刘树硕,杨永华,王泽时. 叶绿素衍生物光动力疗法和噻替哌灌注预防膀胱癌术后复发的比较[J]. 浙江医学,1998,20:69-71.
    [58]方杰,方祖军,丁强,等.光动力学疗法与膀胱内灌注化疗治疗膀胱癌远期疗效比较[J]. 中国激光,2009,36:2696-2699.
    [59]Sutton M A, Freund CT, Berkman SA. In vivo adenovirus-mediated suicide gene therapy of orthotropic bladder cancer[J]. MolTher,2000,2(3):211-217.
    [60]Greco O, Rolkes LK, Wardman P, et al. Development of a novel enzyme/prod rug combination for gene therapy of cancer:Horseradish peroxidase/indole-3-acetic acid [J]. Cancer Gene Ther,2000,7(11):1414-1420.
    [61]OyamaM, Ohigashi T, Hoshi M. Intravesica 1 and intravenous therapy of human b ladder cancer by the Herpes vector G207 [J].Hum Gene Th er,2000,11(12):1683-1693.
    [62]Connor J, Bannerji R, Saito S, et al. Regression of bladder tumors in mice treated with IL-2 gene-modified tumor cells [J]. ExpMed,1993,177 (4):1127-1134.
    [63]Minoru H, Kelley M, Ryuichi F, et al. Intravesical interleukin-12 gene therapy in an orthotropic b ladder cancer model[J]. Urology,2005,66 (2):461-466.
    [64]Xu H J, Zhou Y, Seigne J, et al. Enhanced tumor suppressor gene therapy via replication-deficient adenovirus vectors expressing an N-terminal truncated retinoblastom a protein [J]. Can cer Res,1996,56(10):2245-2249.1995,7(2):29-38.
    [65]Homer K, Devlin H. The relation ship between two indices of mandibular bone quality and bone mineral density measured by dual energy X-ray absorption try [J] Dentomaxillofac Radiol 1998,27(1):17-21.
    [66]Sanchez AR, Sheridan PJ, Lohse C, e t a 1. Assessment of Peripheral Dua-1 En ergy X-R ay Absorptiometry Measurements in Per-implant Bone Defects in Dogs[J]. J Periodonto,l 2004,75(5):658-662.
    [67]Jacobs R. Preoperative radiologic planning of implant surgery in compromised patients [J]. Periodontol 2000,2003,33 (1):12-25.
    [68]Becker W, Hujoel PP, Becker BE, e t a 1. Osteoporosis and implant failure:an exploratory case-control study[J]. JPeriodon to,12000,71(4):625-631.
    [69]Ozawa S, Ogawa T, Iida K, et al. Ovariectomy hinders the early stage of bone-implant integration:histomorphometric, biomechanical and molecular analyses[J]. Bone,2002,30 (1):137-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700